FITTING GENERAL GRAM-CHARLIER SERIES

By Paur A. SAMUELSON
Massachusetts Institute of Technology

1. Introduction. Since the last part of the nineteenth century at least, it has
been common to represent a probability distribution by means of a linear sum
of terms consisting of a parent function and its successive derivatives. Usually
the parent function is the Type A or normal curve, as discussed by Gram [1],
Bruns [2], Charlier [3], and numerous others. In addition there have been
generalizations in various directions: for example, the Type B expansion in terms
of the Poisson parent function and its successive finite differences.

Unlike these two types, which have a definite probability interpretation,
another generalization involves the use of other parent functions and their
derivatives (or differences) to give an approximate representation of a given
frequency curve. With this process is associdted the names of Charlier, Carver
[4], Roa [5], and many others. Two general methods by which the equating of
moments of the fitted curve and the given distribution yield the appropriate
coefficients have been given by Charlier and Carver respectively. An account
of the latter’s technique is more accessible to the average English speaking
statistician. &

It is the purpose of the present discussion to indicate how the Charlier method
may be simplified, and can be used to replace the Carver method. In doing
so, I am following up the oral suggestion made some years ago by Professor
E. B. Wilson of Harvard, that repeated integration by parts will yield the reqg-
uisite coefficients very simply. At the same time certain methods implicit in
the work of Dr. A. C. Aitken [6] show how the use of a moment generating
function can often lighten the algebraic analysis. There will also be a brief
indication of analogous results for general finite difference parent families; and
attention will be called to a troublesome historical blunder which has per-
meated the statistical literature.

2. Alternative methods. Avoiding the overburdened expression generating
function, I shall consider parent functions, called f(x), with the restrictive
properties:

a) Moments of all order of f(x) exist.

b) Derivatives of any required order exist with appropriate continuity.

¢) There exist high order contact at the extremities of the distribution as

defined below.
Mathematically,

a) [ «*f(x)dx is finite for all positive integral values of k

and
¢) lim «’f*(z) = 0 for all positive integral values of j and k.

z—+Fo00

179

14 ()

; Ja%

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Mathematical Statistics. MINGIS ®

www.jstor.org



180 PAUL A. SAMUELSON

These conditions suffice for many statistically interesting cases, but where de-
sirable they can be lightened. Thus, derivatives may only be defined “‘almost
everywhere,” and therc may be finite instead of infinite limits to the distribu-
tion, ete.

Given an arbitrary frequency curve F(x), we shall suppose it to be formally
expanded in the series

(1) F(@) ~ af(@) + af' () + aaf"@) + - -+ + anf"(2) + - .

For convenience in what follows, we shal assume that all distributions are given
in terms of relative frequency so that the area under both f and F is equal to
unity, so that ap may be taken as unity. The suppressed absolute frequency
can clearly be restored at any time by multiplication of both sides with the
appropriate constant. Also for algebraic convenience, many writers consider
the slightly modified form of the expansion

1)"4.,
P@) ~ Aof(x) — D f@) + 5117 + - ED A
Tt is assumed without discussion that the first n coefficients in such a series are
to be determined by equating the first » moments of each side.

I shall prove the two following identities:

n—1
(2) (—1)"‘1» = Ln(F) - ; Ln—i(f)(—'l)’ai:
where
. f_ ) o'f' (x)dx

Li(f) = -1—3,——— .
Alternatively
3) E ( ) _r fw z"'F(z) dz.

= .[ fe** dx » -

The first of these which I owe to Prof. Wilson is implicit in Charlier’s work.
The second which may fairly be attributed to Aitken may reduce the actual
work in many special cases met in practice.

Both of these methods are closely related to the Charlier device of finding
polynomials S,(z) with the bi-orthogonal property_

[w Sa(z)f (x) dz = 0, 1 # n.

The subscript indicates the degree of the polynomial. By means of n of the
above relationships, the polynomials can be determined except for a factor of
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proportionality. By formal integration of both sides of our expansion we have
the Charlier identity

an = _[ S.(x)F(x) dz/factor of proportionality.

From a theoretical standpoint, this method leaves little to be desired; but in
practice the algebraic work increases rapidly with the number of terms to be
included in the series.

In the Carver method, the new parent function in question, as well as the
function to be approximated, are both expanded in terms of the normal curve,
thus almost doubling the numerical calculations. After some differentiation,
the members of the Type A family are eliminated yielding in the process the
required coefficients in terms of the new parent family. We shall see below how
this method may be related to the three above.

