MULTIPLE SAMPLING WITH CONSTANT PROBABILITY

By WALTER BARTKY

The University of Chicago

1. Introduction. In an attempt to reduce inspection costs, manufacturers
have frequently resorted to sampling procedure in which the disposition of an
aggregate or lot of similar units does not necessarily depend upon the results
of a single sample. In practice, however, the number of permissible additional
samples is limited to one or two; nevertheless, if the lot is very large, an appre-
ciable reduction in the expected sample may be accomplished by allowing a
greater number of additional samples. In this article probability formulae will
be derived for an inspection procedure for infinite lots in which the number of
additional samples is not limited and may be any number depending upon the
results of the sampling. This development will be limited to the simple case of
attribute inspection in which the units fall into two categories—satisfactory
units or defective units. If p denotes the fraction defective in an infinite lot,
then the probability of finding exactly m defective units or defects in a sample
of nis

1) P(m, n) = (,Z) p"¢"™",  g¢=1-0p

Since P(m, n) is the probability of m successes in n trials with constant probability
of success p, though the terminology of commercial inspection will be used in
this article, the results are applicable to other situations involving repeated trials
with constant probability of success.

In contrast with multiple sampling, a single sample inspection procedure for
lots of the type here considered is one in which a lot of units is accepted or re-
jected on the basis of the number of defective units found in the sample. Thus
a lot is accepted if the number of defects is at most an integer ¢ the “acceptance
number,” and rejected if the number exceeds ¢. For an infinite lot containing a
fraction p of defects and a sample of n units, the probability of accepting is by (1)
(2) HO (C, n) = Z P(m) n):

m<c

and the probability for rejection is the difference between this sum and unity.

2. Multiple sampling. The procedure in multiple sampling is to examine
first an initial sample of n, units. If the number of defects in this initial sample
is at most ¢ the lot is'accepted and if the number of defects exceeds ¢ 4 & (k an
integer) the lot is rejected. But if the number of defects is greater than ¢ and
less than ¢ + k& + 1 an additional sample is removed and examined. In the
latter case similar criteria determine whether the lot is to be accepted or rejected
or this method of sampling continued. With an infinite lot this scheme of samp-
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ling has an infinite variety of forms but there are certain advantages in limiting
this discussion to the following type of multiple sampling procedure.

I. Sample Sizes: The initial sample is of ny units but all additional samples
are of the same size, namely 7 units.

II. Condition for Acceptance: The lot is accepted if the number of defects in
initial sample of ny units is at most ¢ or if after taking r additional samples of n
the total number of defects in the ny + rn units examined equals ¢ + 7.

III. Condition for Rejection: The lot is rejected if the number of defects in
initial sample of ny units exceeds ¢ + k or if after taking r additional samples of
n the total number of defects exceeds ¢ + r + k.

IV. Condition for an Additional Sample: An additional sample of n is taken
only if neither condition IT nor condition III is realized.

Thus in this sampling scheme the level for acceptance as well as the level for
rejection increases by unity for each additional sample of n. If at the r-th addi-
tional sample a lot is neither accepted nor rejected then the total number of
defects in initial plus additional samples must equal one of the k¥ numbers

c+r+le+r+2, e+ r+k
Denote the probabilities for obtaining these numbers by

®3) Py(r), Pa(r), «++, Pu(r)

respectively, the subscript indicating the number of defects in excess of the ac-
ceptance level.

To be accepted on the (r + 1)-st additional sample, (a) no defect must be
found in the (r 4+ 1)-st additional sample and (b) a total of ¢ 4+ r + 1 defects
must be found in previous samples. The probability of (a) is given by (1),
taking m equal to zero, and the probability of (b) is the first one in the set (3).
Consequently the probability of accepting a lot on the (r 4 1)-st additional
sample is

Py(r + 1) = ¢"Pi(r).
If II denotes the probability of eventually accepting the lot
) II = X P(m, no) + ¢"[P1(0) + Pi(1) + Pu(2) + -],

m=c
where the first term on the right is the probability of accepting on the initial
sample and may be evaluated by means of (1). Furthermore

(5) Pi0) = P(c + i, mo)

and is by (1) the probability of finding ¢ + ¢ defects in initial sample.

