ON STOCHASTIC LIMIT AND ORDER RELATIONSHIPS

By H. B. MANN AND A. WaLD?!
Columbia University

1. Introduction. The concept of a stochastic limit is frequently used in
statistical literature. Writers of papers on problems in statistics and probability
usually prove only those special cases of more general theorems which are neces-
sary for the solution of their particular problems. Thus readers of statistical
papers are confronted with the necessity of laboriously ploughing through de-
tails, a task which is made more difficult by the fact that no uniform notation
has as yet been introduced. It is therefore the purpose of the present paper to
outline a systematic theory of stochastic limit and order relationships and at the
same time to propose a convenient notation analogous to the notation of ordinary
limit and order relationships. The theorems derived in this paper are of a more
general nature and seem to contain to the authors’ knowledge all previous results
in the literature. For instance the so-called é-method for the derivation of
asymptotic standard deviations and limit distributions, also two lemmas by
J. L. Doob [1] on products, sums and quotients of random variables and a
theorem derived by W. G. Madow [2] are special cases of our results. It is hoped
that such a general theory together with a convenient notation will considerably
facilitate the derivation of theorems concerning stochastic limits and limit dis-
tributions. In section 2 we define the notion of convergence in probability and
that of stochastic order and derive 5 theorems of a very general nature. Sec-
tion 2 contains 2 corollaries of these general theorems which have so far been
most important in applications.

We shall frequently need the concept of a vector. A vector a = (a, ---,a")
is an ordered set of r numbersa’, - - -,a”. The numbers a', - - -,a" are called the
components of a. If the components are random variables then the vector is
called a random vector.

We shall generally denote by a, b constant vectors by z, y random vectors and
byad', ---,a’,a', - - -, 2 their components. Differing from the usual practice we
shall put |a| = (|a'|, ---,| @ | ) and we shall write a < bora < bif @’ < b’
or a' < b*for every 7. This notation saves a great amount of writing, since all
our theorems except theorem 4 are valid for sequences of any number of jointly
distributed variates.

We shall review here the ordinary order notation. In all that follows let f(N)
be a positive function defined for all positive integers N.
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We write
ay = o[f(N)] if },1? ax/f(N) = 0.

ay = O[f(N)]if | aw | £ Mf(N) for all N and a fixed M-> 0.
ar = Q)] if 0 < M'f(N) <|ax| < Mf(N) for almost all N and for
two fixed numbers M > M’ > 0.
ay = [f(N)]1if 0 < Mf(N) < |ax|for almost all N and a fixed M > 0.
For instance, log N = o(N*) for every ¢ > 0, or sin N/N = O(1/N), 3 + 4-
N/4 + 8 /N) = +/N) 5/sin N = w(1).
For any statement V we shall denote by P(V) the probability that V holds.

2. General theorems on stochastic limit and order relationships.
DermNiTION 1. We write plim zy = 0.  (In words xx converges in probability to

N—w

0 with increasing N) if for every ¢ > 0 lim P(|zy| < € = 1. Further plim

N—x
zy = z if plim (zy — z) = 0.
N—oo

DEerFINITION 2. We write xxy = 0,[f(N)] (xn ts of probability order o[f(N)]) if
p))ilim zx/f(N) = 0.

DeriNiTION 3. We write zy = O,[f(N)] (xx 28 of probability order O[f(N)]) if
for each € > 0 there exists an A. > 0 such that P(|zx| < AJS(N)) > 1 — € for
all values of N.

DEFINITION 4. zxv = Q[f(N)] if for each € > 0 there exist two numbers A.
> 0 and B, > 0 and an integer N. such that P[Af(N) < |z~ | < Bf(N)] >
1 — eforall N > N,.

DEFINITION 5. 2y = w,[f(N)] of for every ¢ > O there exists an A > 0 and an
integer N such that P[Af(N) < |zx|]>1 — eforall N > N..

Let E denote a vector space. For any subset E’ of E the symbol ¢ C E’ will
mean that a is an element of E’.

Since P(x CE, & x CE,;) > P(x C E;) — P(z ¢ E,) we evidently have

LemMa 1. If Px CE) > 1 — ¢ Plx CEy) 21— €, then Plx C E;;
T CE)>1—¢€— €.

We now put 0' = 0,0* = 0,0° = Q, 0* = w.

