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From (10) and (14) we conclude that the joint distribution density of the real
and imaginary parts of the roots of (9) is given by
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A NOTE ON THE PROBABILITY OF ARBITRARY EVENTS

By HiLpa GEIRINGER'
Bryn Mawr College

In a recently published paper [1] on arbitrary events the author studies the
probability of the occurrence of at least m among n events. Denoting by
Pm(v1, ¥2, *+* v-) the probability that at least m among the r events, E,, ,
-+ E,, occur, and by pia,,a;....«,1 the probability of the non occurrence of the
events numbered oy, a3, --- o, and of the occurrence of the n — r others, he
proves
_pl(aﬂ-ly tee an) + Zpl(')'l; Qrily °°° an) - Z Z pl('yl) Y2, Org1,y * an)
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(Theorem VI, page 336). From (I) he deduces that a necessary and sufficient
condition for the existence of a system of events E,, --- E, associated with
given values t; (a1, - « + o) is that the expressions on the left side of (I) computed
from these ¢’s are = 0 for all possible combinations of the o’s (Theorem VII).
He also points out that it was not possible to find similar (necessary and suf-
ficient) conditions for m < 1. I wish to show in this note the relation between
these theorems and some well known basic facts of the theory of arbitrarily
linked events and to add some remarks.

1. Given n chance variables z; ({ = 1, --- n) denote by z; = 1 the “oc-
currence of E;”’, by z; = 0 its non occurrence and by v(z;, z, --- z,) the
probability of “the result (z,, z2, -+ z,)” i.e., the probability that the first
variable equals z; the second z,, --- the last z,; eg. v(1,1,1,0, --- 0) =
vu5...n) 1S the probability that only the three first events occur. Hence the
v’s are 2" probabilities, arbitrary except for the condition to have the sum 1.

Instead of these v’s we often introduce another set of 2" — 1 probabilities,
namely p; the probability of the occurrence of E; (+ = 1, --- n); ps; that of
the joint occurrence of E;and E; (1,7 = 1, -+- n); +++ pra..., the probability
that all the events occur.
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It may be noted that instead of the p;, pij, --- Pu..n we could quite as
well use a system of ¢;, ¢ij, *** qu...n Where ¢: is the probability of the non-
occurrence of E; (or of the occurrence of E; = E E;, qi; that of the joint
non-occurrence of E; and E; (of the occurrence of E;E;) and gys..., the probability
of E],Ez e En .

The use of the p's (or ¢’s) instead of the ‘“‘clementary probabilities” v is
justified by the fact that the p’s are (2" — 1) independent linear combinations
of the »’s and that therefore the v’s and the p’s (or the »’s and the ¢’s) determine
each other uniguely. There exist in fact the following well known relations,
(1) and (2). The first set (1) gives just the definition of the 2" — 1 probabilities
p, in terms of the v’s, and the second set expresses the »’s by the p’s as the result
of the solution of the 2" — 1 independent linear equations (1). Thus we have,
beginning with pi...» :

Pran =0, 1, -+ 1),
Doy = 2o 0(1, 1, -+ 1, 2,),

............................

1
() D12 =Z"'Ev(171’x3’x4)"'xn)7
z3 Zn
Pn Z: Zv(xl’x'«’;”'xn—l’ 1)’
and solving successively:
v(1,1, -+ 1) = pu...a
1)(1 1, 1 0) = P12..on—-1 — P12...n,
1)(1, 1) 0, * O) = pl2 E pl211 + Z Z pl21112 :l: 1)12 ny
(2) 71 72
00,0, ---0,1) = p, — Z Pnn + 12 12 Priven —
172

+ E Z Privae - vn~1n F Prz2..

Tn—-1
The successive solution of the system (1) with respect to the ‘“unknowns” v
is possible because each new equation in (1) contains exactly one new unknown v;
e.g. in the equation defining py» the only ‘“unknown” is»(1,1,0,0, --- 0) all
the v’s with more than two ‘“1”’s having already been computed from the fore-

going equations.
If we choose to use the system of the ¢’s we have in the same way:

(ll) ....................
qn = Z Zv(x17x2, "'xn—l)O),

Tp~—1
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and the inverse system
v(0,0, ---0) = gu...n
1)(0, 0, e O, 1) = Q12...n—1 — Q12...n

................................

