ON THE MEASURE OF A RANDOM SET

By H. E. RosBINS
Post Graduate School, U. S. Naval Academy

1. Introduction. The following is perhaps the simplest non-trivial example
of the type of problem to be considered in this paper. On the real number axis
let N points z; ({ = 1, 2, ---, N) be chosen independently and by the same
random process, so that the probability that x; shall lie to the left of any point
z is a given function of «,

1) o(z) = Pr (z; < 7).

With the points z; as centers, N unit intervals are drawn. Let X denote the
set-theoretical sum of the N intervals, and let u(X) denote the linear measure
of X. Then u(X) will be a chance variable whose values may range from 1
to N, and whose probability distribution is completely determined by o(z).
Let 7(u) denote the probability that x(X) be less than u. Then by definition,
the expected value of u(X) is

@) B = [ wdrtw),
where
3) (u) = Pr (w(X) < u).

The problem is to transform the expression for E(x(X)) so that its value may be
computed in terms of the given function ¢(z).
In order to do this, we observe that, since the z; are independent,

@ rw) = [ o [ dota) -+ doaw),

c(u)

where the domain of integration C(u) consists of all points (zy, -+, zx) in
Euclidean N-dimensional space such that the linear measure of the set-theoretical
sum of N unit intervals with centers at the points x; is less than u. Here, how-
ever, a difficulty arises. Due to the possible overlapping of the intervals, the
geometrical description of the domain C'(u) is.such as to make the explicit evalua-
tion of the integral (4) a complicated matter.

The difficulty is even more serious in the analogous problem where instead of
N unit intervals on the line we have N unit circles in the plane, with a given
probability distribution for their centers (z:, y;). Again we seek the expected
value of the measure of the set-theoretical sum of the N circles. The correspond-
ing domain C(u) in 2N-dimensional space will now be very complicated.

It is the object of this paper to show how, in such cases as these, the expected
value of x(X) may be found without first finding the distribution function ().
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In fact, the theorem to be stated in (15) will in many important cases yield a
comparatively simple formula for E(u(X)).

2. Expected value of x(X). In order to state the problem in full generality,
let us suppose that X is a random Lebesgue measurable subset of Euclidean n
dimensional space E, . By this we shall mean that in the space T of all possible
values of X there is defined a probability measure p(X) so that for every p-
measurable subset S of T, the probability that X shall belong to S is given by
the Lebesgue-Stieltjes integral

) Pr(Xe8) = [ Cu(X) dp(),
where the integrand is the characteristic function of S,
©) Ca(X) {fl for XeS
6 =

’ 0 for X¢8.

In practice, the set X will be a function of a finite number of real parameters
(e.g., the coordinates of the centers of the intervals or circles considered in the
Introduction), X = X(ay, ---, @) = X(a). There will be given a probability
measure »(a) in the parameter space E,, so that a will be a vector random
variable in the ordinary sense. If A is any v-measurable subset of E. , then by
definition,

) Pr (xeA) = fx Ca(a) dv(a).

Now for the set S’ consisting of all X such that X = X(a) for « in A, we define
p(8") = »(A). Thus a p-measure is defined in the space T' of X, which is the
general situation considered in the preceding paragraph.

Returning to the general case described in the first paragraph of this section,
we shall now prove the main theorem of this paper. To this end we define, for

every point z of E, and every set X of T, the function

® @ X) [ 1 for zeX
z, =

g (0 for z¢X.

Moreover, for every z in E, we let S(z) denote the set of all X in T’ which contain
z. Then for every = in E, we have from (6),

9 g(z, X) = Csx(X).

Let us denote the Lebesgue measure in E, of the set X by u(X). Assuming
that the function g(z, X) is a up-measurable function of the pair (z, X) in the
product space’ of E, with T, it follows from Fubini’s theorem' that

) [ o0 due X = [ [ o6 X dw.

18ee S. Saks, Theory of the Integral, G. E. Stechert, N. Y., 1937, pp. 86, 87.
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From (5) and (9) it follows that

(11) [ 0@ X dpX) = Pr (X e8@) = Pr @ X).
Again by Fubini’s theorem we have

(12) [ o@D dwe ) = [ [ o0 do) dotx).
But from (8),

(13) [ o 0 duto) = [ duta) = ucx).

Now from (10), (11), (12), and (13) we have
(14) [ Preeddu = [ w00 do.
Eq T
But the latter integral is equal to E(u(X)). Hence we have the relation
(15) BWX) = [ Pr(zeX) duto).

