ESTIMATION OF LINEAR FUNCTIONS OF CELL PROPORTIONS

By Jounx H. SMmiTH

Bureaw of Labor Statistics

Summary. In this article certain contributions are made to the theory of
estimating linear functions of cell proportions in connection with the methods
of (1) least squares, (2) minimum chi-square, and (3) maximum likelihood.
Distinctions among these three methods made by previous writers arise out of
(1) confusion concerning theoretical vs. practical weights, (2) neglect of effects
of correlation between sampling errors, and (3) disagreement concerning methods
of minimization. Throughout the paper the equivalence of these three methods
from a practical point of view has been emphasized in order to facilitate the
integration and adaptation of existing statistical techniques. To this end:

1. The method of least squares as derived by Gauss in 1821-23 [6, pp. 224—
228] in which weights in theory are chosen so as to minimize sampling variances
is herein called the ideal method of least squares and the theoretical estimates
are called ideal linear estimates. This approach avoids confusion between
practical approximations and theoretical exact weights.

2. The ideal method of least squares is applied to uncorrelated linear func-
tions of correlated sample frequencies to determine the appropriate quantity
to minimize in order to derive ideal linear estimates in sample-frequency prob-
lems. This approach leads to a sum of squares of standardized uncorrelated
linear functions of sampling errors in which statistics are to be substituted in
numerators.

3. A new elementary method is used to reduce the sum of squares in (2)—
before substitution of statistics—to Pearson’s expression for chi-square. In
this result, obtained without approximation, appropriate substitution of sta-
tistics shows that the denominators of chi-square should be treated as constant
parameters in the differentiation process in order to minimize chi-square in
conformity with the ideal method of least squares.

4. The ideal method of minimum chi-square, derived in (3) as the sample-
frequency form of the ideal method of least squares, yields ideal linear estimates
in terms of the unknown parameters in the denominators of chi-square. When
these parameters are estimated by successive approximations in such a way as
to be consistent with statistics based on them, it is shown that the method of
minimum chi-square leads to maximum likelihood statistics.

5. An iterative method which converges to maximum likelihood estimates is
developed for the case in which observations are cross-classified and first order
totals are known. In comparison with Deming’s asymptotically efficient
statistics, it is shown that, in a certain sense, maximum likelihood statistics
are superior for any given value of n—especially in small samples.

6. The method of proportional distribution of marginal adjustments is de-
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veloped. This method yields estimates of expected cell frequencies whose
efficiency is 100 per cent when universe cell frequencies are proportional—a
condition closely approximated in most practical surveys for which first order
totals are available from complete censuses. Whether this favorable condition
is satisfied or not, the method yields results which are easy to interpret and it
has many computational advantages from the point of view of economy of time
and effort.

Throughout the article discussion is confined to the estimation of parameters
whose relationships to cell proportions are linear. However, most of the results
can be extended to the case of non-linear relationships, the necessary qualifica-
tions being similar to those in curve-fitting problems when the function to be
fitted is not linear in its parameters. In this case, of course, least squares esti-
mates are not linear estimates. In particular, obvious extensions of the general
proofs in sections 5 and 6 make them applicable to the non-linear case. Thus
even when relationships are non-linear, it can be shown that the method of
minimum chi-square is the sample-frequency form of the method of least squares
which leads (by means of appropriate successive approximations) to maximum
likelihood statistics in sample-frequency problems. This principle which
establishes the equivalence of the methods of least squares, minimum chi-square,
and maximum likelihood greatly facilitates the integration and adaptation of
existing techniques developed in connection with these important methods of
estimation.

1. Introduction. This article deals with problems of statistical estimation in
which the parameters to be estimated are cell proportions or linear functions of
them. A simple illustration of this type of problem is that of estimating p,
the proportion of white men in a population classified by race and sex. Fom
a sample of n persons selected at random from such a population, the desired
proportion can be estimated by simply taking the sample proportion of white
men as an estimate of the corresponding cell proportion in the population or
universe. This estimate is unbiased for all possible values of p and its sampling
variance is p(1 — p)/n—assuming, for simplicity, that sampling is done with
replacements. Whether a more accurate unbiased estimate of p can be derived
depends on whether or not any other relevant information concerning the cell
proportions in the universe is available. For example, it may be known that
all of the white portion of the population is composed of married couples so that
in the universe the number of white men is exactly equal to the number of white
women. This knowledge implies that half the proportion of whites provides an
unbiased estimate of p which is far more accurate than the sample proportion
of white men. In fact, the sampling variance of half the proportion of whites
is equal to (2p)(1 — 2p)/4n—Iless than half the sampling variance of the pro-
portion of white men.

The term ideal linear estimate will be used to refer to any statistic which satis-
fies the criteria of estimation implied by the foregoing discussion—that is, an
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ideal linear esimate is any estimate which (1) is a linear function of the sample
observations; (2) is recognizable as unbiased by the research worker; and (3)
has minimum sampling variance among estimates which have properties (1)
and (2). These important criteria of estimation will now be stated in more
technical language.

Let ny , nz, and n; represent the number of (1) white men, (2) white women
and (3) non-white persons, respectively, in samples of n persons. Since any
linear function with a constant term can be reduced to the homogeneous form
by adding an appropriate multiple of the identity

(1.1) n o+ ny 4+ ng —n =0,

it is possible, without loss of generality, to confine attention to linear estimates
of the form

(1.2) T = amy + ane + agns,

which are recognizable as unbiased. In this example, the research worker is
assumed to know that the cell proportions in the universe are

(1'3) Pr, P2, P3 =D, D 1 - 2?-
Hence, absence of bias implies that the expected value of 7'
(1.4) E(T) = amp + amnpe + asnps

= (a; + a» — 2a3)np + nas
is identically equal to p; in other words, that
(1.5) n(ag + a — 2a3) — 1 =0,
and
nag = 0.

The ideal linear esimate is derived by finding values of a,, a;, and a3 which
minimize the sampling variance of 7T subject to equations (1.5) as side condi-
tions.! In this way it can be shown that half the sample proportion of whites
is actually the ideal linear estimate of p. For more general problems, the
process of minimization of sampling variances with the aid of Lagrange multi-
pliers involves expressions which are complicated algebraically. For this reason
it is usually easier to derive ideal linear estimates of parameters which are linear
functions of cell proportions by the ideal method of least squares which is
presented in section 4.

