ON THE EFFICIENT DESIGN OF STATISTICAL
INVESTIGATIONS

By ABraHAM WALD
Columbia University.

1. Introduction. A theory of efficient design of statistical investigations has
been developed by R. A. Fisher' and his followers mainly in connection with
agricultural experimentation. However, the same methods can be applied to
other fields also. All statistical designs treated in the .aforementioned theory
refer to problems of testing linear hypotheses. By testing a linear hypothesis
we mean the following problem: Let %, ---, y» be N independently and
normally distributed variates with a common variance ¢°. It is assumed that
the expected value of y. is given by

(1) E(ya)=ﬁlxla+ﬁ2xza+"'+ﬁpxpa (a=17"'!N)
where the quantities z;o({ = 1, -+, p;@ = 1, - - - ;| N) are known constants and
Bi, ---, By are unknown constants. The coefficients 8,, ---, 8, are called
the population regression coefficients of y on z;, 22, - -+ , and z, , respectively.
The hypothesis that the unknown regression coefficients g, , - - - , 8, satisfy a
set of linear equations

() gabr+ -+ gibp=9: (@=1,---,7r;1r = p),

is called a linear hypothesis. The problem under consideration is that of testing
the hypothesis (2) on the basis of the observed values g, - - - , yx .

In many cases the experimenter has a certain amount of freedom in the choice
of the values z;, . The efficiency of the test is greatly affected by the values of
Z;o . The statistical investigation is efficiently designed if the values z;, are
chosen so that the sensitivity of the test is maximized. Let us illustrate this
by a simple example. Suppose that x and y have a bivariate normal distribution
and we want to test the hypothesis that the regression coefficient 8 of y on z
has a particular value 8y . Suppose, furthermore, that the test has to be carried
out on the basis of N pairs of observations (x1, %1), -+, (v, y»), where the
experiments are performed in such a way that z, , - - - , zy are not random vari-
ables but have predetermined fixed values: It is known that the variance of

N
the least square estimate b of 8 is inversely proportional to . (. — Z)? where
aw=l

Z = (z.+ --- + zy)/N. Hence, if we can freely choose the values z,, - - - , zx
in a certain domain D, the greatest sensitivity of the test will be achieved by
choosing z,, -+ -, zy so that (z. — %)’ becomes a maximum.

In the next section we will introduce a measure of the efficiency of the design

! See for instance R. A. F1sHER, The Design of Ezperiments, Oliver and Boyd, London,
19385.
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of a statistical investigation for testing a linear hypothesis. In sections 3 and 4
it will be shown that some well known experimental designs, used widely in
agricultural experimentation, are most efficient in the sense of the definition
given in section 2.

2. A measure of the'eﬂiciency of the design of a statistical investigation for
testing a linear hypothesis. The hypothesis (2) can be reduced by a suitable
linear transformation to the canonical form

@) Bp=p=-=8 =0, (r < p).
Hence, we can restrict ourselves without loss of generality to the consideration
of the hypothesis (3).
N
Denote Y Z;a%ja by a;; and let the matrix || ¢;; || be the inverse of the matrix

a=1
laii]] G, j = 1,---,p). Denote by b; the least square estimate of
B:i i =1,---,p). Itis known that the estimates b,, --- , b, have a joint
normal distribution with mean values 8,, --- , 8, , respectively. It is further-
more known that the covariance of b; and b; is equal to ¢;;6”. The statistic used
for testing the hypothesis (3) is given by

N E E almblbm

(4) F = : y 4 l-l M=l
El (Ya — b1T1a -+ - — bpxra)z
where || al || is the inverse of || em || ((,; m = 1, ---, r). The statistic F

has the F-distribution with r and N — p degrees of freedom. The critical region
for testing the hypothesis (3) is given by the inequality

® FzF,,

where the constant F, is determined so that the probability that F > F, (cal-
culated under the assumption that (3) holds) is equal to the level of significance
we wish to have.