TuEOREM 1. For every ¢ > 0 let {Ry(¢)} be a sequence of subsets of the r-di-
mensional Cartesian space such that P(xy C Ry(e)) > 1 — € for all N greater than
a certain integer N . Let {gn(x)} be a sequence of functions of x = (% .- 7))
such that gy(an) = O'[f(N)] for any € > 0 and for any sequence {an} for which
ay C Ry(e). Then we have gy(zy) = O[f(N)].

Proor: For ¢ = 1, 2, 3, there exists a positive integer N, such that | gy(a) | is
a bounded function of ain Ry(e) for N > N.. For otherwise we could construct
a sequence {ay} with ay in Rx(e) such that | gn(ax) | > Mf(N) for any M and
for infinitely many values of N which contradicts the hypothesis of our theorem.
Hence there exists an N, such that for N > N, the function | gx(a) | is bounded
in Ry(e). Let Mu(e) be the Lu.b. of | gv(a) | /f(N) in Ry(¢). We can construct
a sequence {ay} with ax C Ry(e) such that | gx(an) | /f(N) = Mx(e)/2 for all
N > N.. Hence for i = 2, 3 the sequence My(e¢) must be bounded and for
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i = 1 we must have im My(¢) = 0. Let M (e) be the Lub. of Mx(¢). For
N—w»

1 = 3, 4 one shows in exactly the same manner the existence of a g.1.b. M(e) of
| gn(a) | /f(N) if & C Ry(e) and for N > N.. Hence for sufficiently large N
we have

P[] gn(an) | £ My(ef(N)] 2 1 — e with }’i_x}x Mu(e) = Ofori =1,

P gn(ay) | < M(f(N)] > 1 — ¢ for i = 2,
PIM()f(N) < | gnlex) | S M(fN)] 21 — ¢ forsi =3,
PM(f(N) < |gulan) |1 21 — ¢ for i = 4.

For ¢ = 2 the existence of an M’ () such that P[ | gx(zn) | < M'()f(N)] >1 — ¢
for all N follows easily from this result. Hence our theorem is proved.

CororrArY 1. If 2} = OY[fi(N)] forj = 1,2, ---, r and {Ry(e)} is a se-
quence of subsets of the k-dimensional spacey', 4’ - - - y* such that Plys < Bx(e)] >
1 — & for sufficiently large N, and if {gn(2', 2%, -+ 2", 4", &, - - 4*,)} is a sequence
of functions of 2, 2°, - - 2", ¥, of, - -+ ¥ such that for any € > 0 we have gn(ax , by)
= O'[f(N)] for every sequence {ax, bw} with ay = O'[lfiNM]G=1,2 ---,7) and
by C Bx(e), then gn(zy, yn) = O3[f(N)]. ] _

Proor: It follows from Lemma 1, the definition of the relation zi = 0% [f;(N)]
and the hypothesis of our corollary that for any ¢ > 0 there exists a sequence
of subsets {Rxy(e)} of the space z', - -+, 2, 9", - - - , ¥* which satisfies the condi-
tions of Theorem 1 with respect to the sequence of functions {gy}. Hence
Corollary 1 is an immediate consequence of Theorem 1.

Corollary 1 implies inter alia that all operational rules for the ordinary order
and limit relations are also applicable to stochastic limit and order relations.
For instance o[f(N)]/Q [g(N)] = o[f(N)/g(N)]. Hence also o,[f(N)]/2,[g(N)] =
0,[f(N)/g(N)].

DerFiNiTION 6. For any N let Ry be a region, fx(a) a function defined on Ry.
The sequence {fx(a)} will be said to be uniformly continuous with respect to { Ry} if
the following condition s fulfilled. For every ¢ > 0 there exists a vector 6 > 0
such that for almost all N

[fv(@+38) — fv(@) | < €  forany|§| < 8, and for any a C Ry
THEOREM 2. Let plim (xy — yx) = 0. For every ¢ > 0 let {Rn(e)} be a se-
N—x

guence of subsets of the r-dimensional vector, space such that for almost all N we have

Plyy € Ry(e)] > 1 — €. If the sequence of functions {fx(a)} is uniformly con-

tinuous with respect to {Rx(e)} for every e > 0, then plim [fx(zy) — fx(yx)] = 0.
N—w

