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1. Introduction. In most of the problems of statistical inference for which
we possess solutions the distribution function is assumed to depend in a known
way on certain parameters. The values of the parameters are unknown, and the
problems are to make inferences about the unknown parameter values. We
refer to this as the parametric case. Under it falls all the theory based on nor-
mality assumptions.

Only a very small fraction of the extensive literature of mathematical sta-
tistics is devoted to the non-parametric case, and most of this is of the last
decade. We may expect this branch to be rapidly explored however: The
prospects of a theory freed from specific assumptions about the form of the
population distribution should excite both the theoretician and the practitioner,
since such a theory might combine elegance of structure with wide applicability.
The process of development will no doubt inspire some mathematical attacks of
considerable abstractness. There are already signs that more number-theoretic
problems and measure-theoretic problems will enter our subject through this
door, and perhaps even some topological ones. Some ability to think in terms of

1 Parts of this paper were used in an invited address given under the title ¢“Statistical
inference when the form of the distribution function is unknown’’ before the meeting of the
Institute of Mathematical Statistics on September 12, 1943 in New Brunswick, N. J.
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functionals, function spaces, and metrization of function spaces will be useful in
attempting general theories of “best” tests and estimates. Toward such ab-
stract phases of the development the attitude of the practical statistician should
be one of tolerance, for the new theory already promises to give him many new
tools which are both simpler and of wider use.

While the maturity of the non-parametric theory is still in the future, it is well
to remark that its beginnings go relatively far back. Of our most famous tests,
such as Pearson’s x’-test, Student’s test, and Fisher’s analysis of variance tests,
the oldest concerns a non-parametric problem: In 1900 Karl Pearson proposed
his x*-criterion to test the goodness of fit of a theoretical distribution to observa-
tions, and in 1911 he extended his x*-method to the problem of two samples.
The first of these problems may be regarded as non-parametric if the choice of
the theoretical distribution is not based on calculations from the data, and the
second is without doubt a non-parametric problem. R. A. Fisher treated an
analysis of variance problem non-parametrically at least as early as 1925, for in
the first edition of his Statistical Methods for Research Workers we find the sign
test. General formulations of the problems of statistical inference, and criteria
for “good” and “best” solutions’ have been advanced by R. A. Fisher, Neyman,
E. S. Pearson, and Wald. These general theories were all strictly parametric
until 1941 when Wald proposed one sufficiently broad to cover the nop-parametric
case.

We now introduce some notation to which we shall adhere throughout this
paper. Statistical inferences are based on measurements. The total number
of measurements will always be denoted by n. We conceive of » random
variables X;, Xz, - -+, X, on which the measurements are made. The domain
of each X ; can always be taken to be a set of real numbers. If vector random
variables occur, the X ; will denote components. The cumulative distribution
function (c.d.f.) of the random variables will be written F,(z1, 22, - - - , Z,),
this is the probability that all X; < z; simultaneously. The c.d.f. F, is then
always defined in a complete n-dimensional Euclidean space W, called the
sample space; W is the space of points £ = (x1, 22, -+-, Z»). The sample
point with the random coordinates X, - - -, X, will be denoted by E.

In describing the validity of specific non-parametric tests and estimates in the
sequel it will be convenient to refer to the following classification® of univariate
c.d.f’s F(z): Q is the class of all F. Q. is the class of all continuous F. 5 is
the class of all absolutely continuous F, that is, those F for which there exists a
probability density function f(x), so that

Fa@ = [ s@ae.

Q consists of all F/ which may be written in the above form with f continuous.

2 For a bibliography see [22].
3 The notation féllows [31].
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Part I. NoON-PARAMETRIC TESTS

2. The randomization method of obtaining similar regions. In any problem
of statistical inference it is assumed that the c.d.f. F, of the measurements is a
member of a given class @ of n-variate distribution functions; we write F, e Q.
Q is called the class of admissible F,,. If Qis a k-parameter family of functions
the problem is called parametric, otherwise, non-parametric. A statistical
hypothesis H is a statement that F, e », where w is a given subclass of Q. A test
of the hypothesis H consists of choosing a Borel region w in the sample space
W and rejecting H if and only if the sample point E falls in w; w is called the
critical region of the test.

The choice of the critical region w is usually‘ made as follows: A positive con-
stant a (ordinarily about .01 or .05) is chosen and called the significance level of
test. If regions w exist for which Pr{E e w | F,}—the probability that the sam-
ple point E fall in w, calculated from the c.d.f. F,—is equal to « for all F,, e w,
then the choice of critical region is usually limited to this class. Such regions
are very important in the theory of testing hypotheses, and it is convenient to
have a name for them: Following the terminology of Neyman [22] in the para-
metric case we shall call them simzlar to the sample space with respect to all F,
in w, or more briefly, similar regions. A similar region is then a region w for
which Pr{E ew | F,} is the same constant for all F, ew. The advantage of
using similar regions as critical regions is that the risk of rejecting the hypothesis
when it is true (type I error) is controlled: no matter what member of w the
unknown F, happens to be, the probability of rejection of the (true) hypothesis
is exactly . We remark here that the problem of the existence and structure
of similar regions in the parametric case has been treated only under very heavy
restrictions and must be considered still mostly unsolved, whereas we shall see
later that in the non-parametric case it promises to be relatively simple.

When similar regions exist for a chosen a there is usually a large family of
them. Ideally the choice of the critical region w from the family of similar
regions would be based on a complete knowledge of two functionals of F, for
F. ¢Q — w, that is, for those F, corresponding to the various admissible ways in
which the hypothesis can be false: the first, the probability of rejection (of avoid-
ing a type II error), namely Pr{E ew | F,}, called the power function of w, and
the second, the relative importance of rejection in the concrete situation in which
the test is to be applied. In other words, one would like to choose the w with the
power function ‘“best” for the very specific problem at hand. However, little
has been done along this line in the non-parametric case, and, as we shall note
below, the choice of w from the family of similar regions is usually made by
means of a statistic chosen on intuitive grounds.

A general method of obtaining similar regions, which we shall call the ran-
domszation method, will now be described. The credit for originating this
method and envisioning its wide applicability belongs to R. A. Fisher, who first

¢ Another approach\to the choice of critical region will be described in section 13.
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used it in 1925 [3]. Consider the set S of permutations on the coordinates
X1, X2, -+, &, which leave invariant all the c.d.f’s F, in w. Suppose the
number of permutations in the set S is s; then s divides n!. Now define for any
point E in W a corresponding set {E’} of s points obtained by making on the
coordinates of E the permutations of the set S. The value of the c.d.f. F, is
then the same at all s points E’ generated by E, for all £ ¢ W and all F, ¢ w.
The s points of {E’} will be distinct unless the point E lies in a certain region
W, ; W, depends on the set S of permutations determined by the class w, and will
always be contained in the union of all diagonal hyper-planes z; = z; (¢ £ j).
A critical region w is constructed by the randomization method by choosing a
positive integer ¢ < s, and for every E not in Wy, putting ¢ points of the corre-
sponding set {£’} in w and the remaining s — ¢ points outside w, by any rule
whatever, just so w is a Borel set. We shall also say that a Borel set w is ob-
tained by the randomization method if it has the structure just described except
on a (Borel) subset wy, of w having the property Pr{E ew, | F,} = 0 for all
F, ew. It may be shown by the methods used elsewhere [31] by the writer
that if w is a class of continuous c¢.d.f’s then the region w thus obtained is a
similar region with a = ¢/s; furthermore, that under mild restrictions (roughly,
that the boundary of w be a sufficiently ‘“thin” set), at least for certain classes w,
this is the only method of obtaining similar regions.

One might call the set {E’} of points corresponding to E the subpopulation of
points “equally likely” under the null hypothesis H, but we shall call {E’} simply
the subpopulation corresponding to E. The decision as to which g of the s points
of the subpopulation are to be put into the critical region w is usually made with
the aid of a statistic 7' chosen on an intuitive basis. By a statistic 7' we mean of
course a function of the sample only, not depending on the c.d.f. F,, thus
T(E) = T(X,, ---, X,). For a suitably chosen g, the ¢ points of the sub-
population {E’'} giving T(E’) values in a certain range—usually the g largest or
g smallest values—are put into w, and these ¢ values are then called the “sig-
nificant” values.