1)(1, 17 tee 1’ 0) = qn — EQ‘IM + Z EQ'Yl‘Yz" — e F q12--.n -
71 71

v

@)

Coming back to Chung’s theorem we see that the probability pi(es, « -+ a;)
that at least one event among E,, , - - - E,, occurs is evidently:

(3) pl(al y T T a") =1- Qay,...ap -

If we introduce this value in (I) all the “1”s introduced by (3) cancel and we
get our system (2'). (Of course we could in the same way deduce from (2) a
system of equations for gi(e1, +++ @) = 1 — pa,,...a, Where qi(ou, - a, is
the probability that at most »r — 1 events among the r given ones occur.)

As the v-values on the left side of (2') are 2" — 1 independent probabilities
only subject to the restriction that they have the sum =< 1, we see that the
expressions on the right side of (2') must have the same properties; and these
properties are also sufficient for a system of ¢’s, (or for a system of pi(a, - -
a,); indced if they are fulfilled, these 2" — 1 expressions define by means of
(2’) a system of elementary probabilities »(x,, --- z.). Hence the theorems
VI and VII quoted at the beginning of this note are rather close consequences
of the basic relations of the theory of arbitrary events.

2. REmMArk 1. We may add one more equation to equations (1), namely

1= Z'“Ev(xu cee ),

thus introducing »(0, 0, --- 0). Then in system (2) the corresponding new
equation will be:
10,0, -+-0) = 1= py + 2 2 Primy = £ Pracen
71 Y 72

(and analogously for the ¢’s). In this way we get two systems (I) and (2)
each consisting of 2" equations and in (2) the sum of the expressions on the right
side is now #dentically equal to one. Hence necessary and sufficient conditions
will now be that all these 2" expressions must be non-negative.

ReMARK 2. It is convenient to interpret or prove results of the kind con-
sidered here in terms of elementary measure theory: p; is the measure of a set
E, ; py of E; ; pi; that of the intersection E\E; etc., and analogously for the
v's: eg. v(1,1,0, --- 0) = m(E\E:E; -+ E,). Consider now the equations
(2). The first is an identity. In the second pie....—1 measures the product of
E\E, --- E,_,, whereas pi....c1 — Pi2.... is the measure of that part of this
product which does not belong to E,, and it therefore equals m(E\E; - - -
E,,E,) = v(1,1---1,0). Inthe last equation (2) > > Dr1...7a—gn 18 the

71

Tn~2
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measure of that part of E, which belongs to at least (n — 2) other sets (besides
E.); whereas this same value minus py..., is the measure of the part of E,
which belongs ezactly to (n — 2) other sets; now subtracting this expression

from Z + D Dyr..va—s We get the measure of the part of E, which belongs
Tn—3

exactly to (n — 3) other sets and finally p, — --- F pu.... is the measure of
that part of E, which belongs to no other set besides, i.e. m(E{E; - - - EuE,) =’
»(0, 0, --- 0, 1). This kind of proof does not require the solution of (1).

REMARK 3. According to (1) the p;, pij, * - Di2.... are the ordinary mo-
ments of order 1, 2 --- n of v(xy, %2, -+ ). There are of course many
more than 2" — 1 moments of this n-variate distribution but only 2" — 1 of
them are different from each other because 1" = 1.

8. Denote by p,(z), (x = 0, 1, - -+ n) the probability of getting exactly x suc-
cesses in n trials. (See e.g. [2], [3].) For the simplest case of arbitrary events,

the Bernoulli problem, p.(z) = (Z’) p"(1 — p)"°. Then the probabiliy of

at least z successes (of a number of successes = z) is
@) Vi(@) = pa(®) + palz + 1) + -+ paln),

or p:(1, 2, --- n) in’ Chung’s notation. The p.(x) are by their definition
(n + 1) arbitrary positive numbers with sum equal to one. These are the only
necessary and sufficient restrictions for p.(x). V.(z) the “cumulative’” distri-
bution of p,(x) which is defined for = between (— « and + «) is a monotone
non-increasing step function with its (n + 1) stepsat z = 0, 1, 2, --- n equal

to the p.(x).
Consider next p.(oa, oz, --- @) where r < n; these are cumulative dis-

tributions each corresponding to one of the (:L) probabilities p,(x) where p-(x)

is the probability of exactly x successes in a group of r trials.> For each group
(a1, +++ o) the corresponding p.(x), (x = 0,1, --- r) are posxtlve and with

sum equal to one. Hence if we always omit p,(0) because of E pr(x) =

all the different p,(x), p2(x), - - - pa(x) together define
1n+n(n—1)+()(n—2)+ « 4+ n=n2""

values. As n2"' > 2" for n > 2 we realise that between these n2"' prob-
abilities there must exist a set of n2"™ — (2" — 1) identical relations; and the
same is true for the corresponding cumulative distributions V,(z) or p.(a1,
- a,). Thus it seems reasonable that it may be hard to use these p.(o1,
-+ a,) in the characterization of a problem of arbitrarily linked events if
z > 1. On the other hand we have seen in 1 that for z = 1 they reduce to the

2 One may write here p.(z) instead of P(ay, az - an ().
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2" — 1 probabilities ¢;, ¢:j, - - qu.... which of course define the system of
events unequivocally.
4. Introduce in the usual way the sums of the p;, p:;, etc.

