DISTRIBUTION OF THE SERIAL CORRELATION COEFFICIENT
By R. L. ANDERSON
North Carolina State College

1. Introduction. The problem of serial correlation was brought to the atten-
tion of statisticians by Yule in 1921 [9]. Both Yule and Bartlett [2] have shown
that the ordinary tests of significance are invalidated if successive observations
are not independent of one another. The serial correlation coefficient has been
introduced as a measure of the relationship between successive values of a
variable ordered in time or space. Interest in the serial correlation problem was
stimulated further by the new concepts of time series analysis discussed by
Wold [8].

We shall define the serial correlation coefficient for lag L and N observations
to be

Ry = Cr _ XX+ XoXpa + o + X Xo — @X)YN
Vi =X: — CX.)*/N ’
where C and V are the covariance and variance respectively and the X’s are
considered to bé independently normally distributed about the same mean with
unit variance." If the population variance were known a priori, the variates
could be transformed so that they would have unit variance; under such an
unusual circumstance, the only distribution required would be that of the serial
covariance. Tintner has given a test of significance for the serial covariance [6]
and for the correlation coefficient [7] by using a method of selected items. The
author has presented the distribution of the serial covariance and of the serial
correlation coefficient not corrected for the mean in a recent doctoral thesis [1].
The distributions of Ry not corrected for the mean will be mentioned in the
sections which follow.

2. Small sample distributions for lag 1. W. G. Cochran has suggested that
we use a result given in his article on quadratic forms to derive the distributions
of the serial correlation coefficient for small samples [3]. If X;, Xz, ---, Xx
are independently normally distributed with variance 1 and mean 0, then

“Every quadratic form Za;;X;X; is distributed like > Ay , where r is the
. k=1

rank of the matrix, A, of the quadratic form, the w’s are independently
distributed as x°, each with 1 d.f., and the N’s are the non-zero latent roots
of the characteristic equation of A” [3, p. 179].
If each \; appears k; times as a latent root, u; will be distributed as x* with /&
degrees of-freedom.

1 This circular definition of the serial correlation coefficient was suggested by H.
Hotelling.
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If we set L = 1 in the above definition of the serial covariance, we note that
the characteristic equation of ,Cy is

a a ag --- anx
Gy G G2 --° QN

Fy=1| .- .« . .. . =0,
G az a4 --- ay

where a1 = —(\ + 1/N), a» = ax = (N — 2)/2N, and all other a’s = —1/N.
The determinant can be evaluated by the method of circulants. We find that

N N
Fay) =] {E aiwi_l} , Where wy is the kth root of unity. Hence,

k=1 (3=
WFy = H{_()\k + %) + N2—N2(wk + W) — % é wi_l}.

K=1

Since

W
i=3

81 =+ 1+ W), for k = N
-9, fork=N

N-1 N1
Fr =TI (= + (e + we)/2) = I1 {—)\k + cos 2—]7:,}0} = 0.

K=1 K=1
Hence A\, = cosz—l%k, k=12 :---,N —1),and

=1
AU, for N odd,

K=1
iCy = $(v=2)
k NeUr — U, for N even,
K=1
where w; is distributed as x* with 2 d.f. and « with 1 d.f. At the same time,
we note that Vy = Z(X; — X)?is distributed as x* with N — 1 d.f.

The general procedure in deriving the distribution of ;R is as follows: We
determine the joint density function of the u’s which form the distributions of
1Cv(= 1R~-Vy) and Vy. The u’s are integrated out, leaving the joint density
function of Ry and Vy. The distribution of ;Rx is obtained by integrating
with respect to ¥y from 0 to «. As examples, derivations of the distributions
of 1Rs and ;R; have been included. In order to simplify the results, the first
subscripts have been dropped from ;R .

