INVERSE TABLES OF PROBABILITIES OF ERRORS OF THE
SECOND KIND

By EmMMA LeEMER
University of California, Berkeley

1. Introduction. The problem of testing linear hypotheses was discussed by
Kolodziejezyk [1], and later in greater detail by Tang [2], who computed a table
giving the probabilities of errors of the second kind Py for a range of values of
the two degrees of freedom fi and f , (fi = 1(1)8, £ = 2, 4, 6(1)30, 60, =)' and
for two fixed levels P; = .01 and .05 of the probability of errors of the first kind.
These tables are in terms of a parameter ¢, (¢ = 1(.5)3(1)8) whose statistical
significance, or rather that of

A= (i + 1)¢/2

is discussed in Tang’s paper. A restatement of the problem of testing linear
hypotheses in a more canonical form, giving an interpretation of A, will also be
found in a recent paper by Wald [3].

Professor Neyman has felt for some time that a table giving ¢ = ¢(a, b, a, 8)
as a function of the two degrees of freedom f; = 2a, and fo = 2b, and of the two
probability levels « = Prand 8 = 1 — Py would be more useful for statistical
purposes, where 3 is the probability of detecting the falsehood of the hypothesis
tested. A paper by Professor Neyman explaining this point of view and giving
applications of the present tables to some statistical problems will appear
shortly. These tables were computed in the Statistical Laboratory of the Uni-
versity of California,” and give values of ¢ for the following range of parameters:

(e, B) = (.01,.7), (.01, .8), (.05, .7), (.05, .8)

fi = 1(1)10, 12, 15, 20, 24, 30, 40, 60, 80, 120, .
f2 = 2(2)20, 24, 30, 40, 60, 80, 120, 240, «.
2. Analytic definitions. The statistical parameter
(1) A= )‘(a, b’ a, :8) = (a + %) ¢2(a, b’ Q, ﬂ)

can be thought of as an inverse function connected with the hypergeometric
distribution. Inverse functions y(a), u(a, «) and z(a, b, @) of the better known
normal, Gamma and Beta distributions respectively have all been tabulated,

1 The notation m = r(s)tis equivalent tom =r,r +s,r +2s, ... , .

2 These tables were begun by Miss Leone Gintzler, and were carried on by Mark Eudy
under a University of California Research Grant. The bulk of the computing was done,
however, by the author and by Mrs. Julia Robinson under a grant of the American Philo-
sophical Society.
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TABLES OF PROBABILITIES 389

and are sometimes called “percentage points” of the distribution. To begin
with the simplest, the normal distribution, we may define y(a) as the solution of

y(a)
(2) ‘\/Er.[ _22/2 dr = a.

This function has been recently tabulated by Truman Lee Kelley [4] for o =
p = 0(.0001) 1 to 8 decimal places.
The function u(a, <) is the solution of

u(a,a)
3) f:(;) L t* et dt = Tu(a)/T(a) = a.

This is connected with the well known percentage points of the x5 distribution
with » = 2a degrees of freedom as follows:

4 xo(a) = 2u(a, 1 — a).

Catherine Thomson [5] has tabulated xi(a) for « = .005, .01, .025, .05, .1,
25, .5, .75, .9, .95, 975, .99, .995, and for » = 1(1)30(10)100. She has also
tabulated [6] the corresponding parameter x = z(a, b, @) of the Beta distribution
with »; = 2b, vo = 2a degrees of freedom defined by

z(a,b,a) Bx(a b)
a—l — b—1
®) B(a b) b D7 = 3,7 =
for « = .005, .01, .025, .05, .1, .25 and .5 and » = 1(1)10, 12, 15, 20, 24, 30,
40, 60, 120, »» = 1(1)30, 40, 60, 120, = to five significant places.
Similarly )\(a, b, a, B) can be defined as the solution of

z(a,b,1—a)

—)\(l—t)ta—l(l —_ t)b_lF(-—b, a, —)\t)l dt=1-28

©) B(a B)
where

Yo+ .,
F(’Y"Syz) 1+ +8(6+1)z+

is the confluent hypergeometric function.

3. Limiting cases. It is well known that as a tends to infinity

3(a)_u(a,1—a) y(a)
@ B = v+°()

14

There are many approximations [7] to x*. In a recent paper Peiser [8] gave a
rigorous derivation of an asymptotic formula for x°.
Similarly, the limiting cases of z(a, b, @) as a and b tend to infinity are known
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394 EMMA LEHMER

[9] and follow readily from (5), although no attempt has been made, as far as I
know, to find better approximations. These limiting values are as follows:

(8) lim a[l — z(a, b, &)]' = u(b, 1 — a)
9) gim br(a,b, ) = u(a, a).