It is known that the powet function® of the critical region (5) depends only
on the single parameter

6) LS Z @imB1Bim -
O° =l mm=
Furthermore this power function is a monotonically increasing function of \.
The coefficients a7, are functions of the quantities ;e (£ =1, -+, p; a =-
, N). The choice of the values z;o (t = 1, -+, p; @ =1,---  N)is
the better the greater the corresponding value of A. If r = 1, the expression A

2 See for instance P. C. TaNG, “The power function of the analysis of variance tests,’’
Stat. Res. Mem., Vol. 11, 1938.
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1 « . .. L .
reduces to 201 Bi. Hence, if r = 1, we maximize A by maximizing aj; . Since

a1 = 1/c;; , we maximize A by minimizing ¢;; . Thus, if r = 1, we can say that
we obtain the most powerful test by minimizing ¢y, i.e. by minimizing the
variance of b;. If r > 1, the difficulty arises that no set of values
Zia(t=1,---,p;a=1, ---, N)can be found for which A becomes a maximum
irrespective of the values of the unknown parameters 8;, ---, 8,. Hence, if
r > 1, we have to be satisfied with some compromise solution. For this purpose
let us consider the unit sphere

) Bi+ - +8 =1,

in the space of the parameters 8;, ---, 8,. It is known that the smallest root
in p of the determinantal equation

* * *
a;; — p a2 s a,
* x . *
8) az Q2 — p Q2 = 0,
* * *
an ae  cc+ arn —p|

is equal to the minimum value of ¢°\ on the unit sphere (7). Similarly the
greatest root of (8) is equal to the maximum value of ¢\ on the sphere (7). The
compromise solution of maximizing the smallest root of (8) seems to be a very
reasonable one. However, for the sake of certain mathematical simplifications,
we propose to maximize the product of the r roots of (8). Since the product of
the roots of (8) is equal to the determinant

* *
Qyy - G
9) v oeer o |,
* *
Ary *° Qpy

we have to maximize the determinant (9). The value of the determinant
|eim| (I, m = 1, --- | r) is the reciprocal of that of (9). Hence we maximize
(9) by minimizing the determinant | ¢;m | . The generalized variance of the set
of variates by, - - - , b, is equal to the product of ¢ and the determinant | ¢ | .
Thus, our result can be expressed as follows: The optimum choice of the values
of z;, is that for which the generalized variance of the variates by, ---, b,
becomes a minimum.

Any set of pN values 2o (t = 1, --- ,p; @ = 1, --- , N) can be represented
by a point in the pN-dimensional Cartesian space. Denote by D the set of all
points in the pN-dimensional space which we are free to choose. If N is fixed
and if any point of D can be equally well chosen, the following two definitions
seem to be appropriate:

DErFINITION 1. Denote by ¢ the minimum value of the determinant | cim |
@,m=1,---,r)in thedomain D. Then the ratio c/| cin | is called the efficiency
of the design of the statistical investigation for testing the hypothesis (3).

DEFINITION 2. The design of the statistical investigation for testing the hypothests
(3) 73 said to be most efficient if its efficiency is equal to 1.
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3. Efficiency of the Latin square design. A widely used and important
design in agricultural experimentation is the so-called Latin square. Suppose we
wish to find out by experimentation whether there is any significant difference
among the yields of m different varieties v,, -+, v . For this purpose the
experimental area is subdivided into m® plots lying in m rows and m columns
and each plot is assigned to one of the varieties v1, -+, v . If each variety
appears exactly once in each row and exactly once in each column, we have a
Latin square arrangement. Decnote by y:;: the yield of the variety v; on the
plot which lies in the i-th row and j-th column. The subscript k is, of course,
a single valued function of the subscripts 7 and j, since to each plot only one
variety is assigned. The following assumptions are made: the variates yij
are independently and normally distributed with a common variance ¢* and the
expected value of y; is given by

(10) E(yin) = wi + vi + m.

The parameters o°, u;, »; and p; are unknown. The hypothesis to be tested
is the hypothesis that variety has no effect on yield, i.e.

(1) pL=pp =" = p.