Before proceeding further let us consider an example illustrating all the defini-
tions we have introduced thus far. Suppose that on the basis of a sample of m
pairs (X;, Y,),¢ = 1, 2, ---, m, from a bivariate population with unknown
c.d.f G(x, y) we wish to test the independence of the random variables X, Y.
To fit our general notation write ¥; = X;im . Assuming only that the sample
is random, we have, with n = 2m, that the c.d.f. of the sample point E is of the
form

Faoltr, -+, xa) = III G(x: , Tiym)-

Now suppose we know or are willing to assume further that the unknown c.d.f.
G(z, y) of the population is in a certain class Q% of bivariate c.d.f.’s, where
2 is the bivariate analogue of the class , of univariate c.d.f.’s defined in section
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1; thus if we knew the unknown G(z, y) were continuous, we would have G ¢ Q.
The class Q of admissible F, is then

Q = {F,.IF,,, = HG(Z;,:CH.".);GGQ?)},
=1

where the notation {F, | F. of the form {} denotes the class of all F, of the
form §. The hypothesis of independence may now be expressed as H: F, e w,
where the subclass w of Q is

m 2m
w = {F,.|F,. = II1 F®(x) .II‘HF(”(x,-); FPeQ, k=1, 2}.
1= j=m

The set S of permutations which leave all F, € w invariant is obtained by mak-
ing all possible permutations of the first m coordinates z , - - - , Tm among them-
selves, and of the second m coordinates Tm41, * * * , Tem among themselves. The
total number s of permutations in § is thus (m!)>. Making these permutations
on the coordinates of any point E in W, we get the set {E’} of (m 1)? points. The
points of {E’} are distinct unless E lies in the region W, defined as the union
of all hyperplanes x; = x; where ¢ # j and 7, j are both in the set of integers
1,2, ---, mor else both in the set m + 1, -- -, 2m. Pitman [28] applied the
randomization method to this problem, using as the statistic 7(E) the numer-
ical value of the (sample) Pearsonian correlation coeflicient,

m 2m 3
/(& 2 7).
=1 j=m+1

the large values of T being the significant ones. We note that T'(E) takes on
at most m! different values over the subpopulation. What we previously called
a “suitably chosen” ¢ would be in the present case a multiple of m!, and the
choice of significance level @ = g/s would then be limited to multiples of 1/m!.

The method of randomization is seen to exploit whatever symmetry properties
the F, in w possess as a class. A special case of the general method is the method
of ranks. This gives regions of an especially simple form defined by certain
inequalities on the coordinates. Probably the only case in which the method of
ranks will ever be used is when the F, in w have the following special kind of
symmetry: Suppose they are completely symmetrical in each of certain subsets
of the coordinates, say ¢ sets of ni, ng, - - - , n; coordinates, respectively, where
> iim; = n. We may assume the coordinates numbered so that F,is com-
pletely symmetrical in the set Zp,41, Tp;42, ** * 5 Tpging (Pi = Z;;i n;; 1 = 2,3,
-eo,t;p1 = 0), for all F, ew. The set S of permutations is thus generated by
making all n; ! permutations on the n; coordinates Zp;11, =+, Tpqn; (=1, -+,
t), so that the total number of permutations in Sis s = ni1n! - -« n.l.

Corresponding to the i-th set of coordinates in which F, is symmetrical, let
us divide the sample space W up into n; ! regions defined by

T(E) = | 2. iTim
=1

Tppr < Tpgpz < =00 < Tpygng
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and the n;! —1 other inequalities obtained by permuting the subscripts in the
above. Denote these regions by w;x (k = 1, --+, ny!). Let

Wiy kgyeenky = Wik, ﬂ We,k,y n LR n We,kg y

that is, ws,,x,,... .k, is the part of W common to the regions wi i, , Wok,, * -+,
W, - This process divides the sample space W up into s disjoint regions
Wk, kg, ,k; » Which we shall now denote simply by w, (¢ = 1, ---, s). The set
{w,} of regions covers all of the sample space W except the region W, on which
certain coordinates become equal. We shall say that the sample point E has
the o-th ranking, R, , if E fallsin w, . We may then speak of a random variable
R = R(E), the “ranking”, taking on the s possible values R,, or the ‘‘tied”
ranking R, if E ¢ W,.

A critical region w is constructed by the method of ranks by taking w to be
the union of ¢ of the regions w,. Those rankings R, corresponding to the q
regions w, constituting the critical region w, will be called the significant rank-
ings. Any statistic T'(E) used as the criterion to decide which are the significant
rankings now becomes a function of the ranking R only, T(E) = U(R). We
may regard the method of ranks as a simplification of the problem of testing
statistical hypotheses, in which the infinite n-dimensional sample space W is
replaced by a finite space of s + 1 points B,. If Qis a class of continuous F,
we may ignore the point R, since then Pr{E = Ro} = 0.

In the problem of independence, which we have used before to illustrate the
definitions of this section, the method of ranks was applied by Hotelling and
Pabst [9], who took as the statistic U(R) the numerical value of the Spearman
coefficient of rank correlation, large values being significant.

The method of randomization yields similar regions if w is a class of continuous
functions. What will the method get us if we drop the continuity restriction?
In this case we can no longer ignore the possibility that the sample point E fall
in the exceptional region Wy, for we do not have Pr{E ¢ Wy} = 0. We owe to
Pitman [27] the following idea: We continue to use the subpopulation {£’} and
a chosen statistic T'(E) as above, but instead of separating the points of {E'}
into two classes (significant points and non-significant points) by means of T'(E)
we now add a third class of “doubtful” points.” If the s points of the set {E’}
are not distinct they are to be counted according to their multiplicities under the
process of applying the permutations of the set S to the coordinates of £. Sup-
pose that the large values of T are significant. Number the s points of {E’} so
that T(Ey) > T(Es) > --- > T(E,). If T(E}) > T(Eey) wecall By, -,
E, significant, and the rest non-significant. However if T(E,) = T(E...), we
term all points E’ with T'(E’) = T(E,) doubtful, points E’ for which T'(E’) >
T(E,), significant, and points E’ with T(E’) < T(E.), non-significant. This
process divides the sample space W up into three regions instead of the customary

®Instead of the terms significant, non-significant, doubtful, Pitman uses discordant,
concordant, neutral.
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two, namely, a rejection region wg, an acceptance region w, , and a doubtful
region wp . It is a special case of the following procedure: For every set {E’}
define positive integers meg = mg ({E’}) and ms = m, ({E’}) such that mp; <
g, ma < s — g, and put mg of the points E’ in wg , m, of the points E’ in w, ,
and the remaining s — m, — mg of the points E’ in wp , in any way so that wg
and w, are Borel regions. When any E’ is assigned to wg or w, it is to be counted
according to its multiplicity as defined above, if {E’} contains less than s dis-
tinct points. It may be shown that with o = ¢/s, Pr{E ewg | F,} < a and
PriEewy | F,} <1 — aforall F, ew, that is, whenever H is true.

Before closing this section on the method of randomization, we mention a few
difficulties which frequently arise when it is applied. Except for very small
samples the calculation determining whether or not the observed value E, of
the sample point E belongs to the significant points of the subpopulation {Eq}
generated by E, , is usually extremely tedious. In such cases the author of the
test often gives an approximation to the discrete distribution of his statistic
T(E) over the subpopulation {E’} by means of some familiar continuous dis-
tribution for which tables are available, the laborious exact calculation by
enumeration then being replaced by the computation of a few moments (that is,
values of certain homogeneous polynomials in the observed coordinates) and the
use of existing tables of percentage points of the continuous distribution.®
Barring some papers where the method of ranks is used, the justification of these
approximations is never satisfactory from a mathematical point of view, the
argument being based on a study of the behavior of two, or at most four, mo-
ments. The only exception to the last statement appears to be a very recent
paper by Wald and Wolfowitz [42], which may point the way to genuine deriva-
tions of asymptotic distributions for the non-rank case of the randomization
method. We shall distinguish between derivations of asymptotic distributions
and arguments based on two or four moments by saying that a distribution is
“proved” in the former case and “fitted” in the latter.