Proor: We have fv(zv) — fu(yn) = fu(yy + 2zv) — fn(yn) where zi; = o(1)
forj=1,.--,r. Because of the uniform continuity of fy(a) with respect to
Ex(e) we see that for every sequence {ay, by} with ay C Rx(e) and by = o(1)
(j = 1’ 2)"'; T)-

fN(aN + bﬂ) - fN(aN) = 0(1) .
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Hence Theorem 2 follows from Corollary 1.
In the following we shall abbreviate ‘‘cumulative distribution function” by d.f.
DEerFINITION 7. Let {2} be a sequence of random variables. Let Fy be the d.f.
of zx . Let x have the distribution F. We shall write doo (zy) = d(z) zf}im Fy

= F in every continuity point of F.
TuEOREM 3. Let phm (xxy — y~v) = 0and dw(yny) = d(y); then doo (zy) =

ay).
Proor: Let Gy, Fy be the d.f.’s of zy , yy resp. For any § > 0 we have

Plyv <a+8) 2 Plaxn < a;yv < a+8) > Play < a;|yw — 2x| < 8)
> Pley <a) — P(|yy — zx| > 8),
Play < a) 2 P@av < a;yv<a—08) > Plyx < a —3)
= P(|ax — yn| > 0).
Hence since P(yy < a) = Fy(a), P(zy < a) = Gx(a), Jim P (2 —yw | > ) =

0 we have lim. sup. Fy(a + 8) > lim. sup. Gy(a) > hm inf. Gy(a) > lim. inf.
Fy(a — 9).
If a + 6 and @ — & are continuity points of F we have

F(a + 6) > lim. sup. Gy(a) > lim. inf. Gy(a) > F(a — 3) .

For any 8, > 0 there exists a positive § < & such that a — & and @ + & are
continuity points of F. Hence we can choose & arbitrarily small and if @ is a
continuity point of F we must have

lim. Gy(a) = F(a).

THEOREM 4. Let xx, y~ be two sequences of one-dimensional vectors and let
plim (zy — yv) = 0. Let Fy, Gy be the cumulative distribution functions of

N—ow

zx and y respectively. Let Ry (¢) be the set of points a for which | Fy(a) — Gy(a) |
> €. Let Mx(e) be the Lebesgue measure of this set. Then lim My(e) =
N—owo

Jor every ¢ > 0.

We first prove the following lemma.

LeMMA 2. Let §, € be any arbitrary positive numbers and let f be a distribution
Sunction. The set of points a for which f(a + 6) f(a) > ehas at mos: the Lebesgue
measure /.

Proor: The points a for which f(a + 8) — f(a) > e must have a lower bound 4.
Otherwise we could find infinitely many such points whose distance from each
other is more than 6. But this contradicts the requirement that f(«) =
Let a, be the g.1b. of the a’s. Then for any »n > 0 in the interval (a; < z <
a, + & + 75) the value of F increases at least by the amount e. Let now a, be
the g.l.b. of the a’s outside of this interval. We continue our construction by
constructing the interval (a2 < < a; + § + 7) and so forth. But after at most
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1/e such steps the construction must stop. Hence all points a for which f(a 4+ §)
— f(a) > eare contained in at most 1/¢ intervals of length 6 4+ ». Hence since
n was arbitrary the Lebeésgue measure of this set is at most §/e.

We come now to the proof of our theorem. We have

P(ay <a) > Plav < a;yv < a +8) > Plav < a) — P(|zy — yv| > 9),
Piyy<a+8 2Pax<a;yv<a+38 >Plyry <a+3d)
—P(|zy —yn] > 8) —Pa < 2y < a +25).

Therefore
Play < a;yy < a+8) = P(ey < a) — 85P(|zx — yn | > 9)

=Py <a+98) — OP(|zy — yn| > 8) — 8,P@ < zv < a + 20),
where 0 < 6y < 1,0 < 8y < 1. Hence
Plyy £ a+38) = Plav < a) + 0xP(| 2y — yn | > 6)

+ 64[Fn(a + 28) — Fx(a))

where | 6y |, | 6y | < 1.