Distribution of Rs. ReVe = Muy + Mus — wand Vs = wy + us + u, where
u; and u; are distributed as x* with 2 d.f. and » with 1 d.f. and \; = 1 and
A: = —3. Hence the density function of the u’s is

D(uy, uz, u) = (44/27) u e "
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Since u; = [Vo(Ro - Az) + u(l + )\2)]/(%1 - Xz) and
uy = [Ve(M — Re) — u(l + M)]/(\ — M),

u must vary between 0 and Ve(A\; — Rg)/(1 4+ A1) for A2 < Rs < A; and between
Vs()\z - Re)/(l + Xz) and Vo(xl - Ro)/(l + Xl) for —1 < Rs S A2 . After
integrating with respect to u between these limits and then with respect to V,
from 0 to =, we obtained the following density function for Rs :

(M — Re)

(\/(1 2 =)’ forha < Rs <M
'\/()\l - RG) ’\/()\2 -_ Ro) f _

(1 +)\1) (AI—X2)+'\/(1 +x2) ()\z-)\l)’ or —1 < Rs < As.

The cumulative probability function has the same general form:

D(Ry) = g

O = B O — B
for -1 <R <\
P(Re>R') = VIFN =2 VE+N) Ae—N)
\n — RO ; ’
or <R <\

‘\/(1 +A) (M — A2)

Distribution of R;. R;V; = Mur + hua + Nus and Vo = u; + u2 + us,
where each u is distributed as x* with 2 d.f. Hence,

_ ViRr — Na) + us(ha — \s) _ Vil\i = Ry) — us(\ — As)
U = =) and u, = ™ =) .

For s S B S M, 0 < us < Vil — RB)/ (M — Ng); for As < B < N,

V7(A2 bl R'l)/ ()\z bl ka) S U3 S V7(A1 bl R'])/ ()\1 bl )\3). Usmg these llmltS, we
derived the following density function for R; :

M = Br) (\: — Ry)
M =) T oA ey NSRSk

1 — 47
™) =29 ford: < Br < M

The cumulative probability function is similar, except that the coefficient 2
cancels and the exponent of each numerator is raised by one.

General formulas for N odd. It appears that the density function for Ry and
Vw for N odd is

D(RN N VN) = KV}V(N—S) G—H’N Z: (A; ol RN)“N_B)/a.- for )\m+i S RN S Am,2
[958

$(N=-1)

where a; = J]' (\i — \;) for j = ¢ and 1/K = 2! r[}(N — 3)]. This

J=1

2 Note that we are omitting the lag subscript from 1Ry.
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formula holds for N = 5 and 7; we will show that it holds for N + 2, assuming
it truefor N. If wesetk = 3(N + 1), Rv42Vw42 = RyVy + Mg and Vyyo =
Vw + wur ; hence,

_ (Ry+2 Vasz — MeUi)
Vte — up

RN and VN = VN+2 - Uk.

If we make the substitution uz = uiVyy42, the density function for ur, Vysz,
and RN+2 is

ARVESTD 77942 3 [\ — Ruwgn) — wi — W)Y /s

=1

/3

7.2

12

40|

2

°

LR )

Ry
~Lo -9 -8 -7 -6 5 -# =3 =2 =1 4"'.1.2 I 4 S5 6 7
Fie. 1

In order to obtain the distribution of ¥ »,2 and Ry.2 , We must integrate out Ur .+
The limits of integration differ for different values of m. We note that

up = (Rw — Rw42)/(Ry — M),

except that ux = 0 when A\ < Ry < Am41, since Anp1 < Ryyz < A and ur
can not be negative. For Ryiz > A\, ur < 1; hence, if Ry is replaced by a
larger (smaller) quantity, u; will be larger (smaller). '

For m = 1(A\s < Ry42 < \1), we need to consider only that region for which
M < Ry <M\ . Inthisregion, 0 < u; < (\ — Ray2)/(M — M) and the density
function of Ryis and Viyie is
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(N=3) s !
¢(Vwi2)(M — Ryga)t Ja1,

K
where ¢(Vivia) = ViG3" #702/2X . TR(W — D] and e = I 0w = 2.
1=

Form = 2(As < Ry42 < N), we must consider two regions in the Ry plane.
When )\2 S RN S )\1,

A — Ryyo 1 _M— Ryge
= RSN

and when A3 < Ry < A3, 0 < w4 < (As — Ryya)/ (2 — M). If we combine the
density functions for these two regions, we find that

2
D(RN+2y VN+2) = ¢'(VN+2) Zl (kz - RN+2)“N_3)/C¥: fOI' Xs S Rn+2 S )\2 .

Similar results can be obtained for the other regions.
Finally we conclude that for N odd,

D(GRy) ="3(N — 3) _Zl A — R oy for Ams1 < 1Ry < Anm
and
PGRy > R") = 2 (A — R/, for Amp1 < R < Am,
1=1

1=1)
where a; = [ (\: — \;), %5 j. The general density function for N odd and

i=1
1Ry not corrected for the sample mean is [1]
fv=1)
D(Ry) =3(N — 2) Z GRy — M /a; for Am < 1Ry < Mna,
=1

where i = J]' O\ — MVT = ), ¢ # J.