(5) SI=ZP€, S2=Z:pii,"'Sn=p12...n, and So=1.
+ L)

Now add in system (I) first the n equations which define pi, p2, -+ pa,
then the (;) equations for the p,;, etc. Observing that p,(x) is the sum of

all these elementary probabilities v(x; z. - - - x,) with exactly x “1”s and (n — x)
“0”s we get as the result of these n additions the well known formulae:

© s=-2()p@, =01 w.

z=v \7
Herey = 0gives So = 1 = J_ p.(z). We may solve successively these (n + 1)

0
linear equations with respect to p,(n), p.(n — 1), --- p.(0), each linear equa-
tion containing only one new unknown, and find:
@ pa(z) = 20 (=)™ (D Sy, (@=0,1,---n).
Y=

(These formulae could also have been derived from (2) by collecting groups of
equations such that all the corresponding v(z;, --- z,) contain the same

number of “1”s.) (In the measure interpretation p,(x) is the measure of that
part which belongs exactly to x of the original sets and S, measures the set which
belongs to at least v of these sets.) We also find by ‘“‘cumulating’ equations (9)

8) 8y = ; (: _ i) Vaz), (y=1,2 --m),

and the inverse system

©®  v@=EEre(II])s oLz,
Y=z

(6) and (8) are of the same type as (1), and (7) and (9) of the same as (2). We

also may deduce analogous formulae by interchanging the roles of 0 aud 1 and

introducing a system of Ty, T2, --- T, which depends on the ¢’s in the same

way as the S;, Sz, - -+ 8, defined in (5) depend on the p’s.

We have seen that the p.(x) are (n + 1) arbitrary nor-negative numbers
subject to only the condition of having their sum equal to one. But the S,
(y =0, - - - n) are not arbitrary as we see from (7). The (n + 1) expressions on
the right side of (7) must each be non-negative if they are to define the probabilities
pa(x) (their sum is identically equal to one). Then and only then they define
a system of arbitrarily liked events E,, --- E, .

The p.(z), (x = 0, 1, --- n) are of course not equivalent to the complete
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system of 2" — 1 values v(z;, 22, --- z,) and the same remark holds for the
So, -+ S, and the system of p;, pij, -+ Pu.... But often we are par-
ticularly interested in problems dealing only with the p.(x) (and S,). (For
instance the author has studied [2] the asymptotic behavior of p,.(z) as n tends
in different ways towards infinity.) The simplest way to indicate a particular
p-system corresponding to given 8, is of course to assume all the p; equal to.
each other; all the p;; equal to each other etc. and to put therefore:

1
=P =pa=8,

pl2 = eees = pn—l,n = [1/(3)]32, DI pm...,.: Su.

In the corresponding »-system all these »’s which show the same number of
“1”’s equal each other.

We see from (6) that the S, (multiplied by v!) are the factorial moments of
order 0, 1, - - - n of the distribution p,(x). Therefore by (7) we get the p.(z)
in terms of their factorial moments up to order n. We may therefore also say:
Necessary and sufficient conditions that a system of numbers No = 1, N1, -+ N,
be the factorial moment of an arithmetical distribution with at most (n + 1) steps
atxz = 0,1, - n are the inequalities:

wor (—pr

(10) >

G =i B, @=01-m).

Note that here there is no more allusion to a set of arbitrary events; (10) are
the necessary and sufficient conditions for a set of (n + 1) numbers to be the
(n + 1) (factorial) moments of an arbitrary arithmetic distribution with its
abscissae given. The linear inequalities (10) differ very much from the basjc
inequalities in the classical problem of moments; because in our problem the
abscissae of the steps are given in advance.