This is our fundamental result. We may state it as a

TaeoreEM: Let X be a random Lebesgue measurable subset of E, , with measure
u(X). For any point x of E, let p(x) = Pr (x e X). Then, assuming that the
function g(z, X) defined by (8) is a measurable function of the pair (z, X), the ex-
pected value of the measure of X will be given by the Lebesgue integral of the function
p(x) over E, .

3. Higher moments of p(X). We may generalize the result (15) to obtain
similar expressions for the higher moments of u(X). For the second moment
we have the expression

(16) BW0) = [ 500 do().

Now from (13),

p(X) = uw(X) p(X) = f, g(z, X) du(x).f. o(y, X) du(y)
17 " .
= L _/; g(x’ X)'g(.% X) du(x) d'p(y)_

Let

. o = 1if X contains both z and y
(18) g(:L, Y, ‘Y) = g(l’) X)g(?/; ‘Y) = ( otherwise.
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Then from (16), (17), and (18), we have as before by Fubini’s theorem,

B@) = [ [ [ o9 % du(@) duty) do(X)
(19) T
- [ ” f " f 9(z, 9, X) do(X) du(x) du(y).

But from (5) and (18) it follows that
(20) [ 0@ v, X)do(X) = Pr @eX and y e X).
T
The latter probability may be denoted by p(z, y). This function will be defined

over the Cartesian product, E», , of E, with itself. Let u(x, y) denote Lebesgue
measure in E.,. Then from (19) we have

(21) BWX) = [ (e, v) duts, v),

where )

(22) p(x, y) = Pr (zxeX and yeX).

The formula for the mth moment of u(X) will clearly be

@) B W) = [ @, e ) duten @z, o aw),
where u(r1, T2, -+, Tm) denotes Lebesgue measure in £, and where
(24) pEy, %2, -, Zm) =Pr(@meXanda, e X - and 2, € X).

In the next section we shall apply formulas (15) and (21) to a specific problem.

4. Let a, p, B be given positive numbers such that (B 4 a)p < eaand a < B.
We shall define the random linear point set X as follows. N intervals, each of
length a, are chosen independently on the number axis. The probability
density function for the center of the ith interval will be assumed to be constant
and equal to p/a in the interval —a/2 < z < B + (a/2); it may be arbitrary
outside this interval. The set X is now defined as the intersection of the fixed
interval I: 0 < = < B with the variable set-theoretical sum of the N intervals.
The hypothesis of (15) is clearly satisfied. The probability that any point =
in the interval I shall be contained ‘in the ith interval of length a is clearly
(p/a)a = p. From this it follows that

[1 — (1 —-pPfor0<z<B
(25) Pr(zeX) =p(x) =

From (15) it follows that
(26) B@X) = [ p@)ds = BU — (1 — p)".

0 elsewhere.
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(The same formula holds in the case where the N intervals of length a are re-
placed by N circles of area a and I by a plane domain of area B, provided that
for every point of the domain the probability of being contained in the sth circle
is equal to a constant p. A similar remark holds for spheres in space.)

To evaluate E(u*(X)) in the linear case we make use of the identity

(27) Pr (4 and B) = Pr (4) + Pr (B) + Pr (neither A nor B) — 1,

which holds for any two events A and B. It follows from (27) and (25) that if
x and y are any two points of , then

p(x,y) = Pr(xeX and y ¢ X)

(28) =PrzeX)+PryeX)+Pr(z¢Xandye¢X) — 1
=1—=21—p)" + Pr(z¢Xand y¢X).

Let

(29) h(z,y) = Pr (z¢X and y ¢ X).

Then

(1 — (p/a)2a]" = (1 — 2p)", for |y—%|2a

a

(30) h(z,y) = {1 — (p/a)@ + |y — z)¥ = (a —ap—ply — xl)"’

for |y —z| < a.
Now from (21), (28), and (29) we have

sy = [ [ o vy

(31) = [ [ 11 -20 = 5"+ him, ) dy o
o Jo o s
= Bf1 — 201 - p"1 + 2f f h(z, y) dy dz.
0 z
When the latter integral is evaluated the result is
EGWA(X)) = Bl — 201 = p)"1 + (B — o)’(1 — 2p)"

2aB(1 — p)**! _ 2a(B - a)(1 - 2p)"H

N+ Dp (N + Dp

2a* N2 N2
T @AW +plt TP T 2T

Combining this with (26), we find for the variance of x(X) the expression
¢ = EW (X)) — [E@X)I

@3 =B-ad-29"-B0-p"+

(32) +

2aB(1 — p)N+l
(N + Dp
- 2a(B - a)(l - 21’)”“ 2(1«2 [(1 — p)N+2 - (1 — 2p)N+2]'

N + Dp T NFDWNV +2)p