Like other least squares estimates, an ideal linear estimate of a linear function
of cell proportions depends on ideal least squares weights. Since these weights

! In this example, it is possible to solve equations (1.5) for a; in terms of a: , drop sub-
seripts, and substitute in the formula for the sampling variance of T' to obtain a quadratic
in ¢ to be minimized.
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are, in general, functions of variances and covariances of sample frequencies,
the theoretical connotation of the term “ideal” makes it preferable to other
terms such as “optimum’ and “best.” In this connection it should be em-
phasized that (1) the sampling variance of linear estimates is insensitive to
small errors in estimating ideal weights, and (2) the process of deriving practical
approximations to ideal linear estimates automatically provides maximum
likelihood estimates of the ideal weights. Thus the estimation of weights is
perfectly objective and the best practical approximations to ideal linear esti-
mates are expressed in terms of sample observations. This degree of objec-
tivity is rare in statistical estimation as a brief consideration of regression prob-
lems will illustrate.

In ordinary regression problems, the ideal weights are inversely proportional
to error variances. It is usually necessary to draw upon past experience to
estimate relative weights because satisfactory estimates of error variances
are rarely available in terms of sample observations. From the present point
of view, the widespread use of equal weights implies the subjective “‘assumption”
that all error variances are equal. (Maximum likelihood estimates of regression
coefficients require, in addition, the even more subjective assumption of nor-
mality.) In spite of these (usually implicit) subjective assumptions, dis-
cussions of optimum properties of least squares regression coefficients based on
ideal weights in terms of unknown parameters are highly commendable because
(1) sampling variance is not very sensitive to small errors in weights and (2)
properties of theoretical ideal linear estimates furnish a simple basis for dis-
cussion of the properties of practical statistics based on any reasonably good
approximations to the exact ideal weights. In any case, it is important to
know what the ideal weights are in terms of unknown parameters because
research workers can make better estimates if they know what quantities should
be estimated than they could otherwise.

2. Estimation of a single parameter. In sample-frequency problems, least
squares weights are rarely given explicitly or even implied by information
available to the research worker. Since the hypothetical example used in
Section 1 js a trivial special case from this point of view, a more realistic ex-
ample is presented in this section. Since the biological interpretation of this
problem is presented in detail in all but the first of the many editions of Fisher’s
well-known book [3] it is sufficient here to consider only the statistical problem.
The four cell proportions are

(2'1) P, P2, D3, P4 = (2 + 0)/4’ (1 - 0)/4; (1 - 0)/4’ 0/47
and the parameter 6 is to be estimated from the set of sample frequencies
(2.2) m, Ny, Mg, ma = 1997, 906, 904, 32,

obtained in a sample of n = 3839 selected at random from an infinite universe.
Fisher considers five different statistics—T,, T2, Ts, T4, and Ts—so it will
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be convenient to use the symbol T, for the ideal linear estimate. Consider
the class of linear unbiased estimates of the form

(2.3) T = aymy + agne + asns + agmy,
where absence of bias implies that

(2.4) 20, + @ + a3 = 0
and

a — a — a3 + a, — 4/n = 0.

Minimizing the sampling variance of T in equation (2.3) subject to side
conditions based on equations (2.4) yields the ideal linear estimate T defined
by the equation

(25) n(l + 20)T6 = 30n1 —_ 30112 —_ 30”3 + (4 —_ 0)7&4.
The exact sampling variance of T,

. 20(L — 0)(2 +6)
2.6) e T

is used by Fisher as the asymptotic sampling variance of any efficient estimate
of 0. The exact sampling variance of the ideal linear estimate is especially
appropriate as the asymptotic sampling variance of the maximum likelihood
estimate Ty because T is the limit of an iterative process designed to estimate
T4 as closely as possible from sample data by using successive approximations
to T for 6 in equation (2.5). The limit of this process (which is, of course,
only an approximation to Tg) can be obtained by substituting the symbol T,
for both T’ and 6 in equation (2.5) and solving the resulting quadratic equation
which can be reduced to

(27) nTi —_ (nl - 2112 - 27L3 bt n4)T4 —_ 2n4 = O,

an equation which is identical, except for notation, with Fisher’s equation of
maximum likelihood of which T is the positive solution.

The foregoing result is a comparatively simple illustration of the general
principle that the maximum likelihood estimate of any linear function of cell
proportions is the limit of an iterative process designed to approximate the
corresponding linear estimate as closely as possible by means of sample fre-
quencies. Since the accuracy of estimates of least squares relative weights
increases with size of sample, maximum likelihood statistics have, in an asymp-
totic sense for large samples, the same optimum properties which are possessed
in an exact sense (even for small samples) by the corresponding ideal linear
estimates. Thus the results obtained by means of the theory of large samples
are supported by the approach to estimation problems by means of ideal linear
estimates. In addition, the later approach facilitates the integration of
available techniques as explained in later sections.
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It is true that the optimum properties of maximum likelihood statistics can
be presented in terms of the theory of large samples, but the fact that a given
method of estimation yields a statistic whose asymptotic sampling variance is
a minimum does not imply that the same technique will yield a minimum
variance statistic for any given small value of n. For example, it is well known
that the median is a maximum likelihood estimate of the midpoint of a double
exponential universe. Nevertheless, in samples of three observations from
such a universe, another statistic—4,/9 of the mean plus 5/9 of the median—
has greater relative advantage over the median than the median has over the
mean.

Fisher’s discussion of the relative efficiencies of his five alternative consistent
statistics suggests that it is impossible to formulate objective criteria for making
choices among alternative statistics such that each statistic will be used whenever
its sampling variance is smallest. Consider the sequence of universes generated
by letting 6 vary from zero to unity. In general, each value of 8 would deter-
mine which of Fisher’s five statistics would have smallest sampling variance
for that particular universe for any given value of n. In comparison with
any other single statistic, the statistic T4, would usually have smaller sampling
variance, but there are notable exceptions. For example, in the absence of
linkage when 6 is equal to one-fourth, the statistic T, is the ideal linear estimate
and its sampling variance is smaller than that of Ts+—at least for certain small
values of n. For this reason, Fisher used T, in preference to T, as the basis for
testing the significance of linkage. The statistic Ts—derived by Fisher’s method
of minimum chi-square—is also of special interest. Fisher’s method of minimum
chi-square yields statistics which differ from the corresponding maximum
likelihood statistics because Fisher considers the denominators as variables in
the process of differentiation instead of considering them as unknown para-
meters to be estimated by identifying them with the corresponding statistics
in the numerators after differentiation. Arguments of later sections tend to
show that the latter method is more appropriate. In this example, it can be
shown that if T’5 were substituted for the corresponding parameter in the de-
nominators of chi-square (and treated as a parameter) the minimization of chi-
square with respect to statistics in its numerators would be exactly equivalent
to substituting 0.035785, the numerical value of 7’5 for 8 in equation (2.5) and
solving for T's to obtain 0.035717, a value which is much closer to 0.035712,
the numerical value of the maximum likelihood estimate 7T's than to Fisher’s 7’5 .
In problems of estimation chi-square should be minimized in order to obtain
efficient statistics—not to obtain a small criterion for testing goodness of fit—
and it should be minimized in a manner consistent with this purpose. Whether
or not it is possible to derive an even smaller value for a quantity called chi-
square should be considered to be irrelevant in either estimation problems or
tests of significance. It is difficult to present these ideas in more technical
language because it is possible to construct trivial hypothetical universes for
which Fisher’s method of minimum chi-square provides statistics which are
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superior in certain respects to the corresponding maximum likelihood statistics.
Nevertheless, it seems clear that the ideal linear estimate usually has smaller—
sampling variance than the maximum likelihood statistic which, in turn, usually
has smaller sampling variance than any other given practical statistic. Evi-
dence presented in later sections tends to show that these advantages are more
important in small samples than in cases in which the theory of large samples
is applicable.