=

General formulas for N even. Using the same method as above, we can show

that the same formulas*hold for N even and 1Ry corrected for the mean except
=2

that in this case i = ' O\ — AV (\: + 1),J # 7. No general formulas
j=1

were derived for N even and 1Ry not corrected for the mean.

3. Large sample distributions for lag 1. The simultaneous density function
of C'and V, where we will drop the subscripts for convenience, is

D(C, V) = (20) [: [: 8(s, )" ds dt.

(s, ) =Kf [ Y X, dX, - - dX,
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where § = {ZX} — 2[Z(X; — X)?] — 2s[X:iXz + -+ + XvX1 — (ZX)Y/N]}
and s and ¢ are pure imaginaries.
#(s, t) = A} where A is the determinant of the quadratic form 6. This

determinant was evaluated by the method of circulants; we found that A =
N-—-1

II {1 — 2(t + s\v)}, where Ax = cos 2xk/N.
kw1
i i
Set K = log ¢(s, t) = Z«;; —:.-%.—' . If K is expanded in series, we find that «;; =
- 151

mi2™ 3.\, where m = ({ + j — 1). For N > i, we might indicate these

k=1
summations: 2\ = —1, 2\ = 3(N — 2), 2\} = —1, 2\; = (BN — 8) and
S\ = —1. Hence xyo = E(C) = —1, k0 = E(V) = (N — 1), s = 02 =
(N —2), ke =0 =2N — 1), kn = poco, = —2, ka0 = —8, ks = 8(N — 1),
K1 = 4.(N - 2), K12 = —8, ete.
Ifwelet C' =C +1land V' = V — (N — 1), all of these semi-invariants
will remain unchanged except that k9 = xa = 0. Since R = C/V,

1\ CW-1D+V
@+N—J’W+w—mw—n

_CWN-1D)+V[s~,_ ,,( |4 )"
- w—nf%§(” F=i) |
If we neglect terms of order less than 1/N, E(R) = —1/(N — 1), E(R — R)* =
(%7,——__—12))2, and E(R — R)* = 0fork > 2. For N < 75, a more exact approxi-
mation may be desired.

If the above approximation is used, 1Rx is normally distributed with mean
—1/(N — 1) and variance (N — 2)/(N — 1)’. The single-tail significance
points can be found by substituting in the formulas

—1 =+ 1.6454/(N — 2) —1 =+ 23260/ (N — 2)
N -1 N -1

Refer to Fig. 2 for a comparison of the exact distribution and the normal ap-
proximation for N = 15. I have included the graphs of the exact distributions
for N = 6 and 7 in Fig. 1. We might note a few comparisons between the
approximate significance points and the exact ones:

1R1v(.05) = or 1RN(01) =

Positive tail Negative tail
N 5% 1%, 5% 1%
Exact | Approx.| Exact l Approx.| Exact | Approx. | Exact | Approx.
45 0.218 | 0.223 | 0.314 | 0.324 | —0.262| —0.268| —0.356] —0.369
75 10.173 | 0.176 | 0.250 | 0.255 | —0.199] —0.203| —0.276| —0.282
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N R%
1+ 2R}
asymptotically normally distributed with mean 0 and variance 1 [1].

For 1Ry not corrected for the mean, it was found that y = 4/ was

4. Significance points of ;Ex . An example of the methods used in tabulating
these significance points has been presented in the author’s doctoral thesis [1].
The significance points for the values of N enclosed in parentheses have been
obtained by graphical interpolation. Note that N is the number of observations
(see Table I).
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5. Distributions for general lag, L. (a) Introduction. For a general lag, L,
the constants in the characteristic equation for the covariance Cy are a; =
-4+ 1/N),ar41 = ay—r+1 = (N — 2)/2N and all othera’s = —1/N. Hence
the characteristic equation is

N—-1

Fy = ﬂ [\ — cos.(2xLk/N)] = 0.

