ON SERIAL NUMBERS

By E. J. GuMBEL
New School for Social Research

In this paper we consider a continuous variate and unclassified ocbservations.
It is well known that there are two step functions, which we may trace for a given
series of observations. We will show that the differences between the two ways
of plotting play an important réle for certain graphical methods used by en-
gineers.

To obtain one and only one series of observations we adjust the cumulative
frequencies. The corrections thus introduced depend upon the theoretical dis-
tribution which is adequate for the observations. Later we deal with the rela-
tion between serial numbers and grades. Finally we construct confidence bands
for the comparison between theory and observations.

1. Theory and observations. If we arrange n observations in order of in-
creasing magnitude, and write each as often as it occurs, there will be a first,
21, the smallest value, a second, z;, an mth, z,, the penultimate, z,_;, and the
last, z. , i.e., the greatest value. The index m is called the observed cumulative
frequency, or simply the rank. It is usual to draw the observations ., along the
abscissa, and the rank m along the ordinate. The step function starts with a
vertical line from the value x; of the abscissa to the point with the coordinates
1, x,, and in general consists of the horizontal lines from the point m, . to the
point m, Tmy1 and the vertical lines from the point m, Zm, to the point m + 1,
Zm41. The step function ends with the point n, z, . We call this graph the
step function (m, r.). However, another step function which is derived from
the observations arranged in decreasing magnitude is equally legitimate. This
step function starts from the point with the coordinates 0, z;, and in general
consists of the horizontal lines from the point m — 1, &n to m — 1, 41 and the
vertical lines from the point m — 1, 2y, to the point m, 2,41 and ends with the
point » — 1, z,. We call it the step function (m — 1, z..). Let F(zx) be the
probability of a value equal to or less than z. Then the continuous theoretical
curve, the ogive, which we compare to the step functions is nF(x), z. The ques-
tion is whether we have to use the step function (m, x.) or the step function
(m — 1, zn).

The differences between the two ways of plotting are rarely mentioned in the
statistical literature. If we plot instead of the rank m the reduced rank m/n,
the differences between the two ways of plotting are of the order 1/n. It is
generally tacitly assumed that this difference may be neglected. This will not
hold if n is small.

In the following we show two other ways of plotting the observations where
the differences between the two observed curves play an important role. Sup-
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164 E. J. GUMBEL

pose that the probability F(z) and the density of probability, f(x), henceforth
called the distribution are such that it is possible to introduce a reduced variate

(1) z=x—a

which has no dimension. In general, the constant a will be a certain mean, and
the constant b a certain measure of dispersion. Furthermore, the constants may
be linear functions of these characteristics. Neither the probability G(z) of a
value equal to or less than z

@) G(2) = F(2),
nor the reduced distribution
®) 9(2) = bf(a + b2)

contain constants. The equiprobability test consists in the following procedure:
We attribute to the mth observation x, the relative frequency m/n, and deter-
mine from a probability table a value z, such that

4) G(z) = m/n.

The variate z is plotted on the ordinate, and the reduced variate z on the ab-
scissa. Then the points z. , z must be situated close to the straight line (1).
To apply this comparison between theory and observations, we need not even
calculate the constants. For the normal distribution the application of this test
is greatly facilitated by the use of probability paper.

The difficulty is that we may as well choose the frequency

@) G) = (m — 1)/n,

and determine the corresponding values of z. Therefore, we have two lines (1)
instead of one. The difference between the two series will be large for the
first and last few observations. For the first series the last observation cannot
be plotted on probability paper; for the second series the first observation can-
not be plotted.

The same difficulty exists for the ‘“return period.” If the observations of a
continuous variate are made at regular intervals in time which are taken as units,
we may as in [4] define the theoretical return periods 7'(z) of a value equal to or
greater than x as

®) T@) = =1

The comparison of the theoretical with the observed return periods gives a test
for the validity of a theory. However, there are two series of observations,
namely, the exceedance intervals
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' n 3 . 0 0 ——
©) T = 2 m=12-n—1
and the recurrence intervals

” — n . = oo
(7) T(:E..) = n““—“_ m i’ m 1,2 n.

The two expressions (6) and (7) differ widely for the high ranks. The penulti-
mate observation, for example, has an exceedance interval n, whereas the recur-
rence interval is only n/2. This contradiction and the difficulty arising for the
equiprobability test show that the question of choosing the observed cumulative
frequency of the mth observation has a practical significance.