3. The “ideal” method of least squares. When sample observations are
uncorrelated in successive samples and parameters to be estimated are linear
functions of the expected values of the sample observations, the method of least
squares yields ideal linear estimates of the parametes provided that the weight of
each observation is inversely proportional to its variance in successive samples.
Although the minimum sampling variance property among linear unbiased
estimates is seldom stressed, this principle of weighting has been presented in
connection with the method of least squares for more than a hundred years.
In order to emphasize the theoretical nature of weights which depend on vari-
ances which are usually unknown in practice and to distinguish the method
based on such weights from the more familiar method of least squares with
equal weights, the method which yields ideal linear estimates will be called the
ideal method of least squares.

Discussion of the general problem of estimating linear functions of cell pro-
portions can be facilitated by making use of results obtained by other writers—
notably Gauss (as reported by Whittaker and Robinson [6]) and Pearson [4].
According to Whittaker and Robinson, “the first writer to connect the method
[of ideal least squares] with the theory of probability was Gauss” [6, p. 224].
In his Theoria Motus proof of 1809, Gauss derived the ‘“‘most probable value”
[6, p. 223] of a parameter (i.e., the statistic which satisfies the criterion now
called maximum likelihood) for the case in which sample observations are sta-
tistically independent and normally distributed. In his Theoria Combinationis
proof of 1821-23, Gauss “abandoned the ‘metaphysical’ basis” [6, p. 220] of
his earlier work and derived the method herein called the ideal method of least
squares (without approximation) from the criteria of (1) minimum variance and
(2) absence of bias for the case in which “the mean value of [the covariance of
a pair of errors] is zero” [6, p. 224]. Since the covariances of uncorrelated linear
functions are zero whether they are stafistically independent or not, it follows
from the work of Gauss that the ideal method of least squares applied to un-
correlated linear functions of sample frequencies yields ideal linear estimates.
In other words, the ideal method of least squares implies the following six steps:

1. From the set of & + 1 sample frequencies construct & linear functions

which are uncorrelated in successive samples.

2. From each function subtract its expected value in terms of the unknown

parameters to find its sampling error.



238 JOHN H. SMITH

3. Write the ratio of each sampling error to its own standard error in the
form of a fraction.
4. Sum the squares of these standardized uncorrelated sampling errors to
obtain a quantity called chi-square. -
. Substitute statistics’ for the parameters in the numerators of chi-square.
6. Minimize the sum of squares of residuals with respect to each statistic
in turn (subject to appropriate side conditions in case linear functions
not implied in preceding steps are known).

This series of six steps can be summarized by the single statement that the
function to minimize is the sum of squares of standardized uncorrelated resid-
uals. Actually this statement is oversimplified because even though sampling
errors are both uncorrelated and standardized, the corresponding residuals
are, in general, neither standardized nor uncorrelated.

[}

4. Pearson’s expression for chi-square. As defined by Pearson [4], chi-
square is the sum of squares of a set of k standardized uncorrelated linear func-
tions of sampling errors in a set of k£ + 1 correlated sample frequencies. A set
of k standardized uncorrelated linear functions can be constructed in an infinite
number of ways, but each set can be obtained from any of the others by means
of an orthogonal transformation. Thus the sum of squares is the same no
matter what set is originally chosen. As his set of standardized uncorrelated
linear functions, Pearson chose those determined by the axes of the correlation
ellipse for which he gave the required sum of squares in terms of “minors” or
cofactors of the correlation determinant of the first k sample frequencies. Pear-
son reduced this complicated expression to the now familiar form

k41

(4.1) X' = 2 (ni — np:)*/np;,

where p; is the proportion in the sth cell in the universe and n; is the frequency
in the ith cell of a sample of n observations selected at random from an infinite
universe (or with replacements from a finite universe).

The widespread misunderstanding of the nature of chi-square seems to be
based primarily on the facts that

1. Pearson’s rule for degrees of freedom is inadequate (see section 5), and

2. Pearson’s expression for chi-square can be derived by approximate methods

as well as by exact methods.

Pearson’s derivation of the expression for chi-square by exact methods is suf-
ficient to show that its derivation by approximate methods involves a paradox
in which different sets of approximations offset each other; however, Pearson’s
article is relatively inaccessible and, in addition, his algabraic reductions involve

2 It is convenient to call these variable symbols ‘‘statistics’’; the quantities whose
squares are summed, “‘residuals’’; and the whole expression ‘‘chi-square,” even though,
from a certain point of view, these terms are strictly applicable only after the minimiza-
tion process. This usage should always be clear from its context.
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the minors of a general determinant of the kth order. For these reasons, the
following exact derivation-is presented in terms of elementary algebra.

Since the sum of squares is the same for any set of k standardized uncorrelated
linear functions of the sampling errorsin k + 1 correlated frequencies, a set should
be chosen for which the algebraic reductions are as easy as possible. From this
point of view a satisfactory set, which can be written in any of three forms, is
given by

(4.2) Yi = PMit — Piti
= Pi€i+ — Pi+bi
= —piei. — (Ps + Divdes

where e; = n; — np; and i+ and ¢— refer to classes formed by combining all
classes above the ¢th class and below the sth class, respectively.

By means of the known variances and covariances of the sample frequencies
in expected value form,

(4.3) E(e) = npd1 — p)),

and

(4.4) E(ee) = —npps, '
it can be shown that the variance of y; is

(4.5) E(y:) = nppi+(pi + pit),

and, by using the third expression in equation (4.2) for y; and the second for
y; , it can be shown that any pair of y’s are uncorrelated because

(4.6) E(yyj) = 0, (@ < ).