By hypothesis we have P(|zy — yn| > 1/m) < 1/m for almost all N and
every integer m. Hence we can choose a sequence {dy} with 6y > 0in such a
way that lim éy = 0, hm P(|zy — yv| > 6x) = 0. We can then choose N,

N—w

so that P( |2y — yw | 2 BN) < ¢3for N > N.. Applying Lemma 2 we see
that except for a set of measure at most 6 éx/e we have Fy(a + 285) — Fy(a) <
¢/3. Similarly the set of points for which gy(a + 85) — gy(a) > ¢/3 has at most
the Lebesgue measure 3 dx/¢. Hence, except in a set of points whose measure
is at most 9 dn/¢, we have

| Gx(@) — Fx(@) | < ¢

and this completes the proof of Theorem 4.
THEOREM 4a. Let plim (xxy — yx) = 0. Let Fy, Gy be the distribution func-

N—ow
tions of xx , Y respectively. Furthermore, let Ry(e) be the set of points inside an
r-dimensional cube where | Fx — Gy | > € and let My(e) be the Lebesgue measure
of Rx(e), then lim My(e) =

N—ew

We prove first

Lemma 2a. Let§ = (&', 8, --+,8) > Oand max. 8 = d. Let I be the cube
defined by (—A < 2* < A, i =1,2,---7). Let furthermore f be a d.f. Then
thg Lebtlasgue measure of the points a in I for which f(a + 8) — f(a) > e is at most
dr* A" /e.

Proor: Let fi(z"), f2(z%), - - - £.(z") be the marginal distributions of «*, 2% -
z" respectively. It follows from Lemma 2 that the linear Lebesgue measure of
those numbers a ‘ for which f; (a' 4 &%) — fia®) > ¢/r is smaller than rd/ e. We
form the set (z* = a* & © C I) for every such a*and fori = 1,2, --- . The
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Lebesgue measure of the sum R(e) of all these sets is at most ”dA™"/e. We
shall show that R(e) contains all points a inside I for which f(a 4 8) — f(a) > e.
We have

f(al+61;a2+62y°"’a'+sr)—f(alya21°'°ar) =M+ D+t A,

where A; = f(d', d*, - @™ a' + &, .- 0 +8) = f(d, -+ o, 0" 8, -
a +8). If fla + 6) — f(a) > e then we must have for at least one ¢

A 2_ 6/7'.

But A; is the probability of a subset of the set T = (a' < 2° < o’ + &) and
Ji(@® 4 8*) — fi(a’) is the probability of T itself. Hence

¢/r < A < fila* + 8) — fi(@),

and if (a, a*, --- a") is in I then it is contained in R(¢). Hence Lemma 2a is
proved.

The proof of Theorem 4a using Lemma 2a is similar to that of Theorem 4 and
therefore it is omitted.

The Jordan measure of a set R with respect to the distribution function F is
defined as follows. We consider only intervals whose boundary points are
continuity points of . We cover R with the sum I of a finite number of inter-
vals. (The intervals themselves may also be infinite. For instance the sets
a<z< w,a <z < o are also considered intervals.) We consider M(I) =

f dF for every I covering R. The g.lb. of all such M (I) is called the exterior
I

Jordan measure M (R) of R. Similarly we consider all sums 7 of a finite number
of intervals which are contained in B. The Lu.b. of f_ dF is called the interior

— - b
Jordan measure M(R) of R. If M(R) = M(R) then M(R) is called the Jordan
measure of K.
LeMMA 3. Let Fy(x) be a sequence of d.f.’s such that lim Fy(z) = F(x) tn every
N—eo

continuity point of F(x). Let h(z) be a bounded function such that the discontinuity
+o0
points of h(x) have the Jordan measure O with respect to F and such that [ h(x)dFy

o0 +o0 40

(x) and h(x) dF (z) exist. Then I&im h(z) dF y(x) = | h(z) dF (z).

Proor: There is only an enumerable set of hyperplanes parallel to the plane
z' = 0 which have positive probability with respect to F. Hence we can find
for every & an interval net whose cells have a diameter at most § and such that
the boundary points of every cell are continuity points of F.