According to the notation (3) the probability of finding a total of ¢ + r + 1
+ ¢ defects in initial plus r + 1 additional samples, that is ¢ more defects than
the acceptance level, is P;(r + 1). These probabilities may be expressed as
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linear combinations of the probabilities (3) with coefficients that are probabili-
ties of the type (1). Thus

®) Pir+1) = X PG — j + 1, n)P,(r)

where the sum may be made to extend forj = 1,2, - - - , k, provided one defines
(1) as equal to zero for negative m. By repeated application of this linear trans-
formation it is possible to express the probabilities (3) for additional samples in
terms of the probabilities (5) for the initial sample. Thusif M denotesthe k X &k
square matrix with elements

(7) M11=P("—j+l;n) (7:,.7=1;’k)’

by omitting subscripts and regarding P(r) as a vector with elements given by
(3), the linear transformation may be written

(8) P(r+ 1) = MP(r).
Hence by repeated application of (8)
9) P(r) = M"P(0) (r=0,1,2,.--)

provided the zero power of the matrix M is defined as the identity matrix I.

The probability P:(r) cannot exceed the probability of finding exactly ¢ +
r 4+ 7 defects in a single sample of no 4+ rn units, that is, in the notation of (1),
the probability P(c + r + ¢, no + ™). Since the latter probabilities approach
zero as r approaches infinity it follows that the limit of the elements of P(r) as r
approaches infinity is zero. Thus with this multiple sampling procedure a lot
is eventually either accepted or rejected. Furthermore since the matrix M con-
tains no negative elements and P(0) may be chosen with all positive elements
it follows that the elements of M" approach zero as r approaches infinity or
(10) lim M™ = “0”, the zero matrix.

7=>00

It can be demonstrated that since the limit (10) is the zero matrix the sum of
the infinite geometrical series in the matrix M

(11) I+ M4+ M4+ =I-M)7,

where the right member is the reciprocal of the matrix I — M. Consequently
the infinite sum of vectors

(12) V=2 P =I—- M)PQ).
r=0
This infinite sum of vectors has elements Vi, Vs, -+, Vi of which the first

element is the sum in brackets occurring in the right member of (4). Hence the
probability of eventually accepting the lot

(13) Il = X P(m,no) + ¢" V1,

msc
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and is thus by (12) and (5) expressible in terms of probabilities for the initial
sample, equations (1), and the reciprocal of the matrix I — M.

In addition to the probability for acceptance one is also interested in the
expected number, E, of additional samples. Since

ZP,(T—I) (7‘=1,2,3,"'),

where the sum extends over all 7 = 1, 2, .-« | k is the probability of continuing
to the r-th sample, it follows that

; Pi(r—1) — Z Pi(r)

is the probability that lot will be either accepted or rejected on the r-th sample.
Therefore the expected number of additional samples

E=YXAY Ptr—1) — X P

r>0 % 3

= Z Z P,;(T),

r20 ¢
or, on interchanging the order of summation and applying (12),
(14) E = Z V.

That is, the expected number of additional samples equals the sum of the ele-
ments of the vector V.

Though it is possible to develop a general expression for the reciprocal matrix
I — M, to determine the acceptance probability, I, as well as the expected num-
ber of additional samples it is only necessary to evaluate V. Now by (12) this
vector is the solution of the linear system of equations

(15) (I - M)V = P(0).

