ON INDICES OF DISPERSION

By PauL G. HoeL
University of California, Los Angeles

1. Introduction. In biological sciences the index of dispersion for the binomial
and Poisson distributions is very useful for testing homogeneity of certain types
of data. For example, the dilution technique in making blood counts finds it
useful. Recently there have been attempts to use it to determine allergies by
observing the change in the blood count after allergic foods have been taken.
Here the sample may consist of only a few readings; consequently it is important
to know how accurate this index is when applied to small samples. After in-
specting the application of the Poisson index to such counts, I was surprised to
see the lack of agreement with theory. At first it appeared that the fault lay
with the chi-square approximation which is used on this index, but later it was
clear that the assumption of a basic Poisson distribution was at fault. It now
appears that statisticians will need to be careful about citing blood counts as
examples of data following a Poisson distribution.

This paper is the result of investigating the accuracy of the chi-square ap-
proximation for the distribution of these indices. Previous work on this problem
seems to have consisted in some sampling experiments [1] for small values of
the parameters involved, and in some theoretical work [2] in which the sampling
distribution is considered only for a fixed sample mean. Although sampling
distributions ordinarily differ very little from the distributions obtained by
assuming the mean of the sample fixed, for small degrees of freedom the dif-
ference may be appreciable and therefore requires investigation. In this paper
the accuracy of the chi-square approximation is investigated by finding expres-
sions for the descriptive moments of the distribution which are correct to terms
of order N~°. These expressions are obtained by means of Fisher’s semi-in-
variant technique.

2. Moments of the distribution. Employing Fisher’s notation [3], let the
‘binomial index of dispersion be denoted by z, then z may be written as:
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panded as follows:

1 1 11 1
=bly + awy + aw'y + aw'y + .-},

where the definition of c; is obvious. As will be seen later, these expansions are
valid for obtaining the expected values of powers of z; hence

E@) =b {pa + cpn + copnn + -}

1) E@Z) =V {un + 202 + 2e2 + Dz + (2c5 + 2e0c)ps2 + -+ -}
1
E@Z) = b* {pw + 3cus + (Bc2 + 3c)pzs + (Bes + 6czer + cpss + ++ -}

E@Z') = b {pu + 4o + (o2 + 6ct)pa + (4 + 12¢01 + deDpa + - - - .

Since only the first four moments of z are to be found, it will be necessary to
evaluate the p;;forj = 1,2, 3,4and for< =0, 1, 2, - - - as far as necessary to
give the desired degree of accuracy.

First consider the relation between the moments p;; and the semi-invariants
ki which are defined in terms of the u;; by the following formal identity in ¢ and 7.
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Differentiating both sides with respect to ¢ and replacing the exponential factor
by the right member gives an identity which is convenient for evaluating the
wio . Differentiating both sides with respect to » and making the same replace-
ment gives an identity which is convenient for evaluating the u;; for j > 0.

These identities express u;; as a sum of products of «’s and u’s, each such
product being of total degree 7 and j in its subscripts. By repeated substitution,
pij can be expressed as a sum of products of «’s only. From Fisher’s formulas
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each such semi-invariant, «,, , can be expressed as a sum of products of semi-
invariants of the basic distribution, each term of which sum is of order N+
in N. Hence it follows that the lowest order term, or at least one of the lowest
order terms, in N in the expression for u;; will be a term with the maximum
number of « factors. Since the «,, of lowest degree in subscripts are ki and «o ,
the term with the maximum number of k factors will be the term in i .
However, since w = k1 — «x; has a zero mean value, pio = k10 = 0; consequently
the lowest degree term involving the subscript ¢ > 0 is ky Or i1 . As a result,
the maximum number of « factors will be found in the term containing x3sx3;
for 7 even and x%‘_”xél‘lxu for i odd. These terms are of order N ** and N }¢+0
respectively. Since it is desired to obtain accuracy of order N°, it therefore
will suffice to evaluate u;; for 7 < 6.

The validity of the expansions used in arriving at (1) could now be shown by
writing them as partial sums with remainder terms and then showing that the
remainder terms are of higher order than N°.

Neglecting terms of higher order than N°, the above identities give the follow-
ing expressions for p;; forj = 0,1, 2and 7 = 0, 1, - - - , 6, with slightly longer
expressions for j = 3 and 4.
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M2 = Gkarpar + Koapao + 4xkupn + kopa

pe2 = Skupa + Kops:

He2 = KoiMe1 .

The next step is to apply Fisher’s formulas expressing the «,, in terms of the
semi-invariants of the basic variable distribution, which in this case is the bi-
nomial distribution. In Fisher’s notation «,, would be written as «(1"2°), since
the variables w and y are respectively k. , measured from its expected value, and
k.. Applying such formulas, the following expressions for the u; and u:. are
obtained, with somewhat longer expressions for the u;; and p .
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It is necessary to express these «’s in terms of the parameters of the binomial
distribution. Here the «’s are defined by the following formal identity in 6,

e by D
K104y — 4Ky —~+---
e TR

= (¢ + pe’)™.