We associate the positive integer a(z, j) = (¢ — 1)m + j with the plot which
lies in the 7-th row and j-th column. (¢, 5 =1, ---, m). It is clear that for
any positive integer o < m® there cxists exactly one plot, i.c. exactly one pair
of values 7 and j, such that @ = a(z, §). In the following discussions the symbol
Ya (@ = 1, --- , m°) will denote the yield y;;. where the indices ¢ and j are de-
termined so that «(i, j) = «. The plot in the i-th row and j-th column will be
called the a-th plot where a = a(7, j).

We define the symbols tia, %ja, 2ta G, k =1, -+ ,m;a =1, ---, mb),
as follows: t;, = 1 if the a-th plot lies in the #-th row, and ¢;, = 0 otherwise.
Similarly uj. = 1.if the a-th plot lies in the j-th column, and u ;. = 0 otherwise.
Finally z:, = 1 if the k-th variety is assigned to the a-th plot, and 2, = 0
otherwise. Then equation (10) can be written as

E(ya) = ﬂltla + M + ﬂmtma + VUi« + .

(12)
+ VmUma + P11« + M + Pmlma o

2 2 2
. . 1 m 1 m 1 m _ _
Denote the arithmetic means — E tiay — Z Uia, and — Z Zia by t;, @ and
, m- a-_l ,"n a=1 "} ams=] ,
Z; respectiv,ely. Let tia = t,',., — i, Uia = Wia — Ui, Zia = Zia — &i, pi =
Bi — Pm, ¥ =vi — vpand p; = p; — pmfore =1, .-+, m — 1. Let further-
more wy = 1fora = 1, ---, m’. Then we have
! - ! - U -

r tia=tia+ liwa; uia=uo'a+u€wa; Zia = Z4a +z|'wa;
=1 ,m—1)

(13) i tma = (1 - Zl — = im—l)wa - t;a - —"trln—l.a,

- - ’ ’
Uma = (1 — U — +++ — Up1)Wa — Ula — *** — Um—l,a,

- > ! !
(Zma = (1 — 21 — *** = Zm-1)Wa — 21a = *** — Zn-tia-
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From (12) and (13) we obtain

m—1 m—1 m—1
(14) E(y.) = twa + Z‘{ pitia + _}:{ vitia + Zl PiZia
where

m—~-1 m—1 m—1
E= Z‘{MQH g_:lvéa.-+§péz.-+u..+v...+p..

The hypothesis (11) can be written as

(15) PL = ps = o= pua = 0.

This is a linear hypothesis in canonical form as given in (3). The values z:q
¢=1,---,m—1;a=1,---,m’) depend on the way in which the varieties
%1, -+, vm are assigned to the m® plots. We will show that we obtain a most

efficient design if we distribute the varieties over the m® plots in a Latin square
arrangement, i.e. if each variety appears exactly once in each row and exactly
once in each column.

Let Qia = Wa, Qitl,a = t:'a (i = 1’ cre,m — 1)7 dm+ja = u;ﬂ’ (j =

1, .--,m — 1) and @em_144.a = Zra k=1,---,m — 1). Denote Zq.-.,q;..
am=l

by ai; 4,5 = 1,2, -+, 3m — 2) and let the matrix || c;; || be the inverse of the
matrix ||ai; || 5,5 =1,---,3m — 2). Let us denote by A the determinant
laij| G, j = 1,---,3m — 2), by A, the determinant |a;| (5, j =
1, -+ ,2m — 1), by A, the determinant | a;; | &, j = 2m, ---,3m — 2) and
As the determinant | ¢; | (5,5 = 2m, ---,3m — 2). We have to show that for

the Latin square arrangement A, becomes a minimum. From a known theorem®
about determinants it follows that

Hence, we have merely to show that A/A; becomes a maximum for the Latin
square arrangement. Denote by A, A, and A; the values taken by A, A; and
4; , respectively, in the case of a Latin square arrangement. Since, for the Latin
square arrangement, as is known,

m2 . m2 m2
lel'mug‘c = z:lzl':at:a = 2 zl'ccwﬂ =0 (iyj) k= l) tre,mM — 1)
am= a=

a=1
we have
A -
17). = = Az .
a17) %
Since the matrix || a;;|| (G, j = 1, ---,3m — 2) is positive definite we have
A
2 <A,
(18) 3 = Ay

3 See M. BOCHER, Introduction to Higher Algebra, 1931, pp. 31._



EFFICIENT DESIGN 139

Because of (17) and (18) the Latin square design is proved to be most efficient
if we show that A, < A .