Though for k small this system could be solved directly, in order to find a form
of the solution applicable for any value of %, let the expansion in power series in
z of

(16) [(pz + @) — ]t = ¢+ g + gaxs + -

where the coefficients, g, are functions of p and ¢. On clearing of fractions and
equating coefficients of like powers of z it is found that

an p=q"

and, by equating the coefficients of the first k powers of  and using the nota-
tion (7),

{0 G=1,2+--,k—1),

(18) g — Z § Miig; = it G = k).



MULTIPLE SAMPLING 367

Similarly, if the expansion in power series of

19) m =h +h sy ...
(px+q)"—-x 1 2 + hsz” 4 ’
where the sum is for all¢ = 1, - - - | k, then by clearing of fractions and equating
coefficients of like powers of z it is found that
(20) hs =0,
and
(21) h; — ,--‘1\_7‘1.1; Mi;h; = {:II:;(((()))) + b GC=1,-- .’(]: ; llcg’
It follows from equations (18) and (21) that if
(22) Vi = gihutar/grs1 — hs (@=1,---,k),

then V, the vector with these elements, will satisfy equation (15). Since by (17)
and (20)

(23) Vi = ¢ "her/grs1,
the probability for eventually accepting the lot is by (13) expressible as
24) M = 3 Pm, mo) + hes/gisr,

while the expected number of additional samples is the sum of elements (22)
of Vi .

These results will now be summarized and simplified formulae derived for
special cases. In the summary all probabilities are expressed by means of (5)
in terms of the probabilities (1).

3. Summary of multiple sampling formulas. For this multiple sampling
procedure the initial sample is no and the additional samples are n. A lot is
accepted if on the r-th additional sample the total number of defects found is at
most ¢ + r and rejected if the total exceeds ¢ + r. An infinite lot containing a
fraction p of defects is either accepted or rejected, the probability of acceptance
being given by

(25) o= (:‘z’)p"‘q"""' + b1/ grrn (¢g=1-p),

msc

and the probability of rejection is 1 — II. The expected number of additional
samples is

(26) E="% 4 Sh,
Jrk+1 s i
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where the sum extends over ¢ = 1,2, --- , k. The g; and h; are the coefficients
in power series of z in the expansions of:

1
@7) m=gl+gzx+gazz+--',
() c+i ng—c—i ¢t
. (7o) pras
where the sum is for all ¢ = 1, 2, --- , k. These formulae apply to all finite

values of ¢ and k provided the binomial coefficient is zero for values of the argu-
ment falling outside those occurring in the ordinary expansion of an integral
power of a binomial.

4. Computation of coefficients g and 2. If the denominator in (27) is first
expanded in power series in

z(pr + ¢)7"

and then the resulting negative powers of binomials expanded in power seriesin
z, it is found that

—n

fh=q,

p=q*" - X (- ((’c — m)n 4 m — 1)

mu=lye e k—1 m

(29)

X pm q—lm-i—mn‘m , k - 1.

By (28) the coefficients & are expressible in terms of the g’s,
hl = O,

o c+i ng—c—i
ki = . 0 i k .
* i-l.;b—l (C + i) P9 Ge-i s 1

(30)

Other expressions for the coefficients may be derived from the theory of func-
tions of a complex variable. Thus by Cauchy’s Integral Formula

- 1 f dx
P41 = 20/ =1 Jo 7 (pz + @)" — @)’
s = 1__ f S(x) dx
17 orv/ =1 Je [ (pz + @) — 2]’

31)
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where

— Mo c+i_nog—c—i_1

(32) S@ = 2. (c T z-)p ¢,

and the closed path of integration C in the complex plane only includes the pole
at the origin. Since the integrands are rational functions and the point at in-
finity is not a singularity for either integrand, these integrals taken about the
origin are equal to the negative sum of the corresponding integrals taken about
the zeros of

(pz + )" — =.
If p # n~'it can be demonstrated that there are n distinct zeros x;, za, - - - , T
corresponding to the solutions of the algebraic equation
(33) (pz: + @)" = =, (s=1,---,n).
One solution is obviously
(34) T =1,

and for p = n™* this solution is a double root.