Let z; represent the variable y; expressed in standard-deviation units. The
square of this standardized uncorrelated linear function of correlated sampling
errors can be written

2
47 = (Bl — pac)
@0 nPipir(ps + Piv)
Tt remains to show that Pearson’s expression for chi-square can be obtained

by adding the k values of 22 in succession. For this purpose it is convenient
to define

T 2 2
4. D DL
4.8) X ;1 np: + P ’

obtained by combining all classes above the rth class.

When r = k, the expression in equation (4.8) is the expression to be derived.
It remains to show that x; is the sum of squares of k standardized uncorrelated
linear functions of sampling errors; i.e.,
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k
4.9) Xk = 2 2.
)
For the first cell ;. = —e;and pry. = 1 — p1.  Hencey reduces to the negative
of the error in the first frequency and
(4.10) xi = éi/npy(1 — p)
= ei/npy + e1+/npry (Pre =1 — p1),

a special case expressed in the required form. The general case is established
by showing that

(4.11) Xiet + 2= %,
or, alternatively, that

2 2 2
%y = Xr = Xr—1

= 33/ npr + eﬁ-’-/ npry — (6 + 3r+)2/ n(pr + pr+)
_ (i€l + pr i) P + Prt) — PP (€] + 20,000 + 0r)
1P, Pr (0 + Dri)
— pf e?'-l- - 2pr Pry6rry + pf+ 63 = (pr €ry — Dr+ er)z
1P, Pri(Dr + Pri) ’

thus establishing the derivation of Pearson’s expression for chi-square.
When sampling is done without replacement each variance and covariance

is multiplied by (N — n)/(N — 1) where N is the number of observationsin

the universe. Hence, chi-square for this case can be written

N - 18 g

N —n S npi’

4.12)

4.13) X’ =

This expression shows that the factor involving sampling errors is the same
whether sampling is done with replacement or without replacement. Hence,
the derivation of least squares statistics is the same for either method of sampling,
but sampling variances for the simpler case are multiplied by the factor (N — n)/
(N — 1) when sampling is done without replacement. ‘

6. The method of minimum chi-square. The derivation of Pearson’s ex-
pression for chi-square completes first four steps of the ideal method of least
squares outlined in section 3. Hence, the method of minimum chi-square is
the sample-frequency form of the ideal method of least squares in which only
two of the six steps remain to be taken.

In his original article [4] Pearson pointed out that the use of statistics instead
of parameters would affect the value of chi-square but that such effects would
usually be so small that no allowance need be made for them in connection with
tests of significance. It is now well known that the average value of chi-square
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is reduced approximately one unit for each parameter estimated from the sample,
and that the main portion of this effect is on the numerators;i.e., in large samples
the effect of substituting statistics for parameters in the denominators usually
has a negligible effect on the value of chi-square. By confining the discussion
to the case in which parameters are used in the denominators, it is possible to
make simple exact statements concerning the main effects in terms of the number
of squares of standardized uncorrelated linear functions—also known as the
number of degrees of freedom and the mean value of chi-square.

When the expected values in the numerators of chi-square can be expressed
as linear functions of r algebraically independent parameters, ideal linear esti-
mates of the r parameters are determined by substituting statistics for the r
parameters and minimizing the resulting expression wth respect to each sta-
tistic. In general, such a substitution of statistics for parameters in the numer-
ators of chi-square reduces the number of degrees of freedom by one unit for
every parameter estimated; that is, the appropriately minimized chi-square
can be analyzed into k — r squares of standardized uncorrelated linear functions
of sampling errors.

The r ideal linear estimates are linear functions of the sample frequencies.
Let (v1, v2, -+, v;) be a set of standardized uncorrelated linear functions of
the correlated sampling errors in these statistics and let (v1, v2, - - -, vx) be a set
of linear functions obtained from the z,’s of section 3 by an orthogonal trans-
formation. Since the sum of squares is not changed by such a transformation,
chi-square is the sum of the & values of v3. The process of substituting statis-
tics for the r parameters in the numerators of chi-square reduces the values of
the first 7?%’s to zero without affecting the values of the other (k — r)v¥’s.

Thus the appropriately minimized chi-square can be analyzed into &k — r
squares of standardized uncorrelated linear functions of sampling errors and is
therefore said to have k — r degrees of freedom. The mean value of each square
is the variance of a standardized linear function of sampling errors and is there-
fore unity by definition. Hence the mean value of the appropriately minimized
chi-square (with parameters in the denominators) is exactly ¥ — r when r
statistics are estimated from a set of &k + 1 sample frequencies.

The expression to be minimized is

’\2
5.1 2 _ (n; — my)
(5.1) X =2 g
where m; is the ideal linear estimate of np;. The set of statistics described
by the equation

(5.2) m: = n;,

reduces the value of chi-square to zero—its minimum value. This shows that
the sample cell proportion is the ideal linear estimate of the corresponding
parameter.

Whenever a linear function independent of the sum of the cell proportions is
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known, it is possible to take advantage of additional information provided by
the known function by minimizing chi-square subject to an appropriate side
condition. When side conditions are used in this way, the number of degrees
of freedom for the minimized chi-square is equal to the number of side conditions
which are. algebraically independent of each other (and of the sum of the cell
proportions). Let the known linear function be written

(5.3) Zanp; — m = 0.

In order to facilitate comparison of the typical equation of maximization
with the corresponding equation of the method of maximum likelihood, it is
convenient to minimize chi-square by maximizing —x’/2 subject to a side
condition based on (5.3). The function to be maximized can be written

(5.4) —x/2 = Z(n: — m)*/(—2np) + h(Zam; — m),

where h is a Lagrange multiplier. Setting the partial derivative of —x'/2
with respect to m; equal to zero, the typical equation for minimizing chi-square
can be written

(55) (n,- - m:)/np, + ha.~ = O,

a form which shows that, in general, ideal linéar estimates are defined in terms
of unknown parameters. Fortunately, these parameters can usually be approxi-
mated closely by an iterative process. Substituting m; for both np; and m;
in equations (5.5) the typical equation in the limiting values of such a process
can be reduced to

(56) n.-/m.- — 1+ ha; = 0,

a form which is identical with the typical equation (6.6) of maximum likelihood
derived in section 6. This equality of typical equations implies that whenever
the denominators of chi-square are estimated in such a way as to be consistent
with least squares statistics based on them, the method of minimum chi-square
always leads (by means of approximations necessary in practice) to maximum
likelihood estimates of parameters which are linear functions of cell proportions.