Another difficulty arises, most noticeably in the method of ranks, out of the
possibility of equality of the observed coordinates. In the distribution theory
this is usually avoided by assuming w to be a class of continuous c¢.d.f’s, so that
Pr{E ¢ W, | F,} = 0 for all F, e¢w, but in practice, since the measurements are
usually made to about three significant figures, ties do occur in the sample.
While some scattered work has been done on this question there is need for a
thorough general treatment. ,

In some of the work that has been done on particular non-parametric tests

¢ In many cases the approximate test obtained by fitting a familiar distribution is found
to coincide with widely used tests based on normality assumptions. In such cases if the
fitting is asymptotically correct the following remarks are justified: (1) If the non-para-
metric test is used in a case where we hesitate to assume normality but normality actually
exists, the non-parametric test is asymptotically as efficient as the older test assuming nor-
mality. (2) If normality is assumed when it does not exist, no error is incurred asymp-
totically when the older test is used.
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it is not very clear just what the null hypothesis H is. Two situations often
occur: Suppose H:F, € wis the hypothesis we actually wish to test at significance
level . Let w be the chosen critical region and w, the class of F, for which
PriEew|F,} = a. The two situations are (s) w is a proper subset of w,,
and (42) w, is a proper subset of w. Of these (7) seems less objectionable, for then
the probability of a type I error (rejecting H when true) is strictly «, but the
probability of accepting H is the same when certain alternatives (F, e w, — w)
are true as when H is true. In case (i) the probability of a type I error is not
o unless F, is in the subclass w, of w; thus there might be a much higher prob-
ability than « of rejecting H when it is true, if the true F, ew — w, . To illus-
trate situation (s) consider K. Pearson’s x’~test for goodness of fit of a theoreti-
cal distribution Fy(z) to a sample E. Suppose E is from a univariate population
whose true c.d.f. is F(x). If F has the property that for the intervals I ; defined

in section 3, f dF = [ dFy,j = 1,2, ---, N, then the probability of re-
Ij I

jection is the same as when the hypothesis is true. An example of (77) might
occur if we wish to test whether the means of two univariate populations are the
same. If we use one of the tests of section 4 in which the probability of rejection
is calculated under the assumption that the distributions of the populations are
the same, then we do not know that the probability of a type I error is «, for the
samples might come from two populations with the same mean but different
distributions.

3. Goodness of fit. Randomness. The non-parametric case of testing good-
ness of fit is the following: On the basis of a sample E from a population with
c.d.f. F(z) known to be a member of some Q, , we wish to test whether F = Fy,
where F, is a given c.d.f. The class of admissible c.d.f.’s F, is

Q= {F“IF“ = HF(x.-);FeQ,},
and the hypothesis H specifies that F, e w, where
0= {Fﬂ | Fo = I_Il Fo(x;)}.
K. Pearson’s x’-test [25] consists of choosing an integer N, dividing the 2-axis

up into a set {I;} of disjoint intervals (j = 1, 2, - -- , N), and using as statistic
T(E) the Pearsonian chi square,

& = ; (i — E(ma)P/&(my),

where m; is the number of observed coordinates of E in I;, and &(m;) =

n| dF,. Large values of x3 are regarded as significant. Exact significance
I
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levels for x% could be obtained by considering its distribution over the sub-
population {E’} generated by the sample. This process would lead to the
multinomial distribution of the m; mentioned in the usual derivations of the
asymptotic distribution of x5 (for n — o with N fixed). Pearson himself found
this asymptotic distribution, namely the x*-distribution with N — 1 degrees of
freedom. In studying the problem of a “best’” choice of the set {I,} of intervals,
Mann and Wald [17] adopted a non-parametric treatment, with » = 2 for the
class @, above.

Another test not depending on a choice of intervals I'; could be made by using
confidence belts for F as described in section 9 and rejecting H at the « level of
significance if the graph of Fy is not covered by the belt with confidence co-
efficient 1 — a.

The problem of randomness is usually non-parametric; in the univariate case
the class w of this problem is identical with the class @ of the preceding. The
index » and the class @ for the problem of randomness would depend on the
specific situation in which it arises. With two exceptions [42, 52], all tests of
randomness proposed thus far have been functions of runs in the sample. Two
kinds of runs have been considered, runs up and down, and runs above and below
the median [1, 4, 14, 19, 32, 44, 51]. We note that the set S of permutations
determined by « is the set of all n! permutations on the n coordinates of E.
Suppose now » = 2. The proof [31] that all similar regions w have the random-
ization structure applies to this problem. On the other hand such a region w
has the property Pr{E ew | F.} = afor any F, which is completely symmetrical
in the coordinates. Difficulty (z) discussed at the end of section 2 now arises if
Q contains such symmetrical alternatives. The definition of an appropriate
class @ — o of alternatives and the question of the power of tests against the
alternatives make the problem of randomness a difficult one. Beyond these
few remarks we refer the reader to an expository paper by Wolfowitz [51] de-
voted to the problem in the previous issue of this journal, and to a paper by
Wald and Wolfowitz [42] in the present issue. The latter paper is one of the
exceptions, previously mentioned, not based on the method of ranks.

4. The problem of two samples. Suppose X1, ***,Xm, and Y1, -+, Y, are
samples from univariate populations with c.d.f’s F(z) and G(z) respectively,
where we assume F, G € Q, , and that we wish to test the hypothesis that F = G.
Write Y; = Xiim, , S0 that with n = m; + m. we have

Q= {F,. | Fo = ﬁlF(xe)- H+1 G(z); F, Geﬂv},

1=my

w= {F,. | F, = HF(x.-);FeQ.}.
fmm]l

The set S of permutations determining the subpopulation {E’} consists of all
n! permutations on the n coordinates of E. The writer has shown [31] that no
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similar regions exist in this case if » = 0, while if v = 2, 3, or 4 a similar region
necessarily has the randomization structure.

The first non-parametric attack on this problem was given [26] by K. Pearson.
The z-axis is divided up into intervals I, ---, Iy as in section 3. Let mj
and m j» be the number of measurements from the first and second samples, re-
spectively, falling in I;. so that D iy mu = mi, k = 1, 2. The statistic T'(E)
used is

N
xi: = (m mz)_l ; (ma mi2 — mzmil)z/ (mir + My2),

with large values significant. In view of the remarks at the end of the last
paragraph it would be necessary to calculate the distribution of x}: over the sub-
population {E’} in order to get a similar region. Pearson found the asymptotic
distribution of x%+ under the null hypothesis to be the x’-distribution with
N — 1 degrees of freedom.

A solution based on the method of randomization was proposed by Pitman
[27]; the special case of this solution for m; = m. was published a little earlier
by R. A. Fisher [6]. Pitman employed the numerical value of the difference of
the sample means as statistic,

my n

T(E) = Zx.‘/ml - zi/ma|,

=] j=mi+1

large values being significant. He fitted an incomplete Beta-distribution to the
subpopulation distribution of his T(F), and noted that this approximation
gave a result identical with the usual {-test valid when the population distribu-
tions F(x) and G(z) are assumed normal with equal variances.

Turning now to tests based on the method of ranks, we mention here that one
for the case m; = m; was given by R. A. Fisher as early as 1925, namely the
“sign test’’ or “binomial series test’’ [3]. We may (and Fisher did) regard this
as a test of a less restrictive hypothesis, and shall describe it in section 6. Be-
tween 1938 and 1940 several tests employing ranks were proposed for the problem
of two samples. The earliest of these, by W. R. Thompson [36], was shown to
be inconsistent (section 11) with respect to certain alternatives F, e 2 — w by
Wald and Wolfowitz [40]. These authors used as statistic U(R) the total num-
ber of runs in a sequence V of n elements constructed as follows: Rank the
measurements of the combined sample in order of increasing magnitude. Ac-
cording as the j-th measurement in this rank order is from the first or second
sample, put the j-th element of the sequence ¥ equal to 1 or 2. In this test small
values of the statistic U(R) are regarded as significant. The test is now quite
practicable (for » = 2) for certain ranges of m; and m.. For m; and m, both
< 20, tables by Swed and Eisenhart [34] give the 19, and 5% significant values
of U(R). Wald and Wolfowitz proved that for n — « with & = m;/m, fixed,
the distribution of U(R) is asymptotically normal with mean 2m,/(1 + k) and
variance 4km,/(1 + k)’. Swed and Eisenhart computed that for m; = m, this
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gives a very satisfactory approximation outside the range of their tables. How-
ever, further computation needs to be done on the accuracy of this approximation
for m; ¥ m, and one of them >20.