The integrals about these zeros are obtainable from Cauchy’s Integral Formula
and after integrating and simplifying the resulting sum by means of (33) it is
found that for the case p # n™,

1 PT, + q
(35) Grsr = 1 - np + s=2.2-.n x’:H[q - (n - l)pxﬂ],l
oo = S() (pzs + @) S(xs)
T L —p | a7 g — (n — Dz

If the power series (27) is multiplied by the series
@-a)'=14z+2++---,
the resulting y roduct

1
(1 — 2)[(px + 9 — 4

so that, by Cauchy’s Integral Formula,

=g+ @+t @G+gptagpsd+ -,

1 dx
(36) Go= 2 0= zﬂ/‘:lfcxka — olpz + 9" — al’

Similarly the sum of the coefficients & that occur in the right member of (26) may
be written

3 1 S(z) dx
6N Hi= 2 k= f (1~ 2z + 9" — oI’
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The integrals (36) and (37) are of the same type as (31), and by employing the
same method of integrating used in deriving (35), the following expressions for
the sums of coefficients g and h occurring in (26) are obtained:

_n(a — 1)p° p% + g
G = Eg. =1= np 2(1 — np)z+ Z "x.(l - x.)[q - (n — l)px.],

_ _ kS(1) = 8 _nn— 1)p*S(1)
(38) H, = Z" hi = 1 —np 2(1 — np)?
(pz, + 9)8(z.)
+ .-zfv.".'... zi(l — z)lg — (n — pzl]
provided np = 1. Here 8'(1) is the derivative of (32) with respect to x evaluated
forz = 1. For the special case np = 1, two of the roots of (33)

=1 =1,
and the integrals (36), (37) and (38) become respectively
n+z —1
(n — i1 = 2kn+%n—§+§m.
n + Xy —
(m — Dheyr = 2kn + §n — $)8(1) — 208'(1) + Z W——) S(z.),
n+4+z —1

(B9 (m—1)Xg=Kn+§n+dn—4k—d —3n" + 2

St — z)?
(n—)1;M=(k2n+§M+ﬁn—%k-ﬁ I HS()

~ G — 4+ 20T + 280 + T T S,
where the sum extends over all roots of (33) that are not equal to unity. Here
S’(1) and 8(1) are the first and second derivatives of (32) with respect to x
forx =landp = n7".

Formulas (35), (38) and (39) require for their evaluation the solutions of equa-
tion (33). For n greater than unity there are just two positive real solutions,
say z; = 1 and zo. If n is even all other roots are complex numbers, while if n
is odd they are complex with the exception of one negative real root. Conse-
quently by (33) for s = 3, 4, --- , n the absolute values of the roots satisfy the

inequality
@lz|+9"> 2,

and consequently the | z, | cannot be between z;, and z. . But equation (33) may
be written

(pzs+ 9" — 1 -

1
(pz. +9 —1 (0 71)
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sothatfors =2,3,--- ,n

(40) 2 (pm+ 9 = 1/p
where the sum is taken for7 = 0,1, --- , n — 1 and therefore
Z’:(Plxnl+Q)‘>1/P (8=3,47°"’n)'

Now ; is the only real and positive solution of (40), consequently, in order to
satisfy the inequality, the absolute values of roots corresponding to s = 3,

4, ---, n must exceed z: . On combining this result with the former, it follows
that
(41) |z,] >1 and =x,.