The two corresponding limiting cases for A are not at first glance so symmetric.
When a tends to infinity, we have from (1)

(10) lim » = &
a—*o0 a
while
(11) lim F(—b, a, —ag’t) = (1 + &%)°.

a—*0

Substituting these in (6) and letting ¢ = 1 — z/a(1 + ¢°) and passing to the limit
we get with the help of (8)

l o0

—z_b—1
= ez dz=1-— 8.
r®) Jareruma A

(12)

In other words
(1 + ¢Hu, @) = u, )

or

(13) o=, b,0,8) = 4/ 202 — 1.

This is the only case, except for b = 1 in which ¢ can be given explicitly.
For b = 1, we have from (5) ‘

z(a, 1, a) = Va
and (6) can be easily integrated to give

o(a, 1, e, B) = l:log G — g)/(a + —;)(1 - \"/1——2)]*.

In all other cases it was found impractical to attempt an inversion of (6) to get ¢.
When b becomes infinite (6) becomes with ¢ = 2z/b, and with the help of (9),

N u(a,1—a) 2 (a—1)/2 -
(14) e j; e " (X) Ia@VN\)dz=1-8

where

(15) La(2V/h2) = O‘z—)r_(:—)_lf lim F (—b, 0, —%z)

b—oo
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is the Bessel function of a purely imaginary argument, which is usually defined by

(x)ﬂv+2r
-3 2
@) = ;, S +v + 1)

Expression (14) was also obtained for this limiting case of the hypergeometric
distribution by Wishart [10]. This integral, however, does not give A any more
explicitly than the general integral (6), and since the calculation of X increases in
difficulty as a increases, an attempt was made to derive an approximate formula
for ¢(a, ©, a, B) for large a. To this end an asymptotic formula [11] was de-
veloped for I,,(nz), the principal term of which is

(16) L(nz) = (—1\“;—,2%%‘ (___\/I-Fxx—z—l eva—)

Substituting this into (14) with z = 2 4/Xz/a — 1 and n = a — 1 we get for
large a

—\ u(a,l—a)

€ a—1 —t(1—¢2+tp4/2a)
1 P f piTie =1 -
an ) t" e dt ¢}

If we assume that ¢ is sufficiently small to neglect the term in ¢ we get as a
first approximation

(1—¢?)ula,1—a)
18y @) fo ettt =1—8
or
© ~ _ u(a: 1— ﬁ)
(19) ola, ©, a, f) 4/ )

a formula very similar to (11). In fact since a is large this formula can be
reduced one more step using (7). This gives

(20) lim vVae'(e, », a, B) = y(a) — y(6).

Similarly (13) becomes
lim v/a¢'(©, b, o, ) = y(a) — y(B).

b—roo
If instead of neglecting the term in o', we multiply it by the value of ¢ at its
upper limit, we get
2 1= 41— 2Mu@l—a —ul —ﬁ)]/a
1) ¢ u(a, 1 — a)/a

Professor Neyman derived another approximation for ¢(a, «, &, 8) by assuming
that the distribution (14) approaches a normal distribution for large a. He
obtained:

2 2u(a 2 1/2
(22) Vag' ~y(a)+y\/(ﬁ— —y(B)(1+ \y})+’i§@) .
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Both (21) and (22) obviously reduce to (20) in the limit. The following table
shows the efficiency of these formulas for a = 60

Table (21) (22) (20)
a= 01 .687 .695 .668 .640
B=.8
a= .01 .647 .642 .622 .607
B =.7
a = .05 .603 .585 .593 .566
B=28
a= .05 557 .540 .544 529
B =.7

A rigorous derivation of some such formula giving the actual order of approxima-
tion of ¢ would of course be of interest, but is likely to be quite complicated.

4. Calculation of tables. It is fairly obvious that the integral (6), although
very useful theoretically is not well adapted to actual calculations. It can
easily be integrated by parts to produce the infinite series.

AN Bia(a 44,0 &= N Bib,a+ i)
— = - = =1 4.

¢ i-Z:'m! B(a + ¢, b) ¢ izot! Bla+1,0b) 6

This series can be used effectively for ealculation purposes only if \ is compara-

tively small. If b is an integer, however, this series can be replaced by a finite

series of b terms, which was also used by Tang [2] in calculating his tables.