Another test based on ranks was advanced by Dixon [2], using as statistic
U(R) the random variable

m1+1

= Z"i [ + 1) = ny/mol’,

where the integers n; are defined thus: Let Z; < Z, < --- < Z,, denote the
measurements of the first sample afranged in rank order. Then 7 ;is the number
of measurements in the second sample falling in the interval (Z,_,, Z;), where
we define Zo = — ©, Zm 1 = +o. Large values of C* are significant. Dixon
tabulated the 1%, 5%, and 109, significant values of C* for m;, ms = 2,3, - - -,
10; for larger m, , ms he fitted a x’-distribution.

A paper by Smirnoff [33, 16] suggests the following as a statistic U(R): Let
Gn, (z) and G, (z) be the “empirical distribution functions” of the first and
second samples, that is, m;Gn.;(z) is the number of measurements in the i-th
sample <z (z = 1, 2) and take’

UR) = (mi* + mz")™ sup | Gm, () — G, (2)|

with large values significant. Smirnoff showed that if v = 2 the asymptotic
distribution of his statistic U(R) is a certain c¢.d.f. &()), previously introduced
by Kolmogoroff [15]. More specifically, let &, ,m,(\) = Pr{U(R) < \; v = 2}.
Then if n — « with m,/m, fixed, we have ®,,m,(\) — ®(A). The definition
of ®(\) and references to tables of ®(\) are given in section 9. If instead of
assuming » = 2 we take » = 0, the risk of type I errors may be controlled to the
extent that Pr{rejecting H} < afor all F, e w, by employing Smirnoff’s theorem
stating Pr{U(R) < \; v = 0} < ®pn,,m,(A), Where ®,,,m,(A) is defined above.

A test for the problem of two samples obtained by Wolfowitz by a modifica-
tion of the likelihood ratio procedure will be discussed in section 12. When
my = ms the non-parametric analysis of variance tests of the ‘“‘randomized
blocks” type described in section 6 might also be used to test the more restricted
hypothesis considered in this section.

The non-parametric problem of % samples has been attacked by Welch [46],
who used the method, of randomization with the analysis of variance ratio as
statistic T'(E), and by Wolfowitz [50] with his modified likelihood ratio method.

In this as in all the other sections where several solutions of the same problem
of statistical inference are described, the question as to the relative merits of
the various solutions arises, and in every case the question is as yet mostly or
entirely unanswered. The only easy conclusion about the tests of this section
would seem to be that the tests of K. Pearson and Pitman are not consistent with

7 We use the notations sup and ¢nf respectively for least upper bound and greatest lower
bound.
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respect to certain subclasses of the admissible alternatives, according to the
definition of section 11.

6. Independence. The classes Q@ and w defining the problem of independence
have already been stated in section 2, in which we described Pitman’s test [28]
based on the randomization method and the use of | r | as statistic T(E), where
r is the sample value of the Pearsonian correlation coefficient. Pitman fitted
an incomplete Beta-distribution to the subpopulation distribution of 7* and found
the resulting approximation for » = 2 equivalent to the usual test employing the
t-distribution and valid for the case of normality.

In section 2 we also mentioned the test earlier proposed by Hotelling and
Pabst [9], which is based on the method ranks and employs the statistic U(R) =
| 7 |, where 7’ is the Spearman rank correlation coefficient. They proved that
for v = 2 the distribution of »’ is asymptotically normal if F, e w. Pitman’s
fitting of an incomplete Beta-distribution applies also to (' )?, and Kendall,
Kendall, and Smith [12] made numerical calculations indicating that this gives
a better approximation than the normal distribution. Since 7’ is calculated
from Zd*, the sum of the squared rank differences, the latter may equivalently
be used as the statistic U(R), small and large values of =d* being now both
significant. Kendall, Kendall, and Smith [12] found the exact distribution of
=d’ for the number of pairs m < 8. This work was anticipated by Olds [23],
who calculated the exact distribution of =d* for m < 7, and by fitting certain
distributions for m-> 7, gave a very useful table of the 19, 29, 49,, 109, and
209, significant values of =d” for m < 30. It would be desirable to have these
tables extended by inclusion of the 5%, values.

M. G. Kendall [10] proposed another measure of rank correlation whose sig-
nificant values are easier to calculate than those of =d’, but since the Olds’ tables
for the latter are available, Kendall’s innovation does not seem to possess much
practical advantage. Wolfowitz [50], using his modified likelihood ratio method,
gave another test for independence and generalized it to the problem of inde-
pendence of k random variables.

6. Analysis of variance. We suppose that we have n = rc¢ measurements
arranged in a rectangular layout of r rows and ¢ columns. The r rows might
correspond to the blocks and the ¢ columns to the varieties in an agricultural
experiment. The null hypothesis H is that of ‘“no difference’”’ in the column
effects. The measurement in the i-th row and j-th column is suppesed to be on
a random variable® X;; with c.d.f. F'? (£) = Pr{X;; < z}. Let us assume at
first that all the X;; are independent. The joint ¢.d.f. of the random variables
Xi;, -+, X,; of the j-th column is then

F(j)(xl, cee 1) = Pr {xl,. <, o,y < xr} = HF(ij)(xi).

- - i=1

8 The double subscript notation is more convenient here than that used in section 2;
after the class w has been defined the reader will see that the numbers n; used in section 2 to
describe the symmetry of the F. ¢ w are all equal to ¢, and the X;; of the present section
coincides with the X, .; of section 2.
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The symbol F,, for the joint ¢.d.f. of all n random variables now denotes F,(zy ,
CyTae sttt 3 Tr, ttt, Tre). s the class of all F, of the form

Fo= :"I;];F(i)(xu, e ’xfi)’

where F is defined by the preceding equation, and all F**” are in a given class
@, . The hypothesis H states that the column distributions are all the same,

F(D(xly“')xf) =F(”(x1,---,x,) (j=2,3,"',0),

without specifying F, « is thus the subclass of @ comprising all F,, of the form
c
Fp= ;[]; F(l)(xli’ <oy Trj)
The F, in w may be written

r (4
F, = I']; {III F(c‘l)‘(x“)}.
$= 3=

Regarding the factor in braces for fixed ¢, we see that it is left unchanged by any
permutation of the ¢ coordinates z;;, -+ -, Zi. The set S of permutations is
thus determined, and the subpopulation {E’} consists of the (c!)” points obtained
by permuting among themselves the first set of ¢ coordinates, the second set of
¢ coordinates, - - -, the r-th set of ¢ coordinates of E = (xy, +++, T15} *++
Ty, v vy Tre).

The above argument leading to the subpopulation {E’} of (¢!)” points is based
squarely on the assumed independence of the n random variables X;;. Suppose
now that the X;; are not known to be independent, as may happen in agricul-
tural experiments [24]. To make the discussion concrete suppose in the r X ¢
layout we have been considering, the rows refer to blocks (of plots) and the
columns to varieties, so that the random variable X;; is the yield of the j-th
variety on the 7-th block. We owe to R. A. Fisher the method of including
early in the experiment a random process which leads to the same “equally
likely’’ subpopulation of points { £’} obtained before in the case of independence.
This pLysical process which he calls ‘“randomization’ then permits the construc-
tion of critical regions by the “method of randomization” in the sense we have
been using the term.