The equiprobability test and the comparison between the observed and the
theoretical return period may be combined on probability paper. The variate
is plotted on the ordinate, the reduced variate y on the abscissa. But instead of
y we write the probability F(r) and the return period T(xz). If the theory holds,
the observations must be scattered around the straight line (1).

But all these methods presuppose that we know whether we have to attribute
to x,, the rank m or the rank m — 1. Sometimes a compromise has been pro-
posed which consists in attributing to x., neither m nor m — 1, but the arithmetic
mean of both, m — }. In other words, the index m is no longer considered to be
an integer. In such cases, we call m the serial number.

The corrected frequency m — } may be accepted for the comparison between
the step function and the probability curve. However, for the return period
and for the equiprobability test this method leads to serious difficulties. The
corrected return periods, which have been proposed by Hazen [7] and have been
used by M. Kimball [8] are

n
(6) T(xm) = m .
The last among n observations has a return period 2n. This idea does not seem
to be sound. No statistical device can increase the number of observations
beyond .

2. The adjusted frequency of the mth observation. The use of m, m — 1, or
m — % as frequency of the mth observations amounts to considering the mth
value as being fixed. To obtain one and only one step function we consider z,,
as a statistical variate. This will lead to the determination of the most probable
serial number and of the corresponding probability as a function of m and n.

The mth observation is such that there are m — 1 observations below it and
n — m observations above it. Consequently, the distribution w,(x,m) of the
mth observation is

© wntem) = () mF@I 0 = FOI™"fGa).
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The variate z,, is simply called = as each value of z has a certain density of
probability of being the mth. To distinguish between (z) and w, (xz,m), the first
distribution is referred to as the initial distribution. For some simple initial
distributions it is possible to calculate exactly the mean and the standard error
of the distribution (9). This has been done by Karl Pearson [10] for the normal,
the uniform, the exponential, and other skew distributions. The results are very
complicated, and do not allow any immediate practical applications.

In the following we determine therefore instead of the mean the mode of the
mth value. The most probable mth value for which we write %,, is the solution
of

d log ws(z, m) _

0.
dx
We obtain from (9)
m—1le.y n—m . _  f(E)
(10) T 1o — T e = L.

In this equation m is counted in order of increasing magnitude. If we choose
the inverse order we obtain the same equation, if we replace the index m by
n — m + 1. Therefore the following results are independent of the order of
counting m.

Equation (10) gives the most probable value Z., as a function of m and n.
The function depends upon the distribution.

A rough, first trial solution of (10) may be obtained if we confine our interest
to values where neither m nor n — m is small in comparison to =, that is, values
which are not extreme. Suppose m to be of the order n/2. For increasing num-
bers of observations, the expression on the left side of (10) become large com-
pared to the right side provided the derivative remains finite, as is generally the
case. If we neglect the right-hand member, %,, is the solution of

m— 1
n—1"

This expression holds for the uniform distribution where f’(x) = 0.

The following exact solution is valid for any number of observations and any
serial number. Equation (10) will be used in two different ways: First, we sup-
pose m to be known, we determine the probability F(%,.) of the most probable
mth value as a function of m and n, and attribute this probability to the mth
observation x, . Ry doing so, the probability of the most probable mth value
becomes the adjusted frequency of the mth observation. This leads to one and
only one series of observations, and settles our initial question. Later, in
section 3, we suppose F(Z,) to be known, and compute the corresponding most
probable mth observation. This leads to an estimate of the grades (or partition
values) from the serial numbers.
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To obtain F(%,) from (10) we introduce an expression ¢’ () by stating
(12) [0 @n)n] = F@Ea)[1 — F(am)lf " (En) .

The brackets are meant to indicate that the product on the left side does not
depend upon n. We shall show later that ¢’(x.) is under certain conditions
the variance of the mth observation. For the present purpose however this
significance is not required. Multiplication of (10) by (12) leads to

(13) m — 1+ F(&n) — nF(&n) = —f'Em)o’ @n)n],
or

=y _m—1 f(Z)’@mnl
(14) FEn) = - —5 +— 1 -

The adjusted frequency in (14) is similar to (11). Another expression for the
adjusted frequency, derived from (13), is

(15) FaEw) = "8+ 1 (7@ - 4+ 7).