3. Useful relationship. First, two simple identities may be presented:
Li{f) = (=1)'Lis(f), jZ14
=0 , J <1

I

Given the above assumptions of high contact, this follows immediately from
repeated integration by parts.

Remembering that the reduced moments defined just above are the coefficients
of the powers of « in the series expansion of the moment generating function

0

M(a; ) = [ e”f'(x) de = Lo(f') + Li(fa + Lo(fa® + - -+

we have the useful Aitken identity
4 M(e; ) = (—=1)'M(a; f)a'.

This, too, is the immediate consequence of repeated integration by parts.

4. Derivation of first method. Formally multiplying each side of (1) by
x"/n! and integrating, we have the formal identity

La(F) = aLa(f) —aiLna(f) + -+ + (=1 aLo(f) .

This is a “triangular” system of linear equations in the unknown a’s. It may
be written in matrix terms

Lo(F) Lo(f) 0 0o --.- N
Ly(F) Li(f) L(f) 0 - |-
: = | Ls(f) Li(f) Lo(f) T [£23

—a3
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The triangular matrix has the very special property that all of its elements are
known as soon as the first column is given. For this reason, as we shall see, it
is essentially equivalent to a simple sequence of numbers. This we shall call
the sequence property. Because of this special form, the above system by simple
rearrangement may be written in the modified form

L(F) 0 --- L(f) 0 --- l‘ao 0 0--
Ly(F) Lo(F) --- Li(f) Lo(f)"'] - a 0--

= ' Az —a; Qo **

I

By appropriate definition of symbolism, this may be written in the simple matrik
form:

L(F) = L(f) a(F, f),

since multiplication of two triangular, ‘“sequence’ matrices is commutative.
It is usually simplest to invert this triangular solution directly as in (2).
But if necessary, we may express our answer in the equivalent form

5) a(F, f) = L(F) L(f)7,
where the inverse to any special triangular matrix, also possesses the sequence
property.

If g is 4 second parent function with the properties of Section 2, we have the
relationship

a(F, g) = a(F, ) a(f, 9)
which follows directly from (5). This may be generalized to
a(fi, fo) a(fe, fa) -+ - a(faurs fu) = a(fi, fa) .
If F itself is a parent function, we have
aF,f)a(f,F) = a(F,F) =1
or

a(f, F) = a(F, ).

6. Relation to old methods. In terms of our notation, the Carver method
seems to reduce to computing a(F, f) by the relationship

a(F, ) = a(F, ¢) a(f, )™

where ¢ is the Type A parent function. Tt involves a doubling of the work of
coefficient determination. However, if only a few terms in the expansion are
retained, this is of negligible importance.
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The Charlier polynomials are clearly summed rows of the matrix product

/11 0 0
0 z/11 0
L™ o o 22

To know the first n of these polynomials, it is not necessary to derive
n(n 4 1)/2 different coeflicients. Because of the sequence property, it is only
necessary to derive n elements of the first column of L(f)™'. These can be
expressed in terms of the reduced moments of f, as did Charlier; but the rela-
tionships are non-linear and algebraically become tedious for high n. They are
hetter computed from sequence relationships.

The above discussion suggests that the bi-orthogonal relationship between a
parent family and suitable polynomials has no deep significance. In particular,
there is no essential relationship to least squares as in orthogonal expansions.
It does, however, share one important property with orthogonal functions—
determination of later coefficients does not affect the earlier ones. But this is a
property of all triangular reductions, orthogonal expansions being only special
cases of these.

6. Sequence properties. Ordinarily to derive the inverse of an n’ matrix,
n® equations must be solved. For our triangular matrices, we need only solve n
equations for one column. To each triangular matrix L(f) there corresponds a
sequence {L:(f)}, which is in fact the first column of the former. Similarly to
L(f)™", there corresponds {Li(f)}; the elements of the latter are defined by the n
equations

Li(NHL(f) = 1
LiNL(f) + L(NHL(f) = 0

i Li(NLaik(f) = 0

But these are precisely the equations involved in the formal inversion of any
linear operator system of the form

(6) Zo) chfy =z

where & is an operator which commutes with a constant, and for which A’ = 1.
z is a known function and y unknown. Thus h may be su¢h operators as

z, d/dx, zd/dz, E, A.
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A particular solution of (6) is given by the formal expansion
y =2 &hz
0

where the &’s bear the same relationship to the ¢’s as do the L’s to the L’s.
Such “reciprocal” sequences appear in many branches of applied mathe-
matics. In particular, they arise in the inversion of a power series. If formally,