To explain the experimental process of randomization we shall imagine another
r X clayout and a random set of mappings of the two layouts onto each other.
In each block there are ¢ plots and we now assume these numbered from 1 to ¢,
the numbering to be held fixed. The second layout refers to the plots; the rows
again correspond to the blocks, but the columns now correspond to the number
of the plot in the block, thus the 7, j cell represents the j-th plot in the -th block.
Now consider all 1:1 correspondences or mappings between the two layouts so
that the s-th row always maps onto the i-th row (z = 1, ..., r). There are
s = (c!)" such mappings M; (k = 1, ---, s). Suppose under the mapping M;
the 1, ¢ cell in the block-plot layout maps on the 1, ji cell of the block-variety
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layout, where jx = ji (2, t), and the 1, j cell of the latter corresponds to the 7, tx
cell of the former, tx = t (7, 7). The physical randomization process consists of
choosing the mapping M, so that all s mappings have the same probability 1/s
of being chosen. In other words, the randomized block pattern is selected in
such a way that all the s possible patterns have equal probabilities of being
adopted in the experiment. Now let Y'{}’ be the yield of the i, ¢ plot if the variety
assigned to it by the k-th pattern is planted there, and let G*® (yu, - -+ , Yre) =
Pr{all Y < y:,} be the joint c.d.f. of the Y{?. In calculating the c.d.f. F, of
the X;; associated with the first layout we must take account of the random
process by which it is mapped onto the second:

F,.(:L‘u y *° %,y x,c) = Pr{all Xq S x;,-}

4
= Zjl Priall X = Y& wi) PAAYE, cn < i)

= ,Z:l 3—1 G(k)(xl,t),(l.l) y * xr.t;.(r.o))-
Q consists of all F, of the above form with G* in a given class, say @{™. The
hypothesis H of “no difference’” of varieties asserts that the yields of the plots
do not depend on the varieties planted on them, that is, that all G are the same,
G® = G“‘) , without specifying G”. w is the subclass of @ whose members are
of the form

8
-1 (1)
F,=s ?:l G (@, ** s Trupmo)-

It is now seen that any permutation in the set S previously considered merely
rearranges the terms of the above sum, so that F, remains invariant, and we
have the same subpopulation {E’} as before.

It is to be understood henceforth that either the X,; are known to be inde-
pendent or else an experimental randomization has been carried out as described
above, so that in either case the above set {E’} of (c!)" points is the “equally
likely”’ subpopulation.

The first application in the literature of the randomization method is found in
R. A. Fisher’s ‘‘sign test’’ or “binomial series test’’ [3] for the case of randomized
blocks with two columns (¢ = 2). Let D; be the difference Xy — X». The
statistic used is a function of the ranking only, namely the number of D; > 0,
small and large values being significant. For » = 2 its distribution under the
null hypothesis is the binomial distribution with the n and p of the usual notation
equal respectively to rand 4. This test may be regarded as the special case when
¢ = 2 of Friedman’s rank method for analysis of variance to be described below.

Fisher later [5] proposed another test for the case ¢ = 2 not based on ranks,
and employing as statistic T(E) the absolute value of the mean of the D; defined
above, with large values significant. The exact distribution of this statistic is
very laborious to calculate unless r is very small, and K. R. Nair [20] pointed
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out that the use of the numerical value of the median of the D; (or one of the two
central values when  is even) had the advantage of a very easily calculated dis-
tribution (if » = 2). The latter may be regarded as a modification of the rank
method, the method of ranks being applied not in the 2r-dimensionsl sample
space as described in section 2 but in the r-dimensional space of the differences
D;. Nair also showed that the distributions of the range and of the midpoint
of the range of the D; are very simple.

From here on we consider the general case ¢ > 2, but when we speak of dis-
tributions they will be understood to be for the case when the null hypothesis is
true and » = 2. Welch [45] considered using as T(E) the usual analysis of
variance ratio appropriate to testing for “no difference’” of column effects. He
transformed this to another statistic and calculated two moments of its subpopu-
lation distribution. The first moment always agrees with that obtained under
“normal theory”, that is for the case X;; = C; + Z;;, where the C; are constants
and the Z;; are independently normally distributed with the same variance and
zero means, but the second moment depends on the subpopulation {E’}. Here
the exact distribution of the statistic is of course in general much more tedious to
calculate than in the previous case ¢ = 2; an incomplete Beta-distribution was
fitted by Welch. Welch anticipated Pitman [29] who obtained the same results
and got besides the third and fourth moments of Welch’s statistic.

The method of ranks was applied by Friedman [7] who employed as statistic
U(R) a quantity formed as follows: Rank each set of row entries X; (for fixed 2)
in ascending order of magnitude, and let r; ; be the rank of X;;, so that ry, -- -,
Ti is a rearrangement of the integers 1, - - -, ¢. Let 7; be the mean rank of the
j-th column, 7; = 3, %.17;,/r, and take for U(R)

U=C, z_: 7 — &I,

where C,. is a certain constant, and &(;) is calculated under the null hypothesis.
For Friedman’s choice of C,., U may be rapidly computed from the equivalent
formula

U= -3r(c+1) + 12 ’Zi; (g T"j)z/[TC(C + 1)].

In his paper Friedman included a proof of Wilks’ that U has asymptotically the
»’-distribution with ¢ — 1 degrees of freedom as 7 — . Kendall and Smith
[13] fitted to a transform of U a Fisher z-distribution with continuity corrections,
obtaining a better approximation for small 7 than the x*distribution. Wallis
[43] independently proposed the use of 5} = U/[r(c — 1)] as statistic and called
it the rank correlation ratio. Friedman in a later paper [8] on the subject, using
exact values he had calculated, together with the Kendall-Smith approximation,
published tables® of the 19, and 5%, significant values of U for ¢ = 3, 4, 5, 6,

® In these tables our U, r, ¢ are denoted respectively by x2 , m, n.
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7, and sufficiently many values of r so that for these ¢ and any r the significant
values of U are now easily available.

After the above lengthy discussion for the ‘‘randomized blocks’’ case of analysis
of variance, it will perhaps suffice merely to mention that the “Latin square”
case may be similarly attacked from the non-parametric point of view, and this
has been considered by Welch [45], Pitman [29], and E. S. Pearson [24]. They
have taken as the statistic the usual analysis of variance ratio, and the work of
Welch and Pitman in calculating the first two moments of its subpopulation
distribution is even more tedious than in the “randomized blocks” case.

Part II., NON-PARAMETRIC ESTIMATION

7. Classical results on point estimation. Throughout part II the symbol
E will always denote a random sample X;, - - -, X, from a univariate population
with c.d.f. F(x), where F is an unknown member of a given class to be stated
in each case. The c.d.f. of E is thus

Falar, s+ yan) = 1 FGao.

The problems of estimation can be stated without reference to the class @ of
admissible F,; @ would be obvious in every case.

Let 6 = 6(F) be a real number determined by F (a functional of F) for F in a
certain class of univariate c¢.d.f’s. Thus 6 might be the mean of the distribution,
in which case 6 would be defined for all F possessing a first moment. We shall
not call 6 a parameter in order to avoid confusion with the parametric case.
R. A. Fisher’s criteria of unbiasedness and of consistency for point estimation
carry over without change from the parametric case. A statistic T'(E) is said
to be an unbiased estimate of 6 if &(T) = 6. Write E = E, and. T = T, to
emphasize the sample size n, and assume that the statistic T,(E,) is defined for
all n (or all n > some n,). Then we define T,(E,) to be a_ consistent estimate
of 8 if it converges stochastically to 8, that is, if Pr{| T, — 6| > h} > 0asn —
o, for every h > 0.

In the present paragraph it will be convenient to symbolize the class of F for
which the i-th (absolute) moment exists; we denote it by Q,(Z = 1, 2, ---).
It is known' that a sufficient condition for the stochastic convergence of the
sample mean Z to the population mean is that F ¢Qqu . Hence for all F ¢ Qq ,
Z is a consistent estimate of the population mean; furthermore it is unbiased. If
we apply this result to the random variable Y = X, we find that for all F € Qg ,
> » . 2%/nis a consistent unbiased estimate of the second moment of F about the
origin. Similar statements may be made for higher moments. For F ¢Qq
one may show further that with Q defined as Dy (z: — )°, the statistics Q/n
and Q/(n — 1) are consistent estimates of the population variance, and the
latter is unbiased.