The adjusted frequency is the compromise m— 3% plus an expression
D 1 - 1 s \[2

(16) o =2 (F@) = } + @l @)

The correction, D, defined by (16) depends upon the initial distribution and has
no dimension. In general, it will depend upon the constants which exist in the
distribution. If the distribution f(z) may be written in a reduced form (3),
the correction®

an D = G@) — } + ¢ @@
depends only upon the dimensionless reduced variate z. For a given initial dis-
tribution we choose numerical values for the probability G(z) = F (%) calculate
¢'(z) and
G ~ G@)

g*(2)
From (16) we compute a table for the corrections D as a function of the adjusted

frequencies F(%,) and obtain for given n the serial number m as a function of
the adjusted frequencies by

(19) m = nF(%») + 3 — D.

These-serial numbers will not be integers. The adjusted frequency F(%.) for
the mth observation will then be obtained by linear interpolation.

(18) a(2)n] =

1 In previous articles [3, 6] we started from another interpretation of the corrected
frequencies and obtained slightly different corrections.
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The value and the sign of the correction D depends upon the distribution.
For the asymmetrical exponential distribution, for example, the correction

19) D=-4

is independent of the variate. This means that we have to use exclusively the
step function (m — 1, z,,) as being the best way of plotting. The observed
adjusted return periods are the recurrence intervals.

For a symmetrical reduced distribution we have

2) 1-6(—2) =6@); g(-2) =g@); (-2 = —g@).
Therefore, the reduced correction will be
(21) D(—z) = —D(z).

For the two reduced values z and —z of a symmetrical variate the corrections
have the same size, but different signs.

A relation similar to (21) holds for two asymmetrical reduced distributions
¢1(2) and ,9(2), which are symmetrical one to another in the sense

22)  Gie) =1—1G(—2); ¢e) =9(—2); @@) = —u'(—2).

Then, the corrections are

(23) Dy(—2) = —D(2).
For any initial distribution f(z) we read from (19) the adjusted frequency
— 1
(24) F(%,) = "‘_Z"'_D_,

even for a small number of observations. The question whether to choose m/n
or (m — 1)/n as observed cumulative frequency is settled by (24). We obtain
one observed step function, one series for the equiprobability test, and one
series of observed return periods

n
—m+3i-D’

(25) T(Zm) = p
which have to be compared to the theoretical continuous curves.

3. Estimates for the grades. In the following we use the fundamental
formula (15) to determine interesting grades through the mth values.

We use the term grade for the value of a statistical variate which corresponds
to a given cumulative probability F(z) say, F(x) = 1; %; § for quartiles; F(z) =
4, -+ 1% for deciles, and so on. For a given grade, the probability F(z) the
density of probability f(z) and its derivative are known, and m is unknown.
The value of m obtained from (15), henceforth called the most probable serial
number 7, is the solution of
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(26) m = nF(z) + 1 — F(@) — f'@F (@)1 — F@)f ().
The corresponding “‘observed’ value x is obtained by interpolation between
two observed values Zn—1 and z. , such that
m—1<d <m.
For the median, z, , the most probable serial number i, is
~ n-+1 !
27) mo="F 1 ‘{_ff%.

The median x, itself enters into (27). It has to be eliminated through the condi-
tion F(z,) = 4. For the exponential distribution for example we find

@7 o = 5+ L.
The most probable serial number of the median for a symmetrical distribution is
(28) o = }(n + 1).

This is the usual estimate of the median for any distribution. The estimate
obtained from (27) is smaller (larger) than the usual estimate if the median is
smaller (larger) than the mode. The difference between the two estimates is
due to the fact, that (27) makes use of information about the theoretical distribu-
tion whereas this information (if available) is neglected by the usual method.

For symmetrical distributions the most probable serial numbers #i; and i,
for two symmetrical grades defined by F; and F, = 1 — F; are according to
(26) related by

iy = nFy + 1 — (F1 + fiF(1 — FI)f7)
fiiy = n(l — Fy) + (F1 + fiFu(1 — F)f).
The members in brackets have the same size, but opposite signs. Another ex-
pression for i, is
fita = (n+ 1) — [oFy + 1 — F, — fifi(1 — F)fi’]
so that, for symmetrical distributions
(30) fiiy + file = n + 1.

This is to be expected as the mth value counted upwards is the (n — m + 1)st

value counted downwards.
For the two quartiles ¢; and ¢: the most probable serial numbers #i(g) and

#i(gs), obtained from:(29) are

(29)

. _ _ 3 J(q) . _3n+1 _ 3 f(qg)
B M@ =~ @) MW T T T g’

where gt and ¢; have to be eliminated by the use of
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F(g) = 1;F(g) = §.