6. The method of maximum likelihood. Maximum likelihood estimates of
linear functions of cell proportions can be obtained by (1) expressing the prob-
ability function (general term of the multinomial expansion) in terms of the r
parameters to be estimated; (2) substituting r statistics for the r parameters;
and (3) maximizing with respect to the r statistics. In practice, this is usually
accomplished by maximizing the logarithm of the variable factor in step (3)
which can be written,

6.1) L = Zn;logm;,

where m; is the maximum likelihood estimate of np;, the expected value of the
ith frequency n; in a sample of n observations classified into (k 4 1) classes or
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cells. It is evident that L as written has no maximum with respect to any m;
since it increases without bound as m;increases, but it sometimes has a uniquely
determined maximum when each of the m.’s is written explicitly in terms of
less than & + 1 algebraically independent statistics. In the general case it is
easier to maximize L subject to an appropriate set of side conditions, one of
which must be equivalent to

(6-2) m + my + - + mppa — n = 0.

When no linear function except the sum is known, the likelihood function
can be written

(6.3) L = Zn;logm; — (Em; — n),

a function which, subject to equation (6.2), is always equal to that in equation
(6.1) but which has a uniquely determined maximum. The typical equation of
maximum likelihood, obtained by setting the partial derivative of L with respect
to m; equal to zero, is

(64) n;/m; — 1 = 0,

an equation which shows that each sample frequency is a maximum likelihood
estimate of its own expected value.

When a linear function such as that in equation (5.3) is known, an improved
set, of maximum likelihood statistics can be found by maximizing

(6.5) L = Zn;logm; — (Zm; — n) + h(Zam; — m).
The typical equation of maximization is found to be
(66) n;/m.- — 1 + ha; = 0,

an equation which, as stated above, is identical with equation (5.5). Since
equation (5.5) was obtained as the limit of an iterative process from the typical
equation (5.4) for minimizing chi-square subject to the same side condition
and since each additional side condition affects the typical equation of each
method in exactly the same way, the method of minimum chi-square and the
method of maximum likelihood are equivalent for the general case in the sense
that the method of minimum chi-square always leads to maximum likelihood
statistics as limits of an iterative process.

7. Second-order tables with known expected marginal totals. As stated in
section 2, the integration of available techniques is facilitated by regarding
maximum likelihood statistics as the best practical approximations to the
corresponding ideal linear estimates. Since this important principle may not
be immediately obvious, it will be illustrated for the important special case of
second-order tables for which the expected marginal totals are known.

Consider a sample of n observations arranged on two bases of classification
and presented in a table containing r rows and s columns. The universe of N
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observations has been completely enumerated and classified on each basis
separately but not cross-classified;i.e., universe totals of first order classes are
known.

For the cell in the 7th row and the jth column, let p;; represent the universe
cell proportion; n;;, the sample frequency; np;;, the expected value of n;;;
and m;;, the maximum likelihood estimate of mp;;. Indicating summation
by substituting a dot for the letter over which summation is to be performed,
the known marginal totals satisfy the equations

Np; — N.; =0,

where p;. and p.; are the universe proportions and N; and N ; are the known
universe totals in the 7th row and the jth column, respectively.

When 7 observations of a random sample are arranged according to two
bases of classification in a table with r rows and s columns for which the r + s
marginal totals are known, the typical equation of maximum likelihood can
be obtained by maximizing, subject to side conditions based on equations (7.1),
the likelihood function

(7.2) L = 2Zn;;logmi; — Zai(m;, — n;) — Zb(m.; — n.j),

with respect to the maximum likelihood estimates m;; , where a; and b; are typical
Lagrange multipliers. Setting the partial derivative with respect to m;; equal
to zero and transposing, the typical equation of maximum likelihood can be
written

(73) n;j/mij = a; + bj.

Since equations (7.3) are not linear in their unknowns, the reader’s first
reaction might well be to agree with a certain anonymous critic that “their
solution is difficult.” This impression of great difficulty is probably the chief
reason that previous writers have not used the method of maximum likelihood
for this type of problem even after they had developed a set of techniques ade-
quate for the solution of the equations of maximum likelihood. In other words,
all that was needed was the integration of available techniques as will now
be shown.

In 1940, Deming and Stephan [2] derived a set of normal equations for the
adjustment of a set of second-order cell frequencies to known expected marginal
totals by the method of least squares in which each sample frequency is weighted
by its own reciprocal. This method yields statistics which are efficient according
to the theory of large samples, but they do not satisfy the criterion of maximum
likelihood exactly. In the same article was presented an easier method of
iterative proportions, which, unfortunately, does not yield least squares sta-
tistics. In 1942, Stephan [5] developed an improved iterative process which
yields statistics which satisfy the criterion of least squares with arbitrarily
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chosen weights. The foregoing developments are presented in greater detail
in Deming’s book [1] in which Deming adapts Stephan’s iterative method to
the particular case in which each sample frequency is weighted by its own
reciprocal so as to yield solutions for the normal equations derived in the joint
article [2].

In Deming’s notation, equation 8 of Stephan’s article [5, p. 169] can be written

(7.4) mi; = cij(pi + ¢; — 1) + nij,

an expression obtained by substituting c;; for np;; in the denominators of chi-
square and minimizing with respect to the statistics in the numerators. Hence,
if exact values of the np,; were used for the c;;, the Stephan iterative method
would yield ideal linear estimates. Unless these parameters are implied by
some hypothesis to be tested, it is necessary, in practice, to estimate the nP;;
from sample data. In order to secure maximum likelihood estimates of expected
cell frequencies by means of the Stephan iterative method, the adjusted fre-
quencies based on first approximations to the ¢;; should be used as second ap-
proximations to the ¢;;, etc. In this way, maximum likelihood statistics can
be derived to any desired degree of approximation. At this point it should
be emphasized that the preceding statement applies not only to the class of
problems considered in this section but also to the wider class of problems for
which the Stephan iterative method provides solutions.

Unfortunately, theoretical discussions of previous writers contain confusing
compensating errors which (1) present their own methods in an unnecessarily
unfavorable light and (2) increase the difficulties involved in the introduction
of the improvements in techniques suggested in section 9 which involve some
degree of adaptation of techniques already available. For these reasons, it
seems necessary to follow the arguments of previous writers in order to show
the points at which improvements are needed. This can be done most effec-
tively in connection with Deming’s book [1] where the method of least squares
is presented in great detail.