Consequently for large values of k the most important terms in the right members
of (35), (38) and (39) correspond to the real positive roots z; = 1 and 2, of equa-

tion (33). By omitting the terms corresponding to s = 3, - - - , n one can derive
approximations to the g and h and their sums applicable for large & values. In
fact for np near unity the roots corresponding to s = 3, 4, - - - are considerably

greater than unity as is illustrated in the following table of roots for the case
np = 1:

n=2 p=1/2; z,=1,1;

n=3 p=1/3; z, =1,1, —8;

n=4, p=1/4; z,=1,1, =7 £ 4+/=2;
n=2>5 p=1/5 z,=1,1, —i2.2531 - -« |

—4.8734 -+« £ 77343 ... /=1

and for s = 3,4, 5, --- , | z, | is greater than 8.
For very large values of » and small values of p one can find approximate
values for the roots by solving the limit equation obtained from (33) by putting

a=np
and letting n approach infinity. This equation is
(42) e = g,

where e is the base of the natural logarithms. For the case @ = 1, the roots are
1,1,3.0801 --- & 7.4602 --- 4/ —1,3.66 --- = 13.88 --- 4/—1 and

T, = b(1b+|30§s'b_) (b — v/=1) + b2/ —1 approximately,

where
b= Q2u+1/2)r,  u=4,56---.
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From equation (39) and these numerical results it follows that even with % as
small as 3 the percentage error for the case np = 1 introduced in g, by omitting
the terms in the indicated sum is less than .002%. Consequently for all practi-
cal purposes one may omit the complex and negative roots for values of k& greater
than 3 in computing the ¢’s for np in the neighborhood of unity. For smaller
values of k the exact values of the g’s are readily obtainable from (29).

6. Special cases. Consider first the case in which ¢ < 0 and no < k + c.
With these conditions, under no circumstances could a lot be accepted or rejected
on the initial sample and the indicated sum in the right member of (25) is zero.

Furthermore for this case the sum (32) becomes

(43) S@) = (pz + 9™z
Consequently it follows from (33) that

(44) 8(@) = 2.7,
where

(45) t = no/n.

It should be noted however, that for ¢ not an integer the right member of (44) is
multiple valued and one must take that value for which

(46) 7, = (px. + Q™.
Thus for real positive values of x, , the right member of (44) isreal. For integral
values of ¢ there is of course no ambiguity in the notation.
If (44) is substituted in the second equation of (35), the resulting expression
for the h coefficient is of the same form as that for the g coefficient, in fact
het1r = Gr-tsorr,

so that by (25) the probability for acceptance is for this case

(47) I = Gr—ttet1/Gr+1 -

In similar manner it follows from (43) and (46) that the sum of the h coeffi-
cients, equation (38),

Hy = Gretye + ¢
and hence by (26) the expected number of additional samples
(48) E =G — Grtye — .

Since the initial sample is n¢ units and the additional samples are all equal to
7 units, the expected total number of units, sampled, that is, initial plus addi-
tional samples is

(49) I =ny+ nE = n(liGy — Gr_tsc).



MULTIPLE SAMPLING 373

Since for this case it is impossible to accept or reject on the initial sample one
could combine the initial sample with the first additional sample. In fact one
can continue combining initial and additional samples and thus increasing c and ¢
provided the new initial sample n, and the new ¢ value thus obtained are such
that

(50) c =0, nm=nts<k+n—-—1+c

In this process of combining samples ¢ and ¢ increase at the same rate and conse-
quently formula (47), and the right member of (49) are unchanged. In other
words formulas (47) and (49) may also be used under conditions (50).

It was demonstrated in Section 3 that for k sufficiently large one can omit
those terms in (35) and (38) corresponding to complex or negative roots of (33).
If this is done the following useful approximations for the g and G are obtained:

ge= (1 —np)” +lg — (n — Dpa] ™Y,

(651) Gi =k — np)™ — In(n — P’ — np)™
+ g — (0 — Dpa] (1 — 2)~ a7,
provided np # 1, k # 1 and z is the real positive root of
(52) (pr+ )" == (np # 1)
that is not equal to unity. For np = 1 these approximations become by (39)
(n — g = 2kn + 2n/3 — 4/3

(53) 2 -1
(n — 1)Gi = K'n + 5kn/3 + n/18 — 4k/3 — 1/18 — n7'/9, k= 1.

