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where u = [a’(l = @) — ac)/or
v = [a(l = ) — (1 — a)o?l/or.

This distribution can now be used to establish tolerance limits. For example,
it follows from (1) that for a sample size n > 214, and a tolerance region given
by the ellipse T* = 9.21, then E(P) = .99 and the Prob.{.985 < P < .995} >
.992.

Care must be taken in the use of these and similar results, for if the distribu-
tion is not a bivariate normal one, a large error may be introduced which will
not be eliminated with increasing n; however the error will probably be small
when a tolerance region is found for the means &, 7 of a future sample of & obser-
vations (k > 20) as contrasted with a tolerance region for a single observation.
An exact treatment of the case when the bivariate distribution is unknown has
been given by Wald in the present issue of the Annals of Mathematical Statistics.
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A NEW APPROXIMATION TO THE LEVELS OF SIGNIFICANCE
OF THE CHI-SQUARE DISTRIBUTION.

By Leo A. AroiaN

Hunter College

Recent articles on the percentage points of the x° distribution [1], [2], have
directed my attention to a method proposed in my investigation of Fisher’s z
distribution [3], a method particularly useful and easily computed for n large.

2 —
In addition, this method avoids interpolation. If ¢ = X 2_.n, and a3 = ,‘/;81 .

n
the measure of skewness for the x distribution, the following formulas give sig-
nificance levels of ¢ as quadratic functions of as, ¢ = a + bas + ca3 . The values
of a, b, and ¢ were found by the usual method of least squares, fitting each formula
to the values of ¢ [4] for a3 = 0, 0.1, 0.2, 0.3, and +£0.4. Then the value
of a in each instance was adjusted to give the proper value of { when a; = 0: e.g.
the constant term by the method of least squares for the 1 per cent point is
2.32633 which we change to 2.32635. The range | a3 | = .4 corresponds to n =
50, but the formulas are quite satisfactory for n = 30. Formulas for ¢ when
| as | > .4 (3] are easily derived, but such results while more accurate in the range

54 (]
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30 < n, < 50 would be consi_(ierably less accurate in the region n = 50. After ¢
is calculated, x> =n + v2nt. The formulas are:

1) tsoc;, = —  .16636a3
tog, = .25335 — .15567a; — .012276aj
fwg, = .52440 — .12058a; — .02454lap

tis, = .67449 — .090613a; — .030693q;
twg, = .84162 — .048433a; — .036788q3
1.28155 + .107033a; — .04797a;

toe, =
ts, = 1.64485 + .28392a; — .049020a;
tss, = 1.95997 + 4722805 — .043040;

ti, = 2.32635 + .73330a; — .024957a3
ts, = 2.5758 + .93600a; — .00377aj

Ve

tig = 3.0903 + 1.4190a; + .05667a;
tog, = 3.7200 + 2.12600s + .174490}

The maximum error for £ in the range | a3 | < .4, is 2 in the fourth significant
figure, 1 in the fourth significant figure, 6 in fifth, 3 in fifth, 3 in fifth, 1 in fifth,
1in fifth, 3 in fifth, 4 in fifth, 4 in fifth, 4 in fifth and 4 in fourth significant figures
respectively for the .01%, .1%, .5%, 1%, 2.5%, 5%, 10%, 20%, 25%, 30%,
40%, and 509, points respectively. The error increases outside the indicated
range. In addition
0) tog.ssy, = —3.7200 + 2.126005 — .17449a3

ooy, = —3.0903 + 1.419003 — .05667a3

and similarly for other percentage points. These are obtained from (1) by re-
placing o3 by —as and ¢ by —¢.

We compare results obtained by these methods against those of Wilson and
Hilferty [2]. In all cases except at the 959, level the method here proposed is
superior. Table I compares the two methods. It was copied from [2] except
for the corrections in the Wilson and Hilferty method for the 959, level and in
the accurate value for x* at the 5% level for n = 75, 96.2160 in place of 96. 11.
Table IT gives comparisons for other levels when n = 30.
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