Denote by A7 the m-rowed determinant lag| (5,5 =1,2m,2m + 1, ---,
3m — 2). Since a;; = 0 for j ¥ 1, we have

(19) A? = anbds = m’A,.

m2
Denote z:l Zia2ia DYy by (4,7 = 1, .-+, m). Then

b; =0, for 1]
(20) { 7 J

and ba = N,',

where N; denotes the number of plots to which the variety »; has been assigned.
Because of (20) we have

bll ¢t blm
(21) 0 T |=NN::-Na.
bt bmm
According to (13) we have
22) zfa + Zaw. = ft‘a , @=1, .-.. ym — 1)
~Zla— *** — 2Zmta+ Wal — 2 — ++* — Zm_1) = Zma.

The determinant of these equations is given by

1 0 o --- 0 0 %
0 1 o --- 0 0 2
(23) A= - . e e . .
0 0 o --- 0 1 Z..a
-1 -1 -1 -+ —=1 —1 &
whered =1— 2% — 2 — -+ — Z,1. Itiseasy to verify that
(24) A =1
From (21), (22) and (24) it follows that
(25) A;=N|Nz"’Nm.
Hence, from (19) we obtain '
(26) Ay = NlNz "'Nm/mzA
In the case of a Latin square design we have Ny = Ny = --- = N, = m. Hence
(27) Zz = m"‘_’.
Because of the condition N; + Ny + --- + Nn = m’, the right hand side of
(26) becomes a maximum when Ny = N; = +++ = N, = m. Thus A, < A,

and consequently the Latin square design is proved to be most efficient.
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4. Efficiency of Graeco-Latin and higher squares. Consider m varieties
v1, ", vm and m treatments ¢;, --- , gn  Suppose that we wish to find out
by experimentation whether the yield is affected by varieties or treatments.
For this purpose the experimental area is subdivided into m* plots lying in m
rows and m columns and to each plot one of the varieties and one of the treat-
ments is assigned. We call this arrangement a Graeco-Latin square if the follow-
ing conditions are fulfilled: 1) each variety appears exactly once in each row and
exactly once in each column; 2) each treatment appears exactly once in each row
and exactly once in each column; 3) each variety is combined with each of the
treatments exactly once.

The following general abstract scheme includes the Latin square and Graeco-
Latin square as special cases: Consider an r-way classification with m classes in
each classification. Denote by Ya,q,...q, the value of a certain characteristic of
an individual who is classified in the a;-class of the first classification, in the a,-
class of the second classification, - - - , and in the a,-class of the r-th classifica-
tion. Suppose that m’ observations are made for the purpose of investigating
the effect of the classes on the value of the characteristic under consideration.
We will say that we have a generalized Latin square design if the following con-
dition is fulfilled: Let 7, j, m’ and m'’ be an arbitrary set of four positive integers
Jor which i % j,i < r,j < r,m < mand m” < m. Then among the m’* indi-
viduals observed there exists exactly one individual who belongs to the m’~class of the
i-th classification and m'-class of the j-th classification.

It is clear that if » = 3 the above scheme is a Latin square. If r = 4 we have
a Graeco-Latin square.

Assume that the observations y,,...q,(¢1, @2, ---,a, = 1, --- |, m) are nor-
mally and independently distributed with a common variance ¢°. Assume
furthermore that the expected value of y,,...q, is given by

E(yalar.--a,) = Ya; + - 4 Yra, -

The parameters ¢° and yi4 (¢ = 1, -+, r;a = 1, ---, m) are unknown con-
stants. Suppose that we wish to test the hypothesis that

(28) Yir = Yi2 = = Yim .

It can be shown that if the number of observations is limited to m*, we obtain a
most efficient design by constructing a generalized Latin square. The proof of
this statement is similar to that of the efficiency of the Latin square and is
therefore omitted.