For the special case in which the sampling errors in the observations are un-
correlated, the ideal criterion of least squares implies that the weight of each
observation should be inversely proportional to its sampling variance. This
criterion is accepted as well known by Deming who says that “the principle of
least squares requires the minimizing of the sum of the weighted squares of the
residuals” [1, p. 14] where “the weights of two functions are inversely pro-
portional to their variances” [1, p. 22]. Deming assumes that “there is no
correlation between the errors in the observations” with the qualification that
“this assumption covers a wide class of problems, but does fail to cover some.”
(1, p. 49]. This assumption of uncorrelated errors is not applicable to sample-
frequency problems, of course, because the sample frequencies are correlated
with each other in such a way that the reciprocals of the ideal least squares
weights are not proportional to the sampling variances np,jg:; but rather to
the expected frequencies np;; which appear in the denominators of chi-square.
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In this connection it is interesting to note that Deming himself insists that
“there is only one principle of least squares, namely, the minimizing of x>.”
[1,p.51]. However, the method currently in use for the minimizing of chi-square
was that given by Fisher [3] which leads to equations which are difficult to solve
even for such a simple example as the one presented in section 2 above.

Deming and Stephan are to be commended for seeking an easier method
but there is no justification (even as a device for saving effort) for their modifica-
tion of the “principle of least squares” so as to imply erroneously that

(1) weights of correlated sample frequencies are inversely proportional to

their variances, and

(2) sample frequencies are, in general, approximately proportional to their

own sampling variances.

Strangely enough, these two errors were applied in combination by Deming and
Stephan to obtain good practical approximations to the ideal least squares
weights. It might be argued that the second misleading implication is really
not an error because it is offered as a simplifying approximation, but it is an
integral part of both the normal equations approach in the joint article [2]
and Deming’s adaptation [1] of the Stephan iterative method; that is, in each
case the method would have to be revised if better approximations to the ideal
least squares weights were used. More explicitly, Deming (1) uses n; for Ste-
phan’s ¢;; in equation (7.4); (2) identifies it with the other %;; in the same equa-
tion; and (3) reduces the equation to a different form thus effectively preventing
the use of successive approximations to the ¢;; without returning to Stephan’s
iterative method in the general form given by equation (7.4) above which
Deming does not present at all. Results of the joint article [2] are quoted by
Stephan [5] without any explanation of the nature of the errors, but none of
these results are used in the development of his iterative method which as noted
above, is applicable to any arbitrarily chosen set of weights. The fact that
Stephan corrected the second error without correcting the first implies that the
weights he actually used are unsatisfactory. In Deming’s adaptation of the
Stephan iterative method, a much better set of weights is obtained, not by cor-
recting the first offsetting error overlooked by Stephan, but by resurrecting the
second offsetting error which Stephan had corrected. Since this error is an
integral part of Deming’s adaptation, Deming’s theoretical discussion implies
that his own efficient statistics are only rough approximations which are definitely
inferior to the inefficient statistics obtained by means of the weights chosen by
Stephan. These inconsistencies are most clearly brought out by Deming when
he says:

“Strictly, in random sampling, the reciprocal of the weight of n:; is np:;q:; , which is
nearly equal to n:;q:; where p and ¢ have their usual connotations. But since factors pro-
portional to the weights may be substituted for them, it is sufficient to use n:; as the re-
ciprocal of the weight in cell zj, since the values of ¢i; do not usually vary much over the
table.” [1, p. 102.]

In any given problem the seriousness of the error in the first statement in
the foregoing quotation depends on the variation among the g¢;;’s. In the par-
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ticular example used by Deming the error is of considerable importance because
the largest ¢;;is more than 40 per cent larger than the smallest ¢;;. The weights
actually used by Deming agree with weights implied by the ideal method of least
squares except for sampling errors in the n;; ; hence, the error in any relative
weight converges stochastically to zero so that Deming’s statistics are efficient
according to the theory of large samples. The efficiency of Deming’s statistics
is inconsistent with the theory presented by Deming which implies erroneously
that efficiency of estimation depends on approximate equality of cell proportions.
If this argument were true it would apply also to the method of maximum
likelihood and all other methods which yield efficient practical statistics in
sample-frequency problems. The foregoing discussion, together with the results
of section 8 show that the theory as presented by Deming has the following
seriously misleading features:

(1) it is based on a paradox in which a good final result is obtained by means

of compensating errors;

(2) it presents his efficient statistics in an unnecessarily unfavorable light;

(3) it emphasizes the irrelevant condition of approximate equality of universe

cell proportions;

(4) it fails to mention the important condition of proportionality by rows

and columns; and

(5) it makes least squares, minimum chi-square, and maximum likelihood

seem to be competing alternative methods.

Of these undesirable characteristics, the last two are probably the most serious
because they make the effective integration and adaptation of statistical tech-
niques more difficult. As has been shown in sections 4, 5, and 6, the sample-
frequency form of the ideal method of least squares is the method of minimum
chi-square which always leads (by means of appropriate practical approxima-
tions to unknown weights) to maximum likelihood statistics ; in other words,
the methods are equivalent from a practical point of view.

Since the ideal method of least squares based on the unknown np;; determines
fully efficient, but theoretical, ideal linear estimates, the efficiency of practical
approximations to ideal linear estimates depends on the accuracy with which
the denominators of chi-square are estimated. For the unknown denominators
np;;, Deming uses the sample frequencies n;; while the method of maximum
likelihood implies the use of the corresponding maximum likelihood estimates—
statistics which, in general, have smaller sampling variances. The foregoing
argument suggests that maximum likelihood statistics are slightly superior to
Deming’s statistics for any given finite value of » and that their relative ad-
vantage increases as the sample size decreases. In large samples both methods
yield efficient statistics because the relative errors in the weights implied by
either method converge stochastically to zero as n increases. Although the ad-
vantage of maximum likelihood statistics over Deming’s statistics is unim-
portant except in small samples, it can be shown that Deming’s choice of weights
leads to imperfectly compensated negative errors of estimation even in his
large sample of 33,837 observations.
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Deming weights each sample frequency by its own reciprocal. Positive errors
of sampling decrease the value of the reciprocal and thus increase the absolute
size of the required negative adjustments. Negative errors of sampling increase
the value of the reciprocal and thus decrease the size of the positive adjustment.
Thus every error of sampling (either positive or negative) leads to a negative
error of estimation due to inappropriate weighting. Because the sum of all
adjustments must be zero, these negative errors of estimation are compensated
on the average but more or less imperfectly. The net effect of this imperfect
compensation of negative errors of estimation is that Deming’s statistics are
too small in those cells in which the relative adjustments (either positive or
negative) are large, and vice versa. In a preliminary draft of this article,
this type of error of estimation was studied by comparing Deming’s statistics
with the corresponding maximum likelihood statistics in conection with Deming’s
example involving 33,837 observations. Although errors of estimation of the
type under discussion are apparent, they are, of course, extremely small in such
a large sample. For this reason the large-sample comparson has been deleted
in favor of simple hypothetical examples designed to throw light on similar errors
of estimation in statistics derived by Fisher’s method of minimum chi-square
as well as in those derived by Deming’s adaptation of Stephan’s iterative
method.