Certain important generalizations concerning .Fx may be set down:

1. When L is not a factor of N or has no common factor with N, .Fy = 1Fx .

2. When L and N have a common factor, a, (Fxy = ((Fya) (A — 1)*7.

2a. If a = L, ,Fy = (F,)*(\ — 1)*, where p = N/L.

The proof of the first statement was suggested by Cochran. Since
cos (@ + 2ar) = cos «, where a is any integer we must prove that the series of
numbers
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L,2L,---,(N — 1)L,
when reduced modulus N can be arranged to form the series
1,2, ---, (N —1).

This proof can be found in most books on the theory of numbers; e.g. [4]. Hence
we conclude that each term of the sequence {cos (2rLk/N)} reduces uniquely

TABLE 1
N Positive tail Negative tail
5% 1% 5% 1%

5 0.253 0.297 —0.753 —0.798
6 0.345 0.447 0.708 0.863
7 0.370 0.510 0.674 0.799
8 0.371 0.531 0.625 0.764
9 0.366 0.533 0.593 0.737
10 0.360 0.525 0.564 0.705
11 0.353 0.515 0.539 0.679
12 0.348 0.505 0.516 0.655
13 0.341 0.495 0.497 0.634
14 0.335 0.485 0.479 0.615
15 0.328 0.475 0.462 0.597
20 0.299 0.432 0.399 0.524
25 0.276 0.398 0.356 0.473
30 0.257 0.370 0.325 0.433
(35) 0.242 0.347 0.300 0.401
(40) 0.229 0.329 0.279 0.376
45 0.218 0.314 0.262 0.356
(50) 0.208 0.301 0.248 0.339
(55) 0.199 0.289 0.236 0.324
(60) 0.191 0.278 0.225 0.310
(65) 0.184 0.268 0.216 0.298
(70) 0.178 0.259 0.207 0.287
75 0.173 0.250 —0.199 —0.276

to one of the sequence {cos (27k/N)} fork = 1,2, --- ,(N — 1), when L/N
is a prime fraction. ‘

If L and N have a common factor, @, L = ga and N = pea, where p and ¢
are integers prime to one another. Hence,

pa—1 p—1 a
Fy 11 {)\k — cos g"—qu} =II (Ak — cos -2%’0 (A — cos 2r)*7"

k=1 k=1

GF)*(x — 1) = 0.
If a = L, JFy = (F,)*(\ — 1)*, where p = N/L.
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When these results are applied to the large sample distribution of Ry, we
find that it is independent of L. For the more important case in which p = N/L,
the semi-invariants «;; for C and V are exactly the same for all L with a given N.
We see that

K, = —%L:Z_:log {1 =20+ s\)} — 3(L — 1) log {1 — 2( + s)},

p—1
where \; = cos (2rk/p). Hence, k;; = m!2™ {‘%’(Z N+ 1) - 1}. But
k=1

p—1

SN+ 1is always 0 or a multiple of p when p > ¢; therefore, the p’s cancel
k=1

and «;; is the same for all p or for all L, since L = N/p. When p < ¢, the
ki;’s will not be equal for all p. For example xp = 2(N —_1) for p = 2 and
ko = 2(N — 4) for p = 3.

(b) Dsustributions of Ry when N/L = p. These results indicate that the
distributions of the serial correlation coefficients for which the number of ob-
servations is divisible by the lag, so that N/L = p, would include the distribu-
tions of all the serial correlation coefficients regardless of the values of N and L.
We will designate any lag L as the primary lag for a given N if N/L = p, an
integer. For example, :Rs and 4Rs have the same density function, but we will
derive only the density function for lag 2, which we will call the primary lag.
The case of p = 1 is trivial, since it involves correlating a series with itself.
To date, we have derived the exact density functions for p = 2 and p = 3
and the required integrals for p = 4. The significance points have been tabu-
lated in Table IT. For simplicity of notation, we will set Ry = LR, and
VN = V

Case p = 2(N = 2L). R,V = —u; + ueand V = u; + uy, where u, is
distributed as x* with L d.f. and u; as x* with L — 1 d.f. Hence,