For the uniform, the normal and the exponential distribution we obtain the two
quartiles from

@) =22 5 e = 2
31" #i(q) = g +.352; i) = 37” + .648

ﬁ(q1)=g+1 3 ﬁ(Qz)=§41'+1

respectively. The last result may also be found from (19’) and (24). These
estimates differ from the usual estimates by the reason given above.

We now apply the notion of a grade to certain characteristics which are other-
wise defined. A certain characteristic, say, the mode % or the mean Z have for a
given distribution the probabilities F(%) or F (%) respectively. These probabili-
ties may be used to define a grade. We determine the corresponding mth value
from (26), and obtain an estimate of the mode or the mean, interpreted as grades
by interpolation between the observed mth values. For a symmetrical dis-
tribution these estimates of the mode and mean are identical with the estimates
of the median. For an asymmetrical distribution, the most probable serial
number (%) of the mode becomes according to (26)

(32) (%) = (n — 1)F(z) + 1.

Usually, the mode Z% of a continuous variate is estimated by another procedure.
The observations are arranged in certain cells. One of them has the largest
relative frequency. It will contain the mode. To find its position within the
cell, an interpolation formula is applied which reproduces the content of this
cell and of the two adjacent cells. By choosing different lengths for the cells
and different origins for the classification, the mode can be shifted to the right or
to the left. Formula (32) furnishes a determination of the mode from the ob-
servations according to the theory, such that the arrangement of the observa-
tions into different cells is not needed. Of course, this method can be applied
only if we know the theoretical distribution f(r). The problem how to estimate
the mode is important for distributions where one of the constants may be in-
terpreted as the mode or as a function of the mode [1, 4].

4. Standard errors of the estimates. The numerical work involved in the
method (26) of estimating the grades is very small. To obtain the standard
errors of these estimates we consider the asymptotic properties of the distribu-
tion (9). The following results hold therefore only for large numbers of observa-
tion. Besides we assume, that the serial number m is of the order n/2, i.e. not
extreme. It has been shown [2] that under these conditions the distribution
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of the mth value converges toward a normal distribution with a standard error
o(z..), where

33) o(zm)V/n = VF@){A = F@)).

[z ( )
Although this standard error does not contain m explicitly, it has a clear meaning
for any value of x as we know from (26), which observation we have to attribute
to the probability F(z). The classical proof about the approximate normality
of the distribution of the median in large samples is a special case of this con-
vergence and the classical standard error of the median,

1
(34) a(z)V'n = 2y’
is a special case of (33). The square root in (33) is maximum for F(z) = }.
Therefore,

35 7 (ZTm =
If the variate x may be reduced through the linear transformation (1) the
standard error ¢(z) of the reduced variate, called reduced standard error

(36) [(2)v/n] = g(iz) VERD T =G,

may be calculated as a function of z where z corresponds to z,,. To call at-
tention to the fact that these numerical values do not depend upon n, they are
written in brackets. The standard error of the estimate for z,, is, according to
(2) and 3)

@37) o(zm) = \/_ le()V/nl.

Since the constant b is a measure of dispersion, the standard error of the estimate
of the mth value is proportional to the standard deviation of the variate. The
factors b and 1/4/n show that the standard error of the mth value is of the same
structure as the standard error of the arithmetic mean.

For symmetrical distributions the standard error (33) of the mth value is also
a symmetrical function. The standard errors of the estimate of the two quar-
tiles, and generally of the estimates of two grades defined by F and 1 — F, are
then identical. If the mode coincides with the median, the corresponding stand-
ard error of the mth value is a minimum. For a symmetrical U-shaped distribu-
tion, however, where the density of probability passes through a minimum at
the center of symmetry, the median has the largest standard error among the
mth values. An example for such a distribution has been given by Leavens [9].
As the distribution of the mth value converges towards a normal distribution,
it is legitimate to attribute to the mode of the mth value the standard error (33).
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Therefore, for a large number of observations (33) gives the standard error of
our estimate of the grades. The standard errors of the estimates (31) of the
quartiles are

(38) ole)vn = 3 V3

4f(q1)’ ON

The arithmetic mean in its usual definition is not an mth value. Its standard
error o(&), where
(39) ) ‘7(5’)‘\/’7" = o,
will, therefore, fall outside of the range of the standard errors of the mth values.
(See graph 1.) If the distribution f(z) is such that the standard deviation
does not exist, it is legitimate to estimate the arithmetic mean as a grade, and
calculate it from the corresponding most probable mth value by introducing
F(%), f(z) and f/(Z) into (26). The standard error of the arithmetic mean inter-
preted as a grade is

(40) o(B)Vn =

o(g2)V'n =

1
@)
If we use this estimate of the arithmetic mean for distributions where ¢ exists,

the usual determination of the mean will be more (less) precise than its estimate
as a grade if

VF@(Q — F@@))-

(41) of(@) S VF@E)A — F@)).
The standard error of the mode estimated as a grade is
1

(42) o(B)V'n = VF@)(1 — F(3))-

@
As the standard error of any characteristic depends upon the way it is estimated
from the observations, the standard errors of the mode or mean interpreted as
grades differ from the usual standard errors.