6. In some problems (e.g., some questions connected with the law of large
numbers, with correlation theory, with analysis of variance) we are only con-
cerned with the first and second moment of a distribution. Thus we are lead
to the following question: Given » + 1 numbers Ny, Ny, :++ N,, (r £ n)
indicate a set of necessary and sufficient conditions such that these numbers
are the moments of an arithmetic distribution with at most (n -+ 1) steps, at
0,1,2, --- n? Some sort of an answer which may work well in particular
cases, can immediately be deduced from (10). “r + 1 numbers No, N,
«++ N, will be the factorial moments of an arithmetic distribution with, at
most, (n + 1) steps at 0, 1, 2, --- = if and only if it is possible to indicate s

3.This problem and the method of its solution has much in common with a problem
studied in R. von Mises’ paper [4].
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numbers N,41, «++ Nyys, (0 £ s £ n — 1), such that for the r + s + 1 num-
bers No, N1, -+ N, -+ N,;, the r + s 4+ 1 inequalities
r+s (__1)1+z N >

7ﬂm! 7_0 (x=0,1,---r+s)
be satisfied.”

The proof of this statement is self evident but the statement itself cannot
be considered satisfactory. We get a general solution in the following way.

Let fi(t), - -- f+(t) be r functions of the chance variable ¢, »(f) an arithmetic
probability with n given attributes &, &, --- ¢, and

A)  BALOl= A0 = Zapo =8, (=12 1),

the expectations of f,(¢) with respect to »(f). We wish to indicate necessary
and sufficient conditions for the r numbers S, . For f,(tf) = ¢* we have the prob-
lem stated above where the first r moments are given.

Call (S) the r-dimensional curve z, = f,(f) and P,, P,, --- P, the points
on (S) with coordinates f,(t,) = @,,, (o =1, ---r;v =1, --+ n), S the given
point with coordinates S,. In this case, the point S must be contained in the
smallest convex body (B) determined by the n points Py, -+ P,. This condition
is necessary and sufficient. Because, if we interpret the v, which are = 0 as
masses of the points P, , with sum equal to one, then S is the center of gravity
of these masses and it is well known that the above mentioned condition for S
has to be fulfilled. But this condition is also sufficient, because if S is contained
in (B) there exists always a simplex of at most r dimensions, consisting of at
most (r + 1) of the given points such that S is the center of gravity of appro-
priate masses in these points.

If we want to indicate explicitly the inequalities for the S, we must know
the boundary of (B). This is determined by its planes of support (‘‘Stiitz-
ebenen,” Minkowski) sometimes called tack planes. A tack plane is a plane
which does not separate any two points of the given point set and contains at
least one point of this set. A plane is said to separate two points if, when the
coordinates of the points are written in the equation of the plane two values
with opposite signs result. These definitions enable us to find those points P,
which lie on the boundary of (B) and to determine this boundary. (E.g. for
r = 3 we have to find such triples of <, k, [, that the determinant which represents
the equation of the plane through these three points has the same sign for all
possible other points P,. If the S, are the first three moments with respect to
the origin, these determinants become Vandermond determinants and we find
easily that the boundary planes are each passing through two neighboring
points P,, P, and one of the endpoints P; or P,. If p = 2, and the first
two moments are given, the boundary of (B) consists of the polygon P,P; - - -
P,P;). Then we find without difficulty the conditions to be satisfied by § in
the form of linear inequalities between the given Sy, Sy, -+ S; .

We get the continuous case as a limit of the discontinuous case as ¢, — ¢,
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and the points P(¢) take up the whole curve (C), e.g. between ¢ = 0 and .
Then the relations between the given S, become non-linear inequalities, well
known for the problem of moments.
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AN INEQUALITY FOR MILL’S RATIO
By Z. W. BirNBAUM
University of Washington
Mr. R. D. Gordon® recently proved the inequalities

Z 1 - 1 f ® —}e2 1 1 _}z2
—_— ¢ S—.—_ e dts—'-——:_—_e forx>0.
2+ 1 4/2x V2 = T /2% ’

In the present note we show that the lower inequality can be replaced by the

better estimate

Vit zz—z 1 1 f” Lyt
. — € S —_— (4 dt.
2 Vr Vo Iz
Proor: According to a well-known theorem of Jensen?, for f(f) convex and
g(t) = 0 in the interval (a, b), the following inequality holds

f[ f 1900 d / [ "4 dt] < 10 o) @t / [ "0 dt.

Fora = 2,b= o, f(t) = 1/t, g(t) = te”*"", this inequality gives

f te‘*"dt/ f et < / e“*"dt/ f te ™ dt.

Since

[ te " dt = ¢ and f et dt = ze ' 4 f M dt,

1R. D. Gordon, ‘Values of Mill’s ratio of area to bounding ordinate of the normal
probability integral for large values of the argument,’’ Annals of Math. Stat., Vol. 12 (1941),
pp. 364-366.

2 See for example: G. H. Hardy, J. E. Littlewood and G. Pélya, Inequalities, Cambridge,
1934, p. 150-151.