W(e) = 2 Sia*
0
then
1 S s
W(a) 0
Thus, to any triangular matrix with the sequence property, we can formally
associate a function W(a) as well as a sequence of numbers. The calculus of
multiplication of our triangular matrices clearly ‘corresponds” to the calculus

of multiplication of functions, i.e. if the triangular matrices T, T2, - -+ T» and
Wila), Wa(a), - - - Wa(a) correspond, and Ty, = Ty T2-- Ty ; then

Wala) = Wi(a)Wa(a) - - - Way(a).
Also, 1/W(a) corresponds to Ti.

7. Moment generating functions. If only for the above reasons and no
others, we should be tempted to consider the function formally defined by

i Li(f)a".

But this is precisely the expression for the familiar moment generating function,
m. g. {.

M) = [ @ de = 3 L.

In this way, the method of triangular matrices joins the method used by Aitken
for the Type A family. If

Pa) ~ 3 af @),

0

and we formally equate moment generating functions of each side, we get
) M(e; F) = M(a; f) ; (=D'a;d’,

by means of the Aitken identity (4). Thus (—1)%a; equals the coefficient of o
in the formal expansion of
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M(a;F)___ o a: )™
Mgy = Ml )M 7.

Our relationship (2) follows immediately from (7); and by Taylor’s expansion in
a of M(a; f)”", the identity (3) is quickly realized.

For many problems, the reciprocal of the m. g. f. of f(x) is itself a simple func-
tion; to that our triangular equations may be inverted without solving linear
equations. Thus where F(z) = f(z 4+ b), we immediately verify Taylor’s expan-
sion by use of familiar properties of the m. g. f. under shift of origin.

8. Finite difference expansions. Corresponding to integration by parts, we
have the formula

D WVVi= (—1) 2 AW VIV, = (=1 Y AW VRV, ete,
provided ‘“high contact’” properties are assumed. V and A are receding and

advancing differences respectively. Recalling the familiar property of “reduced
factorial” polynomials, *2 , we have

i; V(@) = (—1)* E';oj""xf(x) izk
=0 i<k
or
Qi) = (—=1)"'Qs(f) izk
=0 i<k,
where

o = ZX- DD Eoit Dy,
In the expansion

F(z) ~ af (@) + aVf(z) + a:V'f(x) + -,

the a’s obey laws identical to (2) and (3) where reduced factorial moments are
substituted for the reduced L moments, and the f. m. g. f.

> 1@ + oy,

for the ordinary m. g. f.

9. Convergence. All of the above relationships are purely formal, without
regard to convergence. The last is a difficult subject, and little discussed in the
statistical literature, since applications of G-C series have been almost entirely
concerned with empirical frequency curve fitting in which mathematical con-
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vergence does not enter. Actually in the scanty treatments of the subject there.
has arisen a confusion between the Type A G-C expansion, which equates
moments, and the expansion of a function in orthogonal Hermite functions.
These are not unrelated, but nevertheless they are distinet. This is well recog-
nized in the purely mathematical literature, but hardlv at all in the literature of
statistics and physics.

The series differ by an irremovable factor of 2. If the Type A functions are
written as

Hiz)e™,
then the Hermite functions will take the form
Hix)e ™,

where the H’s are Hermite polynomials suitably normalized. Unfortunately
the G-C series often diverges when the H series converges. Thus, the statistically
interesting Cauchy distribution can be expanded in an H series; but since it
possesses no finite higher moments, the G-C series cannot even be defined.

It is not hard to show that the G-C expansion of F in terms of a Type A func-
tion f(x), is equivalent to an H expansion of Ff “} in terms of the H family f’
It is sufficient for convergence in the mean of the last expansion that Ff™ * be of
integrable square or belong to L’. This means that the G-C type A expansion
will be valid if Ff* is well behaved, not simply if F is well behaved. For F a
histogram as is often the case in practise, no difficulties of convergence arise,
although rapid convergence may be another matter. Nevertheless, many well
behaved F’s will not pass the more strict test. The reader is referred to the last
five titles in the bibliography for mathematical discussions of this problem.

The above discussion holds only for the Type A expansion. There remains the
very difficult problem of convergence conditions in the more general case. No
immediate generalization suggests itself, except the application of the results of
the “moment problem.” However, this must be handled with delicacy, since
the partial sums of the series may actually become negative over some range.
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