6. The most precise grade. Equation (33) may be used to define a new grade
which has'interesting properties. The standard error (33) of the estimate of the
mth value is a function of F. We ask whether it possesses a minimum (maxi-
mum). The corresponding value of the variate, £, may be called the most

do(zm)

(least) precise mth value or the most (least) precise grade. To obtain iF it is

sufficient to calculate from (33)
nd log o* (Zm) _ 210’ (Tm)
dz o(xm)
Therefore the most (least) precise grade is the solution of

@ _ @ 7@ _,
F@) I-F@® @

(43)
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This expression does not vanish if either F(z) = % or f’(x) = 0. It vanishes if
both conditions hold simultaneously. For a symmetrical distribution passing
through a mode (minimum), the mode (minimum), estimated as a grade, is the
most (least) precise grade. Equation (43) may be written

F@f@F @)1 - Fi) = § — F).
If we introduce this expression into (16), we obtain D = 0
and

. m—3}
(44) F(i)——T.

The most precise mth value is such that the adjusted frequency is the arithmetic mean
of the frequencies m/n and (m — 1)/n.

The most precise mth value & cannot be calculated from the observations
alone. It may be estimated in the same way as any grade by introducing the
values F (%), f(£) and f’(£) into equation (26).

To show the difference between the most precise grade and the mode we apply
the procedure developed above to a skew distribution. The reduced distribu-
tion of the largest value g(y) and the probability G(y) are

(45) gy) =e*Gly); Gy =€ "

The relation (1) between the reduced variate for which we write y instead of z
and the largest value z is

(46) c=u+?
a
where u = % is the mode and
(47) } = ﬁq_
a ks
The most probable serial number #(u) of the mode, obtained from (32) is
(48) (u) = n_—l—Te-—_l .

This equation may be used for an estimate of the constant u.

The reduced variance ¢°(y) obtained from (36) and (45) is
(49) @ y)V/n) = (" = 1).
A table for the reduced standard error ¢(y)\/7n has been given in a previous
publication [6]. The value o(y)\/7 is plotted in figure 1 for probabilities G(y)
from 0.01 to 0.95. The standard error has a minimum for a value of y located
to the left of the mode 4 = 0. On the same graph are plotted the reduced
standard errors for the normal distribution. As the normal reduced variate z
differs from the reduced variate y, two different scales are used for the variates.
The standard error of the estimate (48) of the mode interpreted as a grade,
obtained by introducing y = 0 into (49) is
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o(w)\Vn = ix/e —1 = 1.022050.

The most precise grade is
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where 7 is the value of the reduced variate, for which the standard error (49)
is minimum. We obtain from (49) and (45) the numerical values

(50)

§ = —.46601; G(§) = .20319; o(£)\/n = .968870.

The standard error of the most precise grade is 3 per cent smaller; the standard
error of the mode, estimated as a grade, is 2 per cent larger than the standard
error of the mean.
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6. Confidence bands. The standard errors (33) of the grades may be used in
a general way for the construction of confidence bands obtained from curves which
control the fit between theory and observation. Consider first the observed
stepfunction (m — %, z,,) and the theoretical ogive nF(x), x. The variate x is
plotted along the absmssa the cumulative frequency along the ordinate. Now,
for large n any theoretical value x, which is not extreme, may be interpreted as
an mth value having a normal distribution and a standard error ¢(z,,). At each
point of the graph of nF(x), x which is not extreme, we construct a segment of
length 20(x,) parallel to the x axis, the midpoint of the segment being on the
theoretical ogive. In other words, we add the standard error ¢(z,,) to, and sub-
tract it from, any corresponding value z, and attribute nF(x) to the beginning
and end of these intervals. By this procedure we obtain two curves nF(z),
z F o(xrn). For each observation there exists a probability P = .68268 that it
will be contained within the interval x F o¢(xn).