These formulae in conjunction with formulae (47) and (49) give quite satis-
factory approximations for the probability for acceptance II and the expected
total number of units sampled even when values of the subscripts employed are
as small as 3. Of course the larger the value of k in (51), (52) or (53) the better
these approximations.

Now the root z of (52) is greater or less than unity depending on whether the
product @ = np is less than or greater than unity. Consequently it follows from
(47) and (51) that for ¢ = 0 and ¢ finite

I’ = lim I = lim Gr—t+1/Grs1
(54) =1, np <1
=z np>1;
while by (49) and (51) the expected total number of units sampled has the
limiting value
;s _ Jnt(1 - np)~, np < 1;
(55) I—hmI-—{°° Cnp > 1.

k—»o0
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But % infinite implies that under no circumstance can a lot be rejected. Conse-
quently II" and I’ are the exact values of the probability for acceptance and the
expected total sample respectively for the following sampling procedure:

The initial sample is no = nt and all additional samples are n. The lot is
accepted if on the initial sample no defects are found or if after taking r addi-
tional samples a total of exactly r defects is found.

In inspection problems p is usually small and » large so that the approxima-
tion (40) may be used to determine the real positive root z, thus

(56) eV =g (a = np).
It then follows from (54) and (55) that for np > 1
— log I
1 __gx = Nop,
(57)
— log z
T, = "

These relations are of course equivalent to (54) and (56). Suppose that the
probability II’ and the fraction p are assigned. Then the initial sample 7o,
and additional sample n, will depend on only the parameter x. Consider next
the problem of sampling a number of lots that fall into two categories, namely
those containing a fraction p of defects and those containing a fraction p* of
defects where p* < p. If in addition the sampling procedure is to be such that
lots with fraction p* of defects are eventually accepted, but lots with fraction p
of defects have a small assigned probability of acceptance II’, then whatever
the value of z as long as the resulting np = 1 these conditions are satisfied.
Furthermore if one insists that the expected total sample for lots containing a
fraction p*, namely by (55)

I'(p*) = no(l = np*)7,
be a minimum, then it is found that
(58) z = p*/p.

This remarkably simple result is capable of still greater generalization. By an
altogether different approach to the problem the author has succeeded in proving
that of all possible multiple sampling procedures, the multiple sampling method
here described and defined by equations (57) and (58) gives the minimum
expec}:ed inspection for the problem under consideration provided n is sufficiently
large.

By letting both —c and k approach infinity it is possible to derive probability
formulae for sampling procedure in which a lot is either rejected or the sampling
continues without end. These formulae are included in Table I along with
other special cases derived from previously listed general formulae.

1 Note: The author has postponed publication of this proof in the hope that it might
be generalized to include sampling problems involving both acceptance and rejection of
a lot.
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TABLE I
Notation:
n = number of units in each additional sample
no = number of units in initial sample
p = fraction defective in lot
a=np
g=1-7p
¢ = maximum number of defects in initial sample for acceptance
- t = ng/n = ratio initial sample to additional samples
f=c+ k + 1 = minimum number of defects in initial sample for
rejection
¢ + r = number of defects in initial plus first r additional samples for
acceptance
f+r=c+ k+ 1+ r = minimum number of defects in initial plus
first r additional samples for rejection
II = probability of eventually accepting lot with fraction p defects
1 — II = probability of eventually rejecting lot with fraction p defects
I = expected total number of units sampled (i.e., initial plus what-
ever additional samples are sampled).
z = real positive root different from unity of the equation
(pz + g = =z.
Conditions I 1
k=1 n—1 (=1 mo—1
(a) ¢ =0 gox L= —no)}:q n x L= il )np
f=2 1 — npg™ 1 — npq
E=1
c=0 n n—1y— n—1y—!
®) ;g ¢"(1 = npg"™H™ n(1 — npg"™)™
No =N
c = _k no—n no—n,
(c) f=1 "/ e no + ng"""Gr/ gk
k=1 ‘
e = -1 (1 — npg"™)™ no + ng"(1 — npg"™)™?
f=1
k = 2 qno+2n n +
(e)e = —2 ( + 1) 0 no(l + n n—l)
= w1, N(n n— nq q — npq
1 — 2npq,._1 + ____2 p2q2n—2




