$$u = \left[\alpha^2 (1 - \alpha) - \alpha \sigma_P^2\right] / \sigma_P^2$$
$$v = \left[\alpha (1 - \alpha)^2 - (1 - \alpha) \sigma_P^2\right] / \sigma_P^2.$$

This distribution can now be used to establish tolerance limits. For example, it follows from (1) that for a sample size $n \ge 214$, and a tolerance region given by the ellipse $T^2 = 9.21$, then E(P) = .99 and the Prob. $\{.985 \le P \le .995\} \ge .992$.

Care must be taken in the use of these and similar results, for if the distribution is not a bivariate normal one, a large error may be introduced which will not be eliminated with increasing n; however the error will probably be small when a tolerance region is found for the means \bar{x} , \bar{y} of a future sample of k observations ($k \geq 20$) as contrasted with a tolerance region for a single observation. An exact treatment of the case when the bivariate distribution is unknown has been given by Wald in the present issue of the *Annals of Mathematical Statistics*.

REFERENCES

- S. S. WILKS, "Determination of sample sizes for setting tolerance limits," Annals of Math. Stat., Vol. 12 (1941), pp. 91-96.
- [2] HAROLD HOTELLING, "A generalization of Student's ratio," Annals of Math. Stat., Vol. 2 (1931), pp. 360-378.

A NEW APPROXIMATION TO THE LEVELS OF SIGNIFICANCE OF THE CHI-SQUARE DISTRIBUTION.

By Leo A. Aroian

Hunter College

Recent articles on the percentage points of the χ^2 distribution [1], [2], have directed my attention to a method proposed in my investigation of Fisher's z distribution [3], a method particularly useful and easily computed for n large.

distribution [3], a method particularly useful and easily computed for
$$n$$
 large. In addition, this method avoids interpolation. If $t = \frac{\chi^2 - n}{\sqrt{2n}}$, and $\alpha_3 = \sqrt{\frac{8}{n}}$.

the measure of skewness for the χ^2 distribution, the following formulas give significance levels of t as quadratic functions of α_3 , $t = a + b\alpha_3 + c\alpha_3^2$. The values of a, b, and c were found by the usual method of least squares, fitting each formula to the values of t [4] for $\alpha_3 = 0$, ± 0.1 , ± 0.2 , ± 0.3 , and ± 0.4 . Then the value of a in each instance was adjusted to give the proper value of t when $\alpha_3 = 0$: e.g. the constant term by the method of least squares for the 1 per cent point is 2.32633 which we change to 2.32635. The range $|\alpha_3| \leq 4$ corresponds to $n \geq 50$, but the formulas are quite satisfactory for $n \geq 30$. Formulas for t when $|\alpha_3| > 4$ [3] are easily derived, but such results while more accurate in the range

H	
巴	
${f ABI}$	
Z	

.005	53.713	66.802	79.523	110.313	140.193
	53.6883	66.776	79.496	110.286	140.166
	53.6720	66.7659	79.4900	110.286	140.169
10.	50.914	63.710	76.172	106.408	13 5. 820
	50.9015	63.6961	76.1568	106.392	13 5. 804
	50.8922	63.6907	76.1539	106.393	13 5. 807
50.	43.767	55.753	67.501	96.2135	124.340
	43.7754	55.7600	67.5057	96.2168	124.342
	43.7729	55.7585	67.5048	96.2160	124.342
.10	40.246	51.796	63.159	91.055	118.493
	40.2559	51.8048	63.1669	91.0611	118.498
	40.2560	51.8050	63.1671	91.062	118.498
.25	34.793	45.610	56.328	82.853	109.137
	34.7987	45.6155	56.3333	82.8581	109.1416
	34.7998	45.6160	56.3336	82.8582	109.141
.50	29.338	39.337	49.336	74.335	99.335
	29.3346	39.3346	49.3346	74.3346	99.3346
	29.3360	39.3354	49.3349	74.3343	99.3341
27.	24.486	33.668	42.949	66.422	90.138
	24.4764	33.6597	42.9418	66.4169	90.1336
	24.4776	33.6603	42.9421	66.4167	90.1332
06.	20.604	29.055	37.693	59.799	82.362
	20.6004	29.0514	37.6894	59.7951	82.3586
	20.5992	29.0505	37.6886	59.7944	82.3581
.95	18.491	26.5080	34.7634	56.0538	77.9294
	18.4960	26.5114	34.7656	56.0546	77.9296
	18.4926	26.5093	34.7642	56.0540	77.9295
86.	14.925	22.139	29.685	49.457	70.049
	14.9649	22.1703	29.7096	49.4741	70.0620
	14.9535	22.1643	29.7067	49.4748	70.0648
2005	13.744 13.7997 13.7867	20.669 20.7121 20.7065	27.957 27.9920 27.9907	47 4 7.2021 47.2059	67.303 67.3210 67.3276
a / b	30	40	20	75	100

¹ First value in cell by method of Wilson and Hilferty. Second value in cell by (1) or (2). Third value is correct result.

TABLE II2

		.0001	67.68 67.590	
TABLE II.			.001	59.73
		.025	46.9821	
		.20	36.2494	
		.30	33.5290 33.530	
		.40	31.3144	
		09.	27.4402 27.4436	
		.70	25.5064 25.508	
		.80	23.3631 23.364	
		.975	16.7962 16.7908	
		666:	11.62	
	_	.0999	9.33	
	-	Ь	n = 30	

² First value by (1) or (2). Second value correct result.

 $30 \le n < 50$ would be considerably less accurate in the region $n \ge 50$. After t is calculated, $\chi^2 = n + \sqrt{2n} t$. The formulas are:

The maximum error for t in the range $|a_3| \le .4$, is 2 in the fourth significant figure, 1 in the fourth significant figure, 6 in fifth, 3 in fifth, 3 in fifth, 1 in fifth, 1 in fifth, 4 in fifth, 4 in fifth, 4 in fifth and 4 in fourth significant figures respectively for the .01%, .1%, .5%, 1%, 2.5%, 5%, 10%, 20%, 25%, 30%, 40%, and 50% points respectively. The error increases outside the indicated range. In addition

(2)
$$t_{99.99\%} = -3.7200 + 2.1260\alpha_3 - .17449\alpha_3^2$$
$$t_{99.9\%} = -3.0903 + 1.4190\alpha_3 - .05667\alpha_3^2$$

and similarly for other percentage points. These are obtained from (1) by replacing α_3 by $-\alpha_3$ and t by -t.

We compare results obtained by these methods against those of Wilson and Hilferty [2]. In all cases except at the 95% level the method here proposed is superior. Table I compares the two methods. It was copied from [2] except for the corrections in the Wilson and Hilferty method for the 95% level and in the accurate value for χ^2 at the 5% level for n=75, 96.2160 in place of 96.11. Table II gives comparisons for other levels when n=30.

REFERENCES

- [1] C. M. Thompson, "Table of percentage points of the χ^2 distribution," Biometrika, Vol. 32, Part 2.
- [2] M. Merrington, "Numerical approximations to the percentage points of the χ² distribution," Biometrika, Vol. 32, Part 2.
- [3] L. A. Aroian, "A study of R. A. Fisher's z distribution and the related F distribution," Annals of Math. Stat., Vol. 12 (1941).
- [4] L. R. Salvosa, "Tables of Pearson's Type III function," Annals of Math. Stat., Vol. 1.