Taking logarithms, expanding in powers of 8, and equatmg coefficients of powers
of 6, the following expressions are. obtained :

Kl = m
K2 = mq
k3 = mg(g — p)

ks = mg(l — 6pq)

ks = mg(g — p)(1 — 12pq)

xs = mg(1 — 30pq + 120p°¢)

x1 = mg(g — p)(1 — 60pg + 360p’")

ks = mg(l — 126pg + 1680p’q" — 5040p°¢").
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These values of the «’s are inserted in (2) to give the following expressions for
the ui and ui , with considerably longer expressions for the u;; and ui :
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It remains to express the coefficients of (1) in terms of these same parameters.
From the definition of ¢;, a, and «; , it follows that
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If now the above values of the u;; and ¢; are inserted in the expressions (1), the
following final formulas are obtained.
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By considering the formation of terms, it can also be shown that the above
expressions are correct to terms of order m®, m?, m', and m’, respectively, in the
parameter m. If m is large these expressions are considerably more accurate
than the order N~ would indicate since the lowest order terms neglected in these
expressions are respectively N'm', N*m®, N*m®, and N*m.

3. Applications. To compare these moments with those of the chi-square
distribution, consider the ratios of corresponding moments, both for the Poisson
distribution and for the binomial distribution in the special case of p = 3.
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For the Poisson distribution, these ratios are

Ri=1
Re=1-5— (Wlﬁﬁ
For the binomial distribution with p = %, these ratios are
Ri=1+5 + (N—;), + (Nin),

o, _1 5 7 \_ 7
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From these expressions the following table is constructed.

m n N Rl Rz R3 R4
25 ® 3 1 .99 .97 1.01
25 75 3 1 1 1 .98 .97
5 ® 5 1 .96 .94 1.08
5 15 5 1.01 .96 .87 .84

2 © © 1 1 1.25 1
2 ® 10 1 .95 1.05 1.19
2 ® 5 1 .89 .85 1.21
2 6 ® 1 .83 .59 .69
2 6 10 1.02 .87 .64 .64
2 6 5 1.03 .90 .69 .62
1 © 25 1 .96 1.34 1.22
1 ) 10 1 .89 1.10 1.39
1 @ 5 1 .76 .70 1.44
1 3 25 1.01 .69 .31 .41
1 3 10 1.03 .72 .35 .38
1 3 5 1.07 77 .41 .36
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For m > 5 these ratios are close to unity even for N as small as 5; hence it
appears that the chi-square approximation is satisfactory as long as m > 5.

For m < 2 most of these ratios differ considerably from unity, particularly
for the binomial distribution. Since R, is practically constant, the reduction
in R, here indicates that the chi-square approximation will contain too many
extreme values. For the Poisson distribution there is an increase in R, to com-
pensate slightly for this decrease in R, so that the 5 percent points, for example,
would not differ very much. The use of the chi-square approximation would
therefore tend to give slightly too few significant results when they exist. For
the binomial distribution, however, there is a decrease in both R; and R, so
that the distribution tends toward normality; consequently the chi-square ap-
proximation will contain far too many extreme values and the 5 percent point
will be much too large. This situation becomes slightly worse with increasing N.

4, Conclusions. From a consideration of the approximations for the first
four moments of the distribution of the index of dispersion, it appears that the
chi-square approximation is highly satisfactory provided that m > 5. For
smaller values of m, the approximation is still fairly accurate for the Poisson
distribution but not for the binomial distribution. For decreasing small values
of m there is an increasing tendency to claim compatibility between data and
theory when it does not'exist; hence the binomial index must be handled care-
fully in such situations. These general conclusions are in agreement with the
specialized results of Cochran and Sukhatme.

The semi-invariant technique for problems such as this is exceedingly laborious
and is of questionable accuracy. The coefficients in Fisher’s heavier formulas
are so large that increased accuracy comes slowly with increased accuracy of
order of terms. In addition, there are numerous typographical mistakes in
Fisher’s formulas, some of which are not easily detected. The formulas (3)
may be used to investigate the accuracy of the chi-square approximation for
situations not covered in the numerical table, but they are of questionable
accuracy, when m is small, for N as small as 5.

REFERENCES

[1] P. V. SUKHATME, “‘On the distribution of chi-square in samples of the Poisson series,”
Jour. Roy. Stat. Soc., Vol. 101 (1938), pp. 75-79.

[2] W. G. CocHraN, “The chi-square distribution for the binomial and Poisson series with
small expectations,”’ Annals of Eugenics, Vol. 7 (1936), pp. 207-17.

i3] R. A. FisHER, ‘‘Moments and product moments of sampling distributions,”” Proc. Lon-
don Math. Soc., Series 2, Vol. 30 (1930), pp. 199-238.