10 See, for example, J. L. Doob, Annals of Math. Stat., Vol. 6 (1935), p. 163.
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If there exists a number M such that F(M) = 1, it is called the median of the
distribution. The median % of a sample of odd size is the central X; when the
X; are arranged in order of magnitude; for a sample of even size we may take
% to be the average of the two central values. It may be shown that % is a con-
sistent estimate of M for F in the subclass of @5 for which the probability density
function f(z) is continuous at x = M and f(M) = 0.

8. Confidence intervals for an unknown median, for the difference of medians.
Arrange the sample in rank order and denote the result by Z; < Z, < --- <
Z,, where Zy, -+-, Z, is a rearrangement of X1, ---, X,. The joint dis-
tribution of the Z; (or any subset of the Z;) is well known [49] if F () is restricted
to Q4 , which we now assume. From this distribution theory it is easy to show
that for any positive integer k& < in, the probability that the random interval
(Zx, Zn_r41) cover the unknown population median M is

PriZy < M L Zpan} =1 —-20i(in — k + 1, k),

where
z 1
L(p, q) = f 1 - ) de / f 1 - )T de
0 0

is the incomplete Beta-distribution tabulated by K. Pearson. The practicability
of estimating M by means of the above relation in the non-parametric case was
noted first by W. R. Thompson [35]. It is not difficult to calculate tables giving,
for various sample sizes n, the maximum % for which Pr{Z, < M < Z,_k1} >
.95 or .99. This has been done for n = 6 to 81 by K. R. Nair [21], who listed
the maximum k as well as w — k 4 1 and Iy(n — k 4+ 1, k), so that the exact
confidence coefficient is available. Nair also gave asymptotic formulas which
are very accurate for n > 81.

It is clear how confidence intervals for the difference d = M, — M, of the
medians of two univariate populations with c.d.f’s known only to be in Q; might
be obtained by combining two probability statements of the above kind: Let
the desired confidence coefficient be 1 — «, and form confidence intervals of the
above type for M; and M, with confidence coefficient 1 — %a; write them
PriM;<M;<M}>1—%a ThenPriM;—Mi<d< M- M} >1—a.
Solutions like this which are easily obtained by the combining method in many
problems are in general not very efficient.

Some work of Pitman’s [27] may be regarded as a solution of the problem of
estimating the difference of medians (or other quantiles, or means) of two
populations in a case essentially more restricted than the preceding, but more
general than the corresponding parametric case in which the distributions are
assumed to differ only in location. To describe the nature of Pitman’s result,

11 This follows from the asymptotic distribution of £. See, for instance, [49], and com-
bine section 4.53 with Theorem (A), p. 134.
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let us revert to the notation introduced at the beginning of section 4, but add to
the assumption that F and @ are in a known class Q, the restrictive assumption
that F and @ differ only in location, that is, that G(z) = F(x — d). The problem
is the interval estimation of the unknown constant d. Define the random vari-
ables Z; = Y; — d. After noting that the m; 4+ m, random variables X, - - -,
Xm,yZ1, +++, Zn, are all independently distributed with the same c.d.f. F,
Pitman was able to apply his results for the problem of two samples to show how
functions d and d of X1, -+, Xm,, Y1, -+, ¥, could be calculated such that
Pr{d <.d <d} > 1 — afor » = 0, while for » = 2 the equality holds. After
fitting an incomplete Beta-distribution Pitman found that the resulting approxi-
mate confidence intervals coincide with the well known ones employing the
t-distribution and based on the assumption that F and G are normal with the
same unknown variance.

9. Confidence limits for an unknown distribution function. Consider in
an z, y-plane the graph g of the unknown c.d.f., g being the locus of the equation
y = F(z), and the possibility of covering g with random regions R (E) depending
on the sample E. Wald and Wolfowitz [39] have shown how for given n and «
it is possible in a large variety of ways to define regions R(E) such that Pr{R(E)
D g}, the probability that the randem region R(E) cover the unknown graph g,
is1 — afor all FeQ. Instead of describing their general method we shall
limit ourselves to a special case. This is a very neat solution the necessary
distribution theory for which was developed earlier by Kolmogoroff [15].

Let G.(x) be the “empirical distribution function’ of the sample: nG,(x) is
the number of X; < z. Define the random variable

D, = v/nsup | F(z) — Ga(z) |;

and let ®,(\) be the ¢.d.f. of D,, ®,(\) = Pr{D, < A}. Kolmogoroff proved
that ®,(\) is independent of F ¢Q,, and that as n — o, &,(\) — ®(\) uni-
formly in A, where ®()) is defined by the rapidly converging Dirichlet series
+o
d(\) = 2 (—1D*exp (—2k*N\%).

kmm—c0

A small table of values of the function ®(A) was given by Kolmogoroff [15], and
a larger one by Smirnoff [33]. Define \,,, from ®,(\,,«) = 1 — «, and A, from
®(\,) = 1 — a. Values of A\, for « = .05, .02, .01, .005, .002, .001 were listed
by Kolmogoroff [16]. Now-1 — a is the probability that

Vnsup [ F(z) = Gal@) | < Mnre
if F eQ,. The above inequality is equivalent to
Ga(®) = Mo/ V0 L F (@) < Ga(@) + Mva/V'1 (all z).

If we take as R (E) the intersection of the region between the graphs of the func-
tions Gn(z) == Ao/, with the strip 0 < y < 1, we have Pr{R(E) D g} =
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1 — a. The values of \,,, have not been tabulated, but for practical purposes
of determining an unknown c.d.f. one would usually require a large n, and the
tabulated values of A\, could then be used.

With &,(\) defined as the c.d.f. of D, for F € Q, , Kolmogoroff has shown further
that for F € Qy, Pr{D, < A} > ®,(\). This gives the beautiful result that the
above confidence belt is valid in the most general case where F € Q. in the sense
that for the above defined R(E), Pr{R(E) Dg} > 1 — a.

10. Tolerance limits. An ingenious formulation and solution of a non-para-
metric estimation problem was given by Wilks [47]. Let us say that an interval
(x’, «'") covers a proportion 7 of a population with c.d.f. F(z) if F(z") —
F(z') = =. In the notation of section 8, Wilks considered the proportion B cov-
ered by the interval (Zx, Z,_m41) extending from the k-th smallest observation
to the m-th largest, B = F(Z,—m41) — F(Z:). B is arandom variable depending
on the sample but, is not a statistic since it depends also on the unknown c.d.f.
F(z). However, Wilks noted that the c.d.f. G(b) of B is independent of F ¢ Q4 ,
in fact, for0 < b <1,

Gb) = Ii(n — k —m + 1, k + m),

where I,(p, q) is defined in section 8. After k, m, a fixed proportion b, and a
confidence coefficient 1 — « have been chosen, the equation G(b) = a determines
the sample size n for which we can then make the following assertion without
any knowledge of F except that F' ¢ Q4: The probability is 1 — « that in a sample
size n gl.e random interval (Zi, Z,_m1) will cover at least 100 b9, of the popu-
lation.

Wilks considered, among other extensions of his method, tolerance limits for
multivariate distributions in which the variables are known to be independent,
and the estimation of proportions in a second sample (instead of in the popula-
tion) on the basis of a first sample [48]. The latter problem involves the calcu-
iation of P(b; n, N, k, m), the probability that if a first sample of n is taken and
then a second sample of N, a proportion b or more of the second sample will lie
in the interval (Zy, Z,—_m+1) determined from the first sample. Wilks’ deriva-
tion of P requires the assumption that F e Q4 , but a simple auxiliary argument
(related to the method of randomization by ranks) will extend the validity to
the case F e Q2: The complete set of n + N variates is independently distributed,
each with the same c.d.f. FeQ,. All (n + N)! possible rankings (excluding the
“tied” ranking R,) as defined in section 2 then have the same probability
1/(n + N)!. The fraction of these rankings for which the statement about pro-
portions in the second sample is correct is a function of b, n, N, k, m only, and
not of F ¢Q., and this fraction is the desired P. Since P is the same for all
F € Q, it must of course coincide with the value calculated by Wilks for F e .
It would be desirable for practical purposes to extend the validity of the tolerance

12 For fixed b, G(b) of course takes on discrete values with n, so one would either choose
the n giving G(b) the nearest value to « or else the greatest value < a.
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limits of the first paragraph, concerning proportions in the population, at least
to the case F ¢Q;. The extension to 2, would follow immediately if the in-
tuitively reasonable statement 1 — G(b) = limy.., P(b; n, N, k, m) could be
justified for F ¢Q, .