We first determine a closed finite interval I such that f dF(x) > 1 — é and
I

such that the boundary points of I are continuity points of F. We further
determine a sum I’ of a finite number of open intervals such that I’ contains all

discontinuity points of h, f dF(z) < g, and such that the boundary of I’ does
I'
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not contain any discontinuity points of F. All this is possible by hypothesis
and because the set of hyperplanes with positive probability is enumerable.
Let R be the subset of I consisting of all points of I which are not contained in I’.
R is a closed set and can be decomposed into a finite number of intervals. The
function & is continuous in R and therefore uniformly continuous. We can
therefore cover R by a finite set of intervals such that the variation of h in every
interval is less than ¢ and such that the boundary points of each interval are
continuity points of F. Let I, Iy, - - I be such a finite set of intervals. Let
z; be any point in I;. We have

k

> [ h@) = ) dFa(a)

J=

| Hyl = | [:,, h(z) dFy(z) — [ M) dF @) | =

— 2 | [h@) — (@) dF(z) + 2 h(z;) [ f dFy(z) — dF(x\]
i i=1 Ij Ii

j=19r

+/ RCIOR [ . h@) dF@)
Setet éh(z»[f” dFy(z) — f dF(x)]
+ max. h(zx) [j;ye dF w(z) + e].

But lim | dFwy(z) > 1 — e. Hence
R

N—w
lim. sup. Hy < 2¢ + 2¢ max. h(z) .

Since ¢ was arbitrary, we must have lim Hy = 0.

N—w
We are now prepared to prove
TueoreM 5. Let dw (zy) = d(x). Let g(x) be a Borel measurable function
such that the set R of discontinuity points of g(x) is closed and P(x C R) = 0.
Then d = [g(xy)] = dlg(z)].
Proor: Let Fy be the d.f.'of zy, F the d.f. of z, Fu,, F, the d.f.’s of g(zw),
g(z) resp. Then lim Fy = F in every cont. point of F. Let h(z) be defined

N—w

as follows:
h(z) = 1if g(x) < a,
h(z) = 0if gx) > a.

The discontinuities of & are contained in the set M of all points where g(z) = a
and is continuous or where g(z) is discontinuous. The set R of discontinuity
points of g(z) is closed and of measure 0 with respect to . We can therefore
subtract from M a sum R* of a finite number of open intervals of arbitrarily
small measure with respect to F which contains all discontinuity points of g(z).
This difference set M’ is closed and contains only points where g(z) = a and
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x € R. If ais a continuity point of F, then the Borel measure of M’ with respect
to F is 0. Since M’ is closed, its Jordan measure is also 0. Hence the Jordan

measure of the discontinuity points of h(z) is 0 if a is a continuity point of F, .
+00 +o0

Since g(x) is Borel measurable, h(x) dFy(x) = Fy,(a) and h(z) dF (x)

= F,(a) exist for every a. Hence by Lemma 3 lim Fy,(a) = F,(a) in every
N—cwo

continuity point of F, and this proves our theorem.

3. Corolaries and applications. COROLLARY 2. If plim (zy — y») = 0,

N—

do (yny) = d(y) and if f is continuous except in a set R for which lim P(yy C R)
N—o
= 0 then leimf(xN) — f(yx) = 0.

Proor: Let I be a closed interval such that P(yy CI) > 1 — ¢/2. Let I’ be
a sum of open intervals containing all discontinuity points of f(z) in I and such
that P(yy € I") < ¢/2 for sufficiently large N. The set J of points of I which
are not points of I’ is a closed set. Hence f is uniformly continuous in J and
P(yy € J) 2 1 — e for sufficiently large N. In Theorem 2 we put Ry(e) = J,
fv = f. Then all conditions of Theorem 2 are satisfied and it follows that plim

N-+co
[flxw) — flym)] = O.

If, moreover, the set of discontinuity points of f is closed then by Theorems
3 and 5 de[f(zn)] = d=[flym)] = df(y)].

Special cases of Corollary 2 have been proved by J. L. Doob and W. G.
Madow (2).

Theorem 5 is very useful in deriving limit distributions.

It follows for instance from Theorem 5 that if dw (zy) = d(zx), doo (yny) =
d(y), where z, y are independently and normally distributed with mean 0 and
equal variances, then d = (zx/y~) = d(x/y). That is to say the distribution of
Zx/yn converges to a Cauchy distribution.

It also follows from Theorem 5 that under very general conditions the limit
distribution of ¢t = v/N(& — u)/sis normal. (Z = sample mean, u = population
mean, s° = sample variance.) For we have under very general conditions d »
VN@E — p) = d(¢),plim s = ¢, where ¢ is normally distributed with vari-
ance o”.