This series is as follows with & = z(a, b, 1 — @) = z(b, @, @):

(23)

b—1
(24) e —2) T Y Ti=1-8

=0
where
To=1 Ti=2N1 —2)+a+b-—11/0A — 2)

and’
(25) To=2z{N1 —2)4+a+b—n] Tey+ NTrs}/n(l — x).

The subjoined tables can be thought of as inverses of Tang’s tables, and could
have been obtained from tables such as Tang’s by inverse interpolation, had the
interval of tabulation been sufficiently fine. The interval of tabulation of .5 for

¢ allowed only a crude approximation or trial value of ¢, the corresponding
probability was then calculated for this point, and then corrected with the help

3 It will be noticed in comparing these formulas with those given by Tang, that z is used
for 1 — z. This is done to conform with Miss Thomson’s table for z.
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of derivatives. In the beginning of the work, a recalculation was usually
made for the corrected value of ¢, and the tabulated value of ¢ was then obtained
by inverse interpolation between these very close values. As the work pro-
gressed, and difference tables were calculated in several directions, the guesses
improved considerably so that a correction could be made using the first deriva-
tive to give a tabulated value of ¢ correct to three decimal places. Such corrections
never exceeded .004, and therefore it is hoped that the tables are correct to the
last place. The derivative in question is given by

26) ZZ 2a + 1ez(l — )" T,

and was obtained as a by-product of the calculation of (24). This method was
used for all finite a’s and for all b’s less than 30. For b = 30 or more it was
found more expeditious to use the infinite series (23), about 20 terms of which
sufficed.

The values of z(a, b, 1 — a) = z(b, a, @) used in these calculations were ob-
tained to five significant places from Miss Thomson’s table [6] for « = .01 and
.05 with 1 = 2a, v = 2b.

No calculations were made for non-integer b’s since for small values of b,
A was too large to make the infinite series (23) practicable, while for b = 7, ¢ can
be easily obtained by interpolation. The only available method for calculating ¢
forb = 1/2, 3/2 or 5/2 would be by numerical integration of (6), which would be
rather lengthy. Furthermore, the interest seems to be in large rather than small
values of a and b.

6. Calculations for infinite cases. The case a = « was readily disposed of
using (13), as for b = o, the integral (14) was again integrated by parts to give

(a+») /2

27) DY ( ) Ln@Vud) = 1= 8.
y=0

This was found to be effective, especially when v < A, which is the case for small

values of a. When u exceeded A, the complementary series was used, namely

(a—1—»)/2
(28) e Z%( ) Ioas@Vud) =
The calculations proceeded in much the same manner as in the finite case. The
values of 2u were obtained from Miss Thomson’s table of percentage points of
X+ (a) distribution with » = 2a degrees of freedom, while the values of I, and I,
were obtained from the tables of Bessel Functions [12] for 2 4/Az < 20, and from
the tables of Anding [13] for larger values of the variable. The values of I, for
v > 1, were computed from the recurrence relation*

. . . h
4 If a is an odd integer, the values of I,(2) can be built up using (29) from I_3(2) = coshz

V2

h
and I (2) = §l-Il:z , which of course are tabled.

\/1rz
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(29) L= "'-2‘;', I,(z) + I,_l(Z).

Future calculations of this sort could make use of the forthcoming tables [14] of
I,(2) for » < 20, and z < 20 to ten significant places. As before, the tabulated
values were obtained by correcting trial values of ¢ by means of the derivative

dg —ov w0 —_

(30) — = 1/2u(2a + 1)e - L(2VwN),
do A

which again was obtained as a by-product of the calculations. This method

becomes impractical when a is too large, because a great deal of accuracy is lost

in applying recurrence (29) many times. For some of the larger values of a it

was found preferable to use the series

=N Tula + 9)

1l T + 0
although it converges rather slowly. In other words the upper limits for @ and b
were pushed as far as was practicable.

The values which are tabled to two instead of three decimals were interpolate
using second differences, all other values were computed in the manner described
above. Difference tables were made by rows, columns and between tables, as a
final check on the work. Difference tables using harmonic interpolation were
also made for both rows and columns, and found very effective, with the exception
of the lower.right hand corner, where ¢ drops rapidly to zero. The last column
of each table is to be used for harmonic interpolation.

(31) 1-8=
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