The multivariate case when independence is not assumed was successfully
attacked by Wald [38]. We shall describe here his solution for the bivariate
case: Let (X;, Y,),2 =1, ---, n, be a sample from a population with bivariate
c.d.f. F(z, y) 9, that is, F is of the form

Faw = [ [ 16 dna

where f(z, ¥) is continuous, but otherwise unknown. Plot the points (X;, ¥5)
in an z, y-plane and choose four (small) integers ki , m1 , k2 , mz . , Draw vertical
lines (parallel to the y-axis) passing through the points with the %;-th smallest
and mj-th largest abscissas. Considering only the n — k; —m, points inside
these vertical lines (the probability of equal abscissas is zero), draw two hori-
zontal lines passing through the points with k.-th smallest and- m.-th largest
ordinates. Let J be the rectangle bounded by the four lines and consider the

proportion B of the population covered by the rectangle, B = f dF (z,y). Then
7.

the c.d.f. G(b) of B is given by the previous formula in terms of the incomplete
Beta-distribution with & + m = k; 4+ ks + m; + m., and is thus independent
of f(z, y). Choose k;, ks, m1, ms, b, and . Then the equation G(b) = « de-
termines the sample size n for which the probability is 1 — « that the random
rectangle J will cover at least 100 b9, of the population. Wald showed further
how a series of rectangles instead of a single rectangle might advantageously be
used in the case of highly correlated X, Y.

It would be most useful to have tables of n corresponding to « = .05 and .01,
some values of b close to unity, and a few small values of k + m, say, k + m =
2,4, ---,2r. The table could then be used for the univariate, bivariate, - - -,
r-variate cases with various choices of k;, m;, such that =(k; + m;) = k + m.
Entries for k 4+ m = 4 have been given by Wald [38, p. 55].

Part III. Towarp A GENERAL THEORY

11. The criterion of consistency. All the concepts of Part III have been
carried over from, or suggested by, corresponding ones earlier developed for the
parametric theory. Consistency of point estimation was defined in section 7.
Wald and Wolfowitz [40] have generalized the notion of consistency to tests so
that it is applicable in the non-parametric case. We have heretofore specified
the hypothesis H and its admissible alternatives by means of classes of n-variate
cd.f’s F,. We now assume that H and its admissible alternatives can be
framed as statements about one or more populations, independent of n. Thus
in the problem of two samples (section 4) H may be taken as the statement that
the c.d.f’s F and G of the two populations are the same member of ©, , while the
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admissible alternatives are statements that F and G are any two different mem-
bers of 2, . Returning to the general case, we assume that. a sequence of tests is
under consideration, say, T,, T, , - - - , such that as j — «, the size of the sample
in T; from each of the populations becomes infinite. The sequence {¥;} may
be called simply a ‘“‘test’” and is said to be consistent if the probability of rejec-
tion of H by ¥ ; approaches unity as j — « whenever an admissible alternative
to H is true. It has been suggested [50] that consistency is a minimal require-
ment for a good test. In order to allow for the analogue of the “‘common best
critical regions” in the parametric theory,” it would be better to define consist-
ency with respect to any given subset of the admissible alternatives and then
require consistency with respect to the subset appropriate to the specific situa-
tion in which the test is to be used.

Wald and Wolfowitz [40] proved that under certain restrictions on the ad-
missible F, @ in the problem of two samples their test based on runs (section 4)
is consistent, while another previously proposed test is not. Judging from
their work, we may expect that, while inconsistency proofs may be easy, con-
sistency proofs will be difficult.

12. Likelihood ratio tests. A definition of the Neyman-Pearson likelihood
ratio criterion'* \ for testing the hypothesis H (we use the notation of section 2),
which would yield the usual result in the parametric case, would be the follow-
ing: Let C(E;8) be a cube of edge 25 in the sample space W with center at the
point E and faces parallel to the coordinate hyperplanes, and let P(E;6 | F.) be
the ‘“‘probability put into the cube by the c.d.f. F,”, that is, P(E;6 | F.) =

f dF, . Define
C(E;8)

NE; ) = [sup P(E; 5| Fa)l/l sup P(E; 8| Fa)l,

new

A=AE) = Pm NE; 8).
-0

This definition of X is not useful in the non-parametric case as A turns out in
general to be independent of E; the reader may easily verify this for the problem
of two samples (section 4).

Having seen now that the likelihood ratio does not carry over to the non-para-
metric case in an obvious way, we are in a position to appreciate a bold stroke
by Wolfowitz [50]. He begins by limiting the critical regions to be considered
to the relatively small class obtainable by the method of ranks (section 2). Let
R = R(E) be the ranking of the sample point E, so that the random variable R
takes on the possible values Ry, R;, - - -, Ry, and let P(R, | F,) = Pr{R =R, | F.}.

13 J, Neyman and E. S. Pearson, ‘‘On the problem of the most efficient tests of statistical
hypotheses’’, Phil. Trans. Roy. Soc. London, A, Vol. 231 (1933), pp. 289-337.
14 J, Neyman and E. S. Pearson, Biometrika, Vol. 20A (1928), p. 264.
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Then Wolfowitz takes the likelihood ratio to be the following function of the
ranking R:
AR) = [Fsup P(R| 1""1.)]/[‘7sur‘)2 P(R | F.)l.

His modified likelihood ratio test then consists of applying the method of ranks
(section 2) with A(R) as the statistic, small values being regarded as significant.
If Q is a class of continuous F, , all rankings R > R, have the same probability
1/s under the null hypothesis, while P(R, | F,) = 0 for all F, ¢Q. Then the
numerator of A(R) is 1/s, and we may thus use the denominator of A(R) as
statistic with large values significant. Wolfowitz’ modification has one ad-
vantage we don’t always find with the usual parametric method: it always leads
to similar regions since it is a special case of the randomization method.

In applying his method to examples Wolfowitz finds it necessary to resort each
time to an approximation in calculating his statistic A(R). Instead of taking
the “sup” over  as in the definition, he takes it instead over a subclass ' of
which lends itself more easily to calculation. Thus in the problem of two samples
with » = 2, whereas @ is the class defined in section 4 with F, @ in Q. , the class
Q' is the subclass of @ obtained by further limiting F, @ as follows: The z-axis is
divided up into a number of disjoint intervals, equal to the total number of
runs in the sequence V defined in connection with the Wald-Wolfowitz test in
section 4. If the j-th run in V is a run of 1’s the restriction G(z) = 0 in the
Jj-th interval is imposed, if the j-th run is a run of 2’s, F(z) = 0 in the j-th inter-
val. The intervals in which F, G are permitted to assign positive probability
then correspond in order and number to the two kinds of runs. With this re-
striction the (twice) modified likelihood ratio statistic is found to be

2.2 (lylog Ly — log I 1),

where l;;is the number of elements in the j-th run of ¢’s (z = 1, 2). Large values
are significant. For large samples the asymptotic distribution of the statistic
falls out as a special case of a general theorem of Wolfowitz.

In the same paper Wolfowitz obtained modified likelihood ratio tests for the
problem of k samples and the problem of independence of two or more random
variables.

In his examples the author states that the maximizing F, in @' is “essentially
the same” as the maximizing F, in @, at least for the significant rankings R,
and for large samples. The necessity of this approximation procedure is some-
what disturbing, as is the restriction to the method of ranks. Since it does
not seem possible to give a definition of likelihood ratio tests sufficiently broad
to include the non-parametric case, yet yielding the usual result in the parametric
case, we are denied even the small comfort of saying that at least in special cases
the method is known to yield optimum results. In some problems the set
{R,} of rankings, corresponding to the set {w,} of regions in W which serves to
separate the s points of the subpopulations {E’} defined in section 2, is not
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unique—consider for instance the problem of two samples when the populations
are bivariate—and in such cases the method as defined above would not give a
unique result. These remarks are intended to point the need for further in-
vestigation and cannot detract from the ingenuity of the method—the first
general process that has been suggested for choosing one out of the welter of
similar regions yielded by the randomization method.