Dp(ur, us) = K(ul)*("_”(uz)“"_”,

where 1/K = 2"'T(AL)T[A(L — 1)]e’”®.  After substituting us = V(1 — LR)/2
and us = V(1 + .R,)/2 and integrating with respect to V from 0 to «, we have

1 — R P(1 4 (R

281 B(3L, (L — 1)] ’
If we set (1 — R;) = 2y, then the cumulative probability function is
1 $(1—R’)

BEL, (L — 1)] Jy=o

Pearson has tabulated the values of these incomplete Beta functions [5]. In
his notation, P = I,[3L, 3(L — 1)], where x = 3(1 — R’). For .R; not cor-
rected for the mean, P = I,(3L, 1L) [1].

Case p = 3(N = 3L). RV = —3u; + wand V = w; + u, where u, is
distributed as x* with 2L d.f. and w with L — 1 d.f. Therefore, D.(u; , w) =

D(LRz) = (

P(.R. > R') = y}(L—z)(l _ y);([,_;,) dy.
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Kui ™™, where 1/K = 2" "D(L)T3(L — 1)l"”. After substituting
uy = 2V(1 — .Rs)/3 and u = V(1 + 2.R;)/3 and integrating with respect to
V from 0 to «, we find that

251 — LRy)"M(1 + 2,Re)'
DLR) = ——gmmpn e =D > “ez-h

If weset z = 2(1 — R')/3, P(.R; > R') = LJ[L, (L — 1)]. For .R; not cor-
rected for the mean, P = I,[L, 3L].

Casep = 4(N =4L). RV = —us + ugand V = wp + us + u, where u,
is distributed as x* with L d.f . us with L — 1 d.f. and » with 2L d.f. The density
function of the w’s is Di(us, us, u) = Kud®Pub* 42 % V"2 where 1/K =
2 VPGL) ML — 1IN@). Since e = [V + R) — u)/2 and ws =
(VA — R) —u)/2,0 <u < V(1 — (Ry)for Ry >0and0<u< V({1 + LRy)
for Ry < 0. For B, > 0,

—4V  AV(—LRy)
D(LRy) = Iﬂ;ﬁ; V(L + R — uf“®[V(1L — Ry — ulf“ 2w qu,
2}( ) Jumo

For LRy < 0, D(.Ry) is the same except that the upper limit for the integral is
V(1 + Ry). If we make the substitution y = u/(upper limit) in each case and
then integrate with respect to ¥ from 0 to «, we have these density functions:

1
(1 4 LRI f . ¥ (1= )1 = LR —y(1 4 LROPE dy,
v
for Ry <0,

D(LR4) =k- 1
1- LR4)“3L-2) L-o ?/L‘l(l - y)"H’((l ~+ LRy) —y(l - LR4)]“L—3) dy,

fOI‘ LR4 Z 0,

where k = T[}(4L — 1)]/2"**®.1(L)-TGL)-TR(L — 1)].
The probability integrals must be evaluated for each L. The cumulative
probability functions for L = 2 and 3 are:

P( R, > R)=1 \/§ a1+ R')S/z - R/s/2(5 + R')/\/f, for R’ > 0,
ity - 2 (1 + R’)5/2, forR' < 0,
(1 - Rl)wz, fOl'R’ Z O,

PR, > R') = \/TE {

(1-R")"—(—R'/2)"*(22R" + 36R’ +126), for R’ < 0.