Applying Theorem 5 it can also easily be shown that under very general
conditions the limit distribution of T* is a chi-square distribution if the means
of all variates are 0. Hotelling’s T7° (the generalized Student ratio) for a
p-variate distribution is defined as follows:

P Y .
T = NZ; 2, Aijéit; where Aol = llss 7, &=,
P P =
where s;; is the sample covariance between z* and x’ '
We have dw (4;5) = d(¢"), where || ;|| = || " ||. If E@’) = 0fori =
1,2, -+ pthendowo (/N &) = d(n;) where the n; have a joint normal distribution
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with covariance matrix || o;;||. Hence

P D
de= (Tz) = d[zlizo'”mm:l = d( ,2>’
t=1 j= =1

where the 7; are normally and independently distributed with variance 1.
Hence the distribution of T converges to a chi-square distribution with p degrees
of freedom.

If the samples are drawn from a sequence of populations {ry} all with the
same covariance matrix and such that lim \/Nuixy = p; where u:xv is the mean

¢+ N—w
value of the ith variate in the Nth population, then one sees in exactly the same
way that the limit distribution of 77 is a non-central square distribution with
p degrees of freedom.
The limit distribution of 7” has been derived by W. G. Madow (2).
CoROLLARY 3. Let 2y, yn be r-dimensional vectors d» (yy) = d(y) and zx —
yn = O,[f(N)] with gim SN) = 0. Let g(x) be a function admitting continuous

Jjth derivatives except in a set R with lim P(yy C R) = 0. Let
N—

T @ = 5 (%) @ -a)+ - +[Ee-a(2) e

then
9(zx) — glyn) — Tilaw, yx) = opf{[f(N)}}.

Since the jth derivatives are continuous except in a set of limit measure 0
we can determine a closed set R(e) on which they are uniformly continuous and
so that P(yy C R(¢)) > 1 — efor sufficiently large N. Then for every sequence
with ay — by = O(f(IV)), by € R(e) we have

glax) — g(bn) — Ti(an, by) = o[f(N )j] .

Hence Corollary 3 follows from Theorem 1.

Corollary 3 was first proved by W. G. Madow [2] and J. L. Doob [1] for the
important case that yx is a constant,.

The following example will illustrate Corollary 3. Let z, y be normally and
mdependently distributed random variables with mean 0 and variance 1 {zN}
{zw} sequences of random variables with plim v/N zx = plim /N z =

N—+eo N—c0
Letzy =2+ 2v,yn =y + 2v. We consider the function gz, y) = 2%/3 +
¥*/3 + 22 — 2y + 5. Applying Corollary 1 1t is easy to verify that g(zx ,y~) —
9@z, y) = Bl1/V/N], 2x = 0,(1/v/N), 2y = 0,(1/+/N). Hence applying
Corollary 3 for j = 1 we have
9w, yn) — 9(x, y) — @ + 2y — (O — 2)2;\7 = 0,(1/V/N).
Multiplying by v/N we have

lgGx, yn) — 9@, NI VN — [ + 2)zv + & — 2)2x] VN = 0,(1) .
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This is equivalent to
plim [v/N{g(@x , yv) — 9@, )] = 2" + 4.

Hence the distribution of v/N(g(zx , y») — g(z, y)) converges to the chi-square
distribution with 2 degrees of freedom.
If plim zy = a and {0~} is a sequence of numbers with lim ¢y = 0 such that

N— . N—o .
dwo[(xy — a')/on] = d(%:;) where the £; are constants or random variables and
if g admits continuous first derivatives at = a at least one of which is different
99

from 0, then putting (5:;) = ¢i, we have

glex) — g(a) = gi(an — @) + -+ + gk — @) + 0,(ow) .
Hence applying Theorems 3 and 5 we have

@ deo ["(L”):—-"@] = dgh+ o+ ook,

ON
That is to say the distribution of [g(zx) — g(a)]/o~ converges to the distribution

y
of D git: in all continuity points of the latter. A corresponding result can be
i=1
obtained from Corollary 3 if all first derivatives are 0 at x = a and at least
one second derivative is different from 0 and so forth.
A method of deriving limiting distributions and limit standard deviations based
on (i) is known as the §-method and has been extensively applied in statistical

literature.
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