13. Wald’s formulation of the general problem of statistical inference. A
formulation of the general problem of statistical inference broad enough to cover
the non-parametric case, and including estimation and tests as well as statistical
problems classifiable under neither of these headings, has been given by Wald
[37). This formulation extends certain concepts he had applied earlier’® to the
parametric case.

In this last section we shall permit ourselves a somewhat more abstract ter-
minology and notation than before. As in section 2, E = (X;, ---, X,) will
denote the sample; F,.(E), its c.d.f.; W, the n-dimensional Euclidean space of E,
the sample space; and , the space of admissible F, . Of central importance is
a given class & appropriate to the problem, & = {ws}, whose members wg are
(not necessarily disjoint) subsets of 2, 2 = Jsws. To every ws ¢ © there corre-
sponds a hypothesis H (ws) : F € wg , 50 that thereis a 1:1 correspondence between
the members of the set & and those of the set {H(ws)} of hypotheses. The
general problem of statistical inference, according to Wald, is the choice of a
decision function A(¥) mapping Winto &. For every E ¢ W a decision function
A(E) uniquely selects an element ws of &, wg = A(E). Its statistical import is
that when the sample point E equals E, we agree to accept the hypothesis H (ws)
determined by A(E) = ws .

Before introducing any further definitions let us illustrate the preceding ones.
In any problem of testing a hypothesis, the set & has just two members w; and
we which we have heretofore denoted by w and @ — w, respectively. The de-
cision function A(E) then takes on just these two values, in fact, A(E) = w,
for E in the critical region w of the test, and A(E) = wrnfor E e W — w.

To illustrate the definitions in the case of point estimation, consider estimating
the median M of a univariate population with c.d.f. F(x). € would be the class
of F,, of the form [, F(x;) with, say, F € Qs and F'(M) 5 0 (which is sufficient
to insure a unique M). The index 8 could now be identified with M, so that its
domain is the real line, and wg = {F, | M(F) = B8}. The classes ws would be
disjoint in this case and each would contain an infinite number of F,. The
problem of estimating the unknown M may be said to be the choice of a decision
function A(E): When E = E we accept H(ws):F, e wg = A(E), meaning in this
case simply that we accept the statement that M equals the 8 determined by
A(E).

16 A. Wald, ‘“Contributions to tlie theory of statistical estimation and testing hypoth-
eses’’, Annals of Math. Stat., Vol. 10 (1939), pp. 299-326.
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Suppose next that instead of the point estimation of M just discussed we are
interested in the interval estimation of M. We define 2 as above, and now take
the index 8 to consist of a pair a, b of real numbers. An interval estimate a <
M < b may be regarded as an acceptance of the hypothesis H(wa):Fr € was ,
where wa, is the subclass of @ consisting of all F,, for which M (F) lies in the inter-
vala < M < b. The set © now consists of all classes wq,s With — o < a <
b < 4. Here as in the general gase of interval estimation the classes ws of
the set & are not disjoint. The decision function A(E) adopted in section 8 is
A(E) = wsp with @ = 2, b = 25441, where 2; < 2z, < - -+ < 2, is a rearrange-
ment of the coordinates z;, - - - , z, of E.

An example of a problem neither of estimation nor testing would be the fol-
lowing: Let @ be as above. Two real numbers A and B (4 < B) are given and
it is required to decide on the basis of the sample E to which of the three classes
—o <M< A, A<MZB,B<M < +x the unknown median M belongs.
Here the set © would consist of three disjoint classes w;, ws, ws : where w; is
the subclass of © consisting of F, with M(F) < A, ete.

We return now to the general case. Before defining a “best” decision func-
tion A = A* Wald asks that there be a given weight function w(F, , ws) defined
on the product space X &. The weight function w(F,, ws) is a real-valued
function evaluating the loss involved in accepting H (wg), the statement that the
unknown c.d.f. of E is a member of ws , when the unknown c.d.f. is actually F, .
If F, € wg we make no error in accepting H(wg), and in this case v is defined to
be zero. Its value otherwise is required to be non-negative. In this theory the
choice of the weight function is regarded as essentially not a mathematical prob-
lem, but the choice is to stem out of the very specific situation in which the
statistical inference is to be made. In an industrial problem  might be the
financial loss incurred when a certain kind of error is made.

After 1 is given, the decision functions A are to be restricted to the class for
which w(F, , A(E)) is a Borel-measurable function of E for all F, € Q; note that
v depends on E only through A, not through F,. The expected value of W
for a particular F, is called the risk function; it depends of course on the decision
function A and the weight function m as well as on F,,. Denote it by

rA, w|F) = fW w(F, , A(E)) dF.(E).

Since the true F, is unknown, so in general will be the true value of the risk
function associated with a particular decision function A. We might call

(A, ) = sup r(A, w| F,)
FpeQ
the maximum risk associated with the decision function A. Wald defines A*

to be the “best’’ decision function relative to the weight function w if the maxi-
mum risk 7(A, ) is minimum for A = A*. He points out that the “‘best’’ decision
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function might be defined as one which minimizes some weighted mean, taken
over all F, €, of the risk function 7(A, W | F,,), but that the above definition of
the “best” decision function has certain advantages. Thus under certain restric-
tions on € and 1, the risk function r(A*, w | F,) is independent of F,, € Q, that is,
we then know the exact value of the risk, regardless of what the true F, may be.
This is analogous to the desirable situations where confidence intervals are
known, and the probability of a false statement (to the effect that the unknown
quantity is in a given region when it is not) is then a constant independent of
the unknown quantity.

Wald’s theory is suggestive and formally very satisfying, but one would like
to see some specific examples of its application to non-parametric cases. A
discouraging aspect, not shared by the older Neyman-Pearson theory, lies in the
very refinement that a decision function is declared best with respect to a very
particular weight function w. An attractive possibility would be to impose a
metric on  or on a related function space, and to let w be the distance function.
In the problem of two samples for example, after metrizing 2, , the weight
assigned to accepting H might be taken as the distance between F and G in the
notation of section 4. A suitable choice of metric might yield a weight function
appropriate to a large variety of situations. The difficulties of finding a distance
function which is intuitively satisfactory and analytically tractable in calculat~
ing the risk function are no doubt formidable. The device of metrizing a space
of distribution functions was used by Mann and Wald in a different connection
[17], but their choice of distance function, while appropriate to their problem,
would not be satisfactory here.

Also still lacking is any general theory relating the three concepts discussed in
Part ITI. The following questions have been answered, at least for some specific
examples, in the parametric case, but are still untouched in the non-parametric
case: Are likelihood ratio tests consistent? Is there a simple weight function
relative to which the likelihood ratio test becomes a “best’’ test, or asymptoti-
cally a “best’” test? If a test is “‘best’’ relative to a given weight function, with
respect to what set of alternatives is it consistent?

In conclusion let us emphasize the need for constructive methods of obtaining
“good”” and ‘‘best” tests and estimates in the non-parametric case. Recalling
the history of the parametric case we may judge that half the battle was the
definition of “‘good” and ‘“‘best’ statistical inference. Progress in the non-
parametric case has been made in the direction of definition, mainly by carrying
over or modifying criteria originally advanced for the parametric case. How-
ever, besides criteria for “‘good” and “best” tests and estimates, we have in the
parametric case a large body of constructive theory which may be applied in
particular examples to yield the optimum tests or estimates; thus we have the
Fisher theory of maximum likelihood statistics for point estimation, and the con-
structive theorems of the Neyman-Pearson theory for the existence of critical
regions of types A, A,, B, By, and the related types of ‘“best’ confidence inter-
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vals. The contrasting lack of any general constructive methods'® at present
challenges us in the non-parametric theory.
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