Consider a set of sample frequencies in a two-by-two table for which all
expected marginal totals are equal. For this special case, the cell proportions
on each diagonal are equal and the ideal linear estimate (which is also the
maximum likelihood estimate) of any cell proportion is the mean of the two
sample cell proportions on its diagonal. For the same case, Deming’s adaptation
of the Stephan iterative method yields an estimate for each cell which is pro-
portional to the harmonic mean of sample proportions on its diagonal while
Fisher’s method of minimum chi-square yields estimates proportional to the
corresponding quadratic means.

As a numerical example of the foregoing problem consider the set of fre-
quencies

(7.5) a1, Mz, Nar, N2 = 1, 4,3, 2,

obtained in a sample of 10 observations selected at random from a universe
in which the cell poportions are known to be

(7.6) D1, P2, P, P2 = P, 05 — p, 05 — p, p.

As estimates of the parameter p, the ideal linear estimate is .15, Deming’s
adaptation of the Stephan iterative method yields .14, and Fisher’s method of
minimum chi-square yields .1545 to four decimal places, the other two estimates
being exact. The results illustrate the imperfectly compensated errors of
estimation explained previously. The two sample frequencies on the principal
diagonal (ny; and ng) have greater relative dispersion than the frequencies on
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the other diagonal. For this reason, the relative adjustments made by Deming’s
method are greater and according to the principle of imperfectly compensated
negative errors of estimation, the estimate of p obtained by Deming’s method
is smaller than the ideal linear estimate of p. Fisher’s method of minimum
chi-square yields an estimate of p which is greater than the ideal linear estimate.
In fact, one should usually expect imperfectly compensated errors of estimation
in statistics derived by Fisher’s method of minimum chi-square to be opposite in
sign and about half as large as those in the corresponding statistics derived by
means of Deming’s adaptation of the Stephan iterative method.

At this point, it should be emphasized that Fisher does not recommend his
own method of minimum chi-square in preference to the method of maximum
likelihood. 1In fact, he presents the theory of estimation in such a way as to
imply correctly that the method of maximum likelihood is superior, especially
in small samples. Other writers have noted the small differences between
equations of maximum likelihood and those for minimizing chi-square by Fisher’s
method and some have even derived one set of equations from the other by
neglecting higher order terms in a Taylor series expansion. These derivations
are of no interest here because they seem to justify the method of maximum
likelihood as a simple approximation to some more complicated method. This
type of justification is both unnecessary and undesirable. It is more useful to
regard the method of maximum likelihood as an approximation to a method—
least squares—for which the theory is simpler.

Skeptical readers who find the foregoing argument unconvincing may be able
to profit from the following example. Consider the problem of estimating the
parameter p where 2p is the proportion of white balls in an urn. A sample of 10
balls is selected and classified by the following process. Each white ball is
placed in one of the cells on the principal diagonal of a two-by-two table, the
particular cell being decided by the toss of a coin. A similar method is used for
non-white balls placed in cells on the other diagonal. Assuming that the results
of this process are given by equation (7.5), which of the three alternative esti+
mates of p given above should be preferred? Belief in the general superiority
of Fisher’s method of minimum chi-square seems to imply that the device of
coin-tossing described in this example can be used in practical problems involving
the estimation of the proportion of “‘successes” to secure estimates which are
superior to the sample proportion—the ideal linear estimate in such cases.
Even if it is possible to construct trivial special case examples supporting some
complicated method for such problems the general use in practical problems of
the coin-tossing device in connection with either Fisher’s method of minimum
chi-square or Deming’s adaptation of the Stephan iterative method would be
absurd as this example is intended to emphasize.

8. The method of proportional distribution of marginal adjustments. The
method of proportional distribution of marginal adjustments is a general method
of adjusting sample frequencies so that their row and column totals agree with



250 JOHN H. SMITH

known expected marginal totals. In other words, the adjusted frequency for
the cell in the 7th row and the jth column is given by the equation

(8.1) my = ni; — pid.; — p.jdi,
where

di. = m;. — n;.,
and

dj=m;—n;,

are the net adjustments in the sample cell frequencies of the th row and the
Jth column, respectively. The asterisk is used to distinguish maximum likeli-
hood estimates m.; and the ideal linear estimates m; from the set of statistics
based on equation (8.1).

The method of proportional distribution of marginal adjustments yields ideal
linear estimates when the universe cell proportions are proportional by rows and
by columns; i.e., when

(8.2) Pi; = PiD.j.

This important principle can be established by substituting in equation (7.4)
of section 7 the quantities

(8.3) Cij = NPiP.;,
pi = 0.5 4+ di./np.'. ’
and

g; =054+ 4d.;/np.;,

and reducing the typical equation of the ideal method of minimum chi-square
to the form of equation (8.1) which defines the method of proportional dis-
tribution of marginal adjustments.

Even in the absence of exact proportionality, under which it yields fully
efficient statistics, the method of proportional distribution of marginal adjust-
ments has the following relative advantages over other available methods:

(1) ease of extension to tables of higher order;

(2) exact agreement with known (expected) marginal totals;

(3) simplicity of interpretation;

(4) independence.of computational errors;

(5) rapidity of processing;

(6) economy of effort; and

(7) fully efficient criteria for testing the significance of departures from

proportionality of rows and columns.

Ease of extension to tables of higher order is a desirable property of the
method of proportional distribution of marginal adjustments. Equation (8.1)
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applies to the special case in which there are only two bases of classification.
In the more general case sample observations are cross-classified according to
r bases of classification, each cell frequency in an rth order table being the num-
ber of observations in the corresponding rth order class whose expected value
is to be estimated. The required adjustment for each first order class (obtained
by subtracting the sample total from its known expected value) is distributed
among the various cells in proportion So the universe totals of the corresponding
(r — 1)th order classes to which the cells belong. The general process is il-
lustrated by

(8.4) min = nip + pid.p + p.idix + p.adij.,

the formula for estimating the expected frequency in the general cell of a third
order table.