If we apply another hypothesis to the same observations, or choose other
values for the constants, we reach, of course, other control curves. Of two com-
peting hypotheses the one is to be preferred where the band contains a larger
number of observations.

The same method may be applied to the equiprobability test and to the com-
parison of the observed and theoretical return periods [6]. This procedure is
legitimate for all values which are not extreme.

In the following, we construct the confidence bands for the normal distribution

g2

(51) 9(2) = \%—re

The variate x is related to the reduced variate z by (1), which, in this case, be-
comes

(62) =7+ o2z
The probability G(z) is
(53) G(z) = 3(1 + 2()),
where ®(z) stands for the Gaussian integral
2 [
(54) 26) = = fo o di.
Formulae (36) and (53) lead to the reduced standard error
(55) o(2)Vn = 3 ( ) V1 = @),

given in the table, col. 6. The standard errors ¢(z) of the mth values obtained
from (37) (52) and (55) are

(56) o(m) = \‘//_2 @)/
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As a numerical example we choose the annual precipitations observed in 51
meteorological stations in Paris and its surroundings in the year 1938. We
suppose that the differences between the 51 observations are only due to chance.
The stepfunction m — %, x,. is plotted in figure 2. To obtain the theoretical
ogive we compute the constants in (52). They are

(57) % = 571.92; o7/2 = 38.52.

The theoretical values = obtained from (52), the cumulative frequencies nF(x)
obtained from the table of the Gaussian integral [11] and the standard errors

SO -
w0l ]
~
JoF X ]
[ W
r < b
- 3 ]
3
20f- & ]
g ]
[ O
- §
[ g Observations r‘ p
of 3 rreory _~
[ CantrolCurves _—~ ]
Annual Rainfall in Millimeters ]
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S00 550 600 650.

F1c. 2. The Confidence Band
(58) o(xm) = 5.393 [0(2)V/n),

obtained from (56) are given in the columns 2 to 5 and 7 of Table I.

We trace in figure 2 the theoretical curve nF(x), x and the confidence band
obtained from col. 7. by the methods described above. All observations are
contained within the control curves. We may accept the theory that the differ-
ences between the annual rainfalls observed in the 51 stations are only due to
chance.

7. Conclusions. To test a statistical hypothesis for a continuous variate we
use the ogive, the equiprobability method, based on (1), and the return periods
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(5). The three tests may be combined on appropriate probability paper. As
the rank of the mth observation x, may be m or m — 1, we have two series of
observations. To obtain one and only one series we use for the ogive the serial
number m — 1 provided that the number of observations is large. Generally,
we attribute to =, an adjusted frequency, namely, the probability (15) of the
most probable mth value. The adjusted frequency is obtained from the serial
number m — 1 and a correction, D, equation (17), which depends upon the dis-
tribution. The correction is important for the three tests, and small n, further-
more, for the equiprobability test and the return periods for the extreme observa-
tions and any number 7.

The same correction D is used for estimating a grade through its relation (26)
to the corresponding most probable serial number #. For distributions, where
the second moment does not exist, we estimate the arithmetic mean from a

TABLE I
Normal Confidence Band and Theoretical Frequencies of.the Rainfalls
l\z’:cll"i':\cfed Variate . Froquency stalﬁﬁﬁcﬁimr Standard Error
1 . " SFE@ | SLF (@) e @ Vn i
2 3 4 5 7
0 571.91 571.9 25.50 25.50 .886 4.8
.2 564 .2 579.6 19.82 31.18 .899 4.9
.4 556.5 587.3 14.58 36.42 .940 5.1
.6 548.8 595.0 10.10 40.90 1.012 5.5
.8 541.0 602.7 6.58 44 .42 1.127 6.1
1.0 $33.4 610.4 4.01 46.99 1.297 7.0
1.2 525.7 618.1 2.29 48.71
1.4 418.0 625.9 1.22 49.78
1.6 510.3 633.6 .60 50.40
1.8 502.6 641.3 .28 50.72

grade. For asymmetrical distributions we estimate the mode from a grade
by (32) and (48).

In this case, we have to introduce a distinction between the mode and the most
precise grade (43). The adjusted frequency and the estimates for grades may
be used even for small numbers of observations.

The standard error of these estimates is obtained, equation (33) from the
limiting, normal, form of the distribution of the mth value, which holds, provided
the serial number is not extreme. To control a hypothesis we construct con-
fidence bands, which are obtained from the standard errors of the grades.
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