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0 < p1 < 0.1, the limiting value of p; will be zero; if p; > 0.1, the limiting value
will be 0.9. The interesting point is that if the initial probability is in the
neighborhood of 0.1, an infinitesimal change in its value may produce a finite
change in the stable limiting probabilities; and that for the initial probability
equal 0.1 one would have an unstable equilibrium of the system. This con-
sideration shows why it is important to know how the probability p; converges
towards a certain point. As we have previously shown, the points of con-
vergence are roots of the eq. p = f(p) but there roots which are not points of
convergence.

Similar reasoning could be applied to more complicated systems belonging to
our general scheme of contagion. Consequently, the most important result is
not that the considered assembly may have a probability tending to some value
in the range 0 < p <1, but that under certain conditions the limiting probability
may jump from one value to another by changing the initial probability by an
arbitrarily small amount.
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FITTING CURVES WITH ZERO OR INFINITE END POINTS

By EpmunDp PINNEY
Oregon State College

The problem of determining a suitable equation to fit an empirically deter-
mined curve over a given interval has been of great importance in statistical
work, in experimental science, and in engineering technology. Since infinitely
many types of equations may be made to fit the data with required accuracy,
the choice of a “suitable’” type of equation depends on the qualitative nature
of the empirical curve, on the use to which the equation is to be put, and upon
considerations of simplicity.

As a function type, the polynomial has, because of its simplicity, been enor-
mously useful. The function type studied here is a little more general than the
polynomial type, being particularly useful in the case of empirical curves that
become zero or infinity at one or both ends of the interval.

Without loss of generality the interval in which the equation is to fit the curve
may be taken as 0 < z < 1. It is assumed that, by numerical means or other-

1
wise, a finite set of moment u, = f yaz™ dxz may be computed, y being the
o

ordinate of the empirical curve.
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The problem to be considered here is that of determining a function f(x) of
the form

M) @ =20~ 2 Dyar’,  R@> -1, RE > -1
such that
@) [ 1@a™ do =

as m ranges from zero to the number of the highest moment known. f(z) is
then an approximation to y which may be written

(3) y = f(x).

TaEOREM 1°. Given a finite set of moments wo , p1, g2, * - * , fn , and given that
R(a) > —1, R(B) > —1, define

wg) = Tptaetl ¥ (p)I‘(m+p+a+/3+1) \m
(4) Sp( 76) r(p+a+‘3+1) ;m m I‘(m+a+1) ( ),“m’
o = (=)
) T ETkFat 1)
3, @t ot B DI tEtatf+D g o
W P—KITp+8+1) R

©® @ =20 — 2 Z ey

Then f(z) will satisfy (2) form = 0,1, -+ , n.
2°. If, in addition to 1°, uni1 ts known and o and B satisfy
(7) S?H-l(a; .B) = 07

then f(x) will satisfy (2) form = n + 1 also.
3°. If, in addition to 1° and 2°, p.2 ts also known, and if a, 8 also satisfy

(8) Sniz(e, B) = 0,

then f(x) will satisfy (2) form =n + 2 as well.
Proor. Let P (z) be the Jacobi polynomial of order m defined in terms
of the hypergeometric function by

@ PYPe) = (m;t a) F(—=m,m +a+8+1;a+1;3 — 32).
Let Pi*®(1 — 2u) symbolically represent the expression gotten by substituting
us, for 2, in the expansion of the polynomial P{**® (1 — 2z). There exist numbers

A, such that

(10) 2" = Dy A PEPA - 22).
0
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Also
an = 20 Ana PP (1 — 20).

For R(a) > —1,R(8) > —1, define

ey v 2t at+ B+ DpITFa+B8+1)
@) = a0 = e e T I T BT D

X PP — 2u)PSP (1 — 22).

12)

Then bjr (10), form = 0,1, -+ ,n,

1
ma N @p+a+B+1DpITp+a+8+1)
fof(”)xd””"‘o\:’ T +a+ LT + B+ 1)

m 1
X D dma [ 2" — 2P PEP(L — 2)PSP( — 22) do.
0 o
By the orthogonality of the Jacobi polynomials, [1; §4.3],

1 n
[ @ as = >0 s PSP = 2).

P51 —24)

By (11),

folf(x)x"‘dx=um, (m=0,1,---,n).