Exact agreement with marginal totals follows easily from the method of
proportional distribution and can be established algebraically by summing the
estimation equation by first order classes; e.g., summing equation (8.1) byrows
and columns. In practice, discrepancies are always either errors of rounding
or mistakes in computation; they are never due to lack of convergence of iterative
processes as is often true in alternative methods of estimation.

Although simplicity of interpretation is desirable in general, it is especially
important when random sampling is an unrealistic abstraction. For example,
the method of proportional distribution of marginal adjustments has been used
to estimate the cell proportionsin a two-way classification of incomes from known
marginal proportions and a detailed cross classification at an earlier date. In
this problem known shifts in income distributions made it evident that certain
cells previously vacant should not have the zero proportions which would be
estimated for them by other available methods of estimation. The ease with
which the effects of the method of adjustment can be traced is important also
in the analysis of the results of sample surveys in which various types of bias
are important.

The method of proportional distribution of marginal adjustments yields the
estimated expected frequency for any cell by a single sequence of computations
which is independent of the corresponding process for any other cell. Errors
made in computing the estimate for any cell appear in marginal totals of esti-
mates for all first order classes which include that cell. If only a few errors are
made in a table they can be localized immediately and can be corrected without
recomputing any estimates which are correct.

In certain types of social surveys, rapidity of processing is so important that,
as Deming puts it, “the delay of only the brief time required for adjustment
may not be advisable.” [1, p. 102]. Under these conditions, it is important to
have a simple formula like equation (8.1) in which substitutions can be made
rapidly. Even when the time element is relatively unimportant, the economy
of effort and the ease of explaining the method to clerical assistants are often
of practical importance.
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Finally, departures from proportionality among rows and columns often
provide the chief element of interest in research studies—not only in social
surveys of the type illustrated in Deming and Stephan’s example but also in
biological sciences. The most effective tests of significance for the purpose of
presenting statistical evidence of lack of proportionality are those based on
statisticslike those derived by the method of proportional distribution of marginal
adjustments whose efficiency is 100 per cgnt when proportionality is exact.

Even when proportionality is not exact, the efficiency of statistics derived
by proportional distribution may be close to 100 per cent under fairly typical
problem conditions such as those in the example by Deming and Stephan wherein
the other more complicated methods require several times as much computational
effort, but have little advantage over the easier method with respect to effi-
ciency of estimation in this particular problem.

9. Suggested improvements in techniques. In section 7, a method was
outlined by which it is possible to derive sets of maximum likelihood statistics
by merely integrating available techniques without changing any of them.
In this section a number of improvements are suggested. At this point it should
be emphasized that a given change is not an improvement merely because it
yields slightly more accurate estimates or makes possible a slight saving of
time and effort. In each case the research worker should consider saving of time
and effort and accuracy of estimation simultaneously. In particular, it seems
likely that most social surveys of the type considered by Deming and Stephan
are characterized by approximate proportionality by rows and by columns—
conditions relatively favorable to the simple method of proportional distribu-
tion of marginal adjustments. It should be clearly understood that sug-
gestions in this section are intended for those research workers whose problems
justify a great deal more effort than is required-to adjust sample frequencies
by this simple method.

Assuming that the problem at hand warrants the effort required to derive
maximum likelihood estimates, the first consideration is the derivation of a
set of m;;(1), first approximations to the m;;, and a set of values of p;(1),
first approximations to the p; . Even if proportionality by rows and by columns
is not closely approximated use of values of the p;(1) provided by equation (8.3)
are especially to be recommended. In the example used by Deming these
values for the p,(1) are so much better than the values recommended by Deming
that they save a large proportion of the effort required by the iterative process.
If rows and columns are approximately proportional, equation (8.1) should be
used to provide values of the m;;(1), in which case it is possible to use an itera-
tive process similar to the one used by Deming but based on the typical equa-
tion of maximum likelihood (7.3) to achieve a given degree of accuracy in the
maximum likelihood estimates with even less effort. Underfavorable conditions
such as those in Deming’s example the suggested iterative process yields excellent
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approximations to maximum likelihcod estimates by means of the following
steps:

1. Construct a set of first approximations to the r row components of the rs
maximum likelihood divisors (a; -+ b;) by means of the equation

2. Compute successive approximations to the a; and b; by means of the equa-
tions

9.2) bilg) = [n.; — Zmi;(Dadg)l/np,;,
(9.3) ai(g + 1) = [ni. — Zmi;(Db;(g)]/np.. ,

where m;;(1), the first approximation to m;;, is derived by means of equation
(8.1). Just as in Deming’s iterative process, the expression in brackets is a
series of products which can be subtracted in a single sequence of machine
operations and the final division can be performed without having to record
any of the intermediate results.

3. Divide the sample frequencies by the maximum likelihood divisors to obtain
the maximum likelihood estimates

(9.4) mi; = nii/(ai + by),

where limiting values of a; and b; are approximated as closely as desired by
successive approximations in the preceding equations.

Under unfavorable conditions, the iterative process of this section is not
always the easiest way to obtain satisfactory estimates. For example, when
samples are small and/or rows and columns are not approximately proportional,
it is better to use the iterative method as originally presented by Stephan where
sample frequencies can be used for first approximations to the c¢;; and these may
be replaced by successively better approximations.

The point made in the final paragraph of Fisher’s well-known book [3] that
“‘in practice one need seldom do more than solve, at least to a good approxima-
tion, the equation of maximum likelihood,” is strongly supported by the develop-
ments of this article. In addition, the proof that the method of least squares
and the method of minimum chi-square always lead (by means of approxima-
tions to ideal weights) to maximum likelihood statistics greatly facilitates the
adaptation of techniques developed in connection with these hitherto competing
methods.

REFERENCES

1] W. Epwarps DeminG, Statistical Adjustment of Data, John Wiley & Sons, 1943.

[2] W. EpwArps DeEmMING AND FrEDERICK F. STEPHAN, “On a least squares adjustment of
a sample frequency table when the expected marginal totals are known,” Annals
of Math. Stat., Vol. 11 (1940), pp. 427-444.

[3] R. A. FisHER, Statistical Methods for Research Workers, 6th ed., Oliver and Boyd, 1936,
Ch. 9.



254 JOHN H. SMITH

[4] KarL PEARsON, “On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling,” Phil. Mag., Vol. 50 (1900),
pp. 157-175.

[5] FrEDERICK F. STEPHAN, ‘“An iterative method of adjusting sample frequency tables
when expected marginal totals are known,”” Annals of Math. Stat., Vol. 13 (1942),
pp. 166-178.

[6] E. T. WaiTTAKER, AND G. RoBINSON, The Calculus of Observations, D. Van Nostrand
Company, 1924, Ch. 9.