TABLE I—Conchsded

Conditions 1 I
k= —c 0 fornp > 1 |no +nx(l — ) fornp > 1
® =
f=1 ¢""(1 — np) formp < 1* © fornp < 1
c =0
@ n=2 1 no(2I1 — 1)
n =f 1+ (p/g)™ q—7P
=k+1
c =0
n =2
(h) no=f 0.5 ng
=k+1
p=1/2
. =0
@ 04/ Gean n(IGs — Gi-r)
) c=0 1 (np <1) m(l — np)t (np < 1)
k=« ™" (np > 1) © (np > 1)

* In this sampling procedure a lot cannot be accepted so that II is the probability
that additional samples will be taken without end. The probability of rejecting lot

is however 1 — II.

TABLE I1
Values of g and G for Limitn = o, p =0

"PT | 0.2558 | 0.4024 | 0.6931 | 1.0000 | 1.3863 | 2.0118 2.5584
z= 10 5 2 1 .2 1

N 1.292 | 1.495 2.000 | 2.718 4.000 7.477) 12.915

gs 1.338 | 1.634 2.614 | 4.671 | 10.455 40.86 | 133.76

gs 1.3432| 1.665 2.935 | 6.667 | 23.48 | 208.2 [1343.2

G4 1.3437 1.6717 | 3.097 | 8.667 | 49.55 [1045. 13.4 X 10°
gs 1.3438| 1.6729 | 3.178 | 10.667 | 101.70 |5228. 134 X 10°
9o 1.3438] 1.6732 | 3.2580 © © 0

Gy 1.292 | 1.495 2.000 | 2.718 4.000| 7.477) 12.915

G 2.629 | 3.130 4.614 | 7.389 | 14.45 | 48.34 | 146.7

Gs 3.972 | 4.795 7.549 | 14.05 37.93 | 2566.5 (1490

Gy 5.316 | 6.467 | 10.65 | 22.72 87.5 (1301. 14.9 X 10°
Gs 6.660 | 8.140 | 13.82 | 33.39 | 189.2 (6529. 149 x 10°

376
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As an illustration of the method of application of these formulae, suppose that
the sampling procedure is to be such that the probability, II, of accepting a
“p’ value of 0.5 + ¢ equals the probability of rejecting a ‘“p’’ value of 0.5 — e.
This condition on probabilities is by Table I, formula (g), always satisfied if
¢=0,n=2,andny = k + 1. This corresponds to a multiple sampling scheme
in which additional samples are only two units each and a lot is accepted or
rejected on initial sample if none or all units are defective. With ¢ = 0.1 and
II < 1/6, one can take no = 4 and k¥ = 3. The expected total number of units
examined depends on “p’’ and varies for this numerical case from 4, for p = 0
or 1, to a maximum of 16, for p =0.5. Nevertheless a single sample plan
satisfying the same conditions would require a sample of 23 units whatever the
value of p.

The previous problem is, however, not typical of those encountered in com-
mercial inspection for in such situations p is usually very small. In practice
one can generally replace the formulae in Table I by their limiting values for
n= o,p=0,and np = a. Table II gives the limiting values of the g and G
as well as  for a small number of values of a.

Finally the justification for multiple sampling lies in the fact that a reduction
in the expected total sample is possible. Though this paper is limited to the con-
sideration of a very elementary type of sampling, it indicates that it might be
worth while to investigate the possibility of utilizing the methods of multiple
sampling in inspection for variables. Unfortunately serious mathematical
difficulties are even encountered in so simple a problem as multiple sampling
from a normal population for the mean.