It follows from (2) that f(x) as defined in (12) is the f(z) of (1). It remains to be
shown that (12) may be expressed in the form (4)—(6).
From (9),

Tp+a+1)

(@B 1 _ =
Py — 20) Tp+a+B+1)

13

( ) Xi (_)m P(p+m+a+ﬂ+l)xm
" m!(p — m)! 'm 4+ a«+1) ’

so by (4),

(14) PEO(L = 2) = = Sy(a, B)

Inserting (13) and (14) into (12),
R _ ] = 2p + a + ,3 + 1
J@) = "0 = & 2 S T

L (=) Te+k+a+B+1) ,
X Zo:kk!(p — k)! Tk +a+1) z" Sp(e, B)

= z%(1 ﬂz”: (—)kxk
=2"(1 —2) BTk + « + 1
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= 2*(1 — 2)° Zk oMk,
0

by (5), so the f(x) of (12) may be expressed in the form (4)-(6), and part 1° of
the theorem is established.

If (7) holds, by (5), a{"*" = a{™ for k = 0,1, - -+ ,n,and a {*I" = 0. There-
fore, in (6),

n+1
1@ = 2701 — 2 a0,
0

and by part 1°, for the case in which = is replaced by » + 1, it follows that (2)
holds for m = n + 1, so part 2° is established. The establishment of part 3°
is essentially the same.

In applying this theorem to the problem of empirical curve fitting, it follows
from (6) that the constants « and 8 should differ from zero only if the empirical
curve approaches zero or infinity at one or both of its endpoints. With this
in mind the following rules may be stated:

Case A. If, in the empirical curve, f(0) 5 0 or «, and f(1) > 0 or «, set
a = 8 = 0, and let n be one less than the number of moments that it is desired
to fit.

CaseB. Iff(0) = Oor « and f(1) # 0 or «,set 8 = 0 and determine « from
(7), n being two less than the number of moments that it is desired to fit.

Case C. If f(0) ¢ 0 or « and f(1) = 0 or =, set « = 0 and determine g8
from (7), n being two less than the number of moments that it is desired to fit.

Case D. Iff(0) = Oor « and f(1) = 0 or «, determine both « and 8 from
the two equations (7) and (8), n being three less than the number of moments
that it is desired to fit.

It may happen that these processes cannot be carried out, or at least cannot be
conveniently carried out. If this is the case, a or 8 may be set arbitrarily and n
taken as one unit higher than before, or both @ and 8 may be set, and n taken
as two units higher than before.

In Case D, above, the solution of equations (7) and (8) may often prove
difficult, making it advisable to follow the suggestions of the last paragraph.
In certain special cases, however, their solution is not difficult.

Suppose, for example, the moments satisfied the equations

(15) U = Z,,()( Ve, m=0,1,--

If this is substituted into (4), and the order of summation reversed, on making
use of the identity

- I'(p + a) P TMa) (e —» + 1)
(16) E"()I‘(p—i—v)( ) ( )I‘(a——v—n+1)I‘(n+v)’

one obtains

(17) Sp(a, ,3) = (—-)pSp(,B, 0‘)-
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Therefore
(18) S2P+1(a) a) = 0.

When 7 is an integer, either n + 1 or n + 2 is odd. Therefore when (15)
holds, one of either (7) or (8) will be satisfied identically if we take 3 = a. The
other may then be solved for a.

As an example, suppose one had the moments g = 1, p1 = %, e = ¢, us = 3,
s = o, and wished to obtain an f(x) such that f(0) = 0, f(1) = 0. In this
case n = 2, and (15) is satisfied. It follows that (7) is satisfied identically when
B = a, and (8) gives

I'(2a + 5) I'(2a + 6) T'2a + 7)
r<a+1>+4r<a+2>( )”r( +3>( )

I‘(2a + 8) I'(2a + 9) _
r(a + 4) 16 T Tat5) T(a + 5) (240) =0

This easily reduces to
a4+ 5/2 47 (e + 5/2)(a + 3)
a+1 (¢ +1)(a + 2)

—6 (@ + 5/2)(a +7/2),, 81 (@ + 5/2)(a + 7/2)
(a + 1)(a + 2) 240 (a + 1)(a+2)

which reduces to the quadratic
4o’ — 6o + 5 = 0,

1—4

=0,

from which
(19 a=8=3/44+ (1/49)111.
These may be substituted into (4)—(6) to complete the solution.

REFERENCE
[1] G. SzEG6, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Pub., No. 23, 1939.

o

CONSISTENCY OF SEQUENTIAL BINOMIAL ESTIMATES

By J. WoLrowirz
Columbia University

The notion of consistency of an estimate, introduced by R. A. Fisher, applies
to a sequence of estimates which converge stochastically, with boundlessly
increasing sample size, to the parameter (or parameters) being estimated. Each
estimate is a function of a sample of observations, the number in each sample
being determined independently of the observations themselves. In sequential
estimation, on the other hand, the number of observations is itself a chance