Since the density functions are much simpler for R’ > 0 when L is odd and
for R* < 0 when L is even, we have derived only these significance points for
L > 3 and interpolated for the intermediate points. It was noted that the
significance points approach those given in Table I for the first lag. For these
comparisons, see Table III below. Note that for L > 7 the 5%, points are
almost identical and the 19, points are nearly accurate to two decimal places.
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TABLE 11
Significance points of LRy for p = 2 and 3°
p=2 (N=2L) p=3 (N=3L)
L Positive tail Negative tail Positive tail Negative tail
5% 1% 5% 1% 5% 1% 5% 1%
2 0.805 | 0.960 | —0.99 | —1.00 | 0.488 | 0.762 | —0.496| —0.50
3 0.729 | 0.907 0.928 0.994| 0.447 | 0.677 0.474] 0.496
4 0.vu4 | 0.852 0.848, 0.950 0.406 | 0.610 0.439] 0.480
5 0.612 | 0.802 0.773 0.902| 0.373 | 0.559 0.406; 0.461
6 0.571 | 0.759 0.712) 0.856| 0.346 | 0.518 0.377] 0.440
7 0.536 | 0.721 0.662] 0.812 0.324 | 0.485 0.354| 0.420
8 0.507 | 0.688 0.620{ 0.774| 0.306 | 0.457 0.334] 0.402
9 0.483 | 0.659 0.585| 0.739| 0.291 | 0.433 0.316{ 0.387
10 0.462 | 0.634 0.554| 0.708| 0.278 | 0.413 0.301 0.373
12 0.428 | 0.590 0.505| 0.656| 0.256 | 0.380 0.276| 0.347
14 0.399 | 0.554 0.467 0.612| 0.239 | 0.353 0.256] 0.326
16 0.376 | 0.523 0.436| 0.577| 0.225 | 0.332 0.240; 0.308
18 0.357 | 0.498 0.410f 0.546| 0.213 | 0.314 0.227] 0.293
20 0.340 | 0.476 0.389] 0.520] 0.202 | 0.298 0.215{ 0.280
25 0.308 | 0.432 0.347] 0.469| 0.182 | 0.268 0.193] 0.254
30 ['0.282 | 0.398 0.317] 0.431] 0.167 | 0.245 0.176] 0.234
40 0.247 | 0.348 0.273] 0.374/ 0.146 | 0.212 0.153] 0.205
50 0.222 | 0.314 | —0.243| —0.335/ 0.131 | 0.191 | —0.136/ —0.184
TABLE III*
Significance points for p = 4
Positive tail Negative tail
L N 5% 19, 5% 1%
Exact |Table 1| Exact |Table 1{ Exact | Tablel| Exact | Tablel
2 8 | 0.373 | 0.371| 0.618 | 0.531|—0.653 |—0.625/—0.818 |—0.764
3 12 | 0.353 | 0.348] 0.547 | 0.505| 0.528 | 0.516] 0.692 | 0.655
4 16 | 0.325* 0.322| 0.490* 0.466| 0.451 0.447] 0.604 | 0.580
5 | 20 | 0.301 | 0.299| 0.451 | 0.432] 0.402* 0.409| 0.543* 0.524
6 24 | 0.281* 0.280] 0.419* 0.404| 0.365 | 0.363| 0.497 | 0.482
7 28 | 0.264 | 0.264| 0.392 | 0.380|—0.338% —0.337|—0.460* —0.448

2 L is the lag and p = N/L.
4 * indicates interpolated values.
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Case p > 4. We have not set up any of the density functions for p > 4;
however, it appears that the significance points given for lag 1 would be ac-
curate enough for the higher lags. The exact significance points for lag 2 have
been derived for p = 5 and 7. The reader may note the close approximation
-given by the significance points for lag 1 when p = 7. We hope to check the
lag 1 approximation for other lags in the near future.

TABLE 1V
Some significance points for lag 2

Positive tail Negative tail
% | 1% % | 1%
p =5(N = 10)
Exact................ 0.342 0.540 —0.417 —0.595
Approx............... 0.360 0.525 —0.564 —0.705

p=7(NN =14)

Exact................ 0.335 0.482 —0.479 —0.616
Approx............... 0.335 0.485 —0.479 -0.615

7. Summary. 1. The exact and large sample distributions have been derived
for the serial correlation coefficient for lag 1 and the exact significance points
tabultaed for N, the number of observations, up to 75; for N > 75, the large
sample approximations can be used.

2. It has been noted that the distributions for any lag L are the same as those
for lag 1 when L and N are prime to each other. In general the distribution of
the serial correlation coefficient can be derived for any L and N by using only
those distributions for which L is a factor of N. The distributions and signifi-
cance points have been derived for N/L = p = 2,3 and 4. Forp > 4(N > 4L),
the significance points given for lag 1 probably can be used when L is greater
than 4 or 5. The accuracy of this approximation has been checked for lag 2.

3. These significance points should be useful in determining the methods of
studying a time series, as suggested by Wold, and in the formulation of a better
test of the significance of regression coefficients when we know that the observa-
tions are correlated in time. In addition, 'we now have a method of testing our
assumptions of independence for any set of data.
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