SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN OF ANORMAL
DISTRIBUTION WITH KNOWN VARIANCE

By CHARLEs STEIN AND ABRAHAM WALD

Columbia University

1. Summary. We consider sequential procedures for obtaining confidence

intervals of prescribed length and confidence coefficient for the mean of a normal
distribution with known variance. A procedure achieving these aims is called
optimum if it minimizes the least upper bound (with respect to the mean) of the
expected number of observations. The result proved is that the usual non-
sequential procedure is optimum.

2. Introduction. The problem of sequential confidence sets in general has
been considered briefly by one of the authors [1]. Let {X.}, ¢ = 1,2,---),
be a sequence of random variables whose distribution is specified except for the
value of a parameter 8 whose range is a space 2. Sequential confidence sets are
determined by a rule as to when to stop sampling, together with a function of
the sample whose value is one of a specified class of subsets of 2. The class of
subsets is chosen in advance depending on the purpose of the estimation. For
example, it may be the class of all intervals of prescribed length or the class of
all sets whose diameter does not exceed a given value. It is required that the
probability that this (random) set covers 6 should be greater than or equal to a
specified confidence coefficient « for all . A procedure for finding sequential
confidence intervals is considered optimum if it minimizes some specified function
of the expected numbers of observations. Here this function is taken to be the
least upper bound. In contrast with the result of this paper, a case where se-
quential confidence intervals may have an advantage over non-sequential pro-
cedures has been given by one of the authors [2]. The X; are independently
normally distributed with unknown mean and unknown variance, and the prob-
lem is to find confidence intervals of fixed length for the unknown mean. As
was first shown by Dantzig [3] this cannot be accomplished by a non-sequential
procedure. Another case where this is true is the problem of finding confidence
intervals of the form (ps , kps) where k is a specified number greater than 1, for
the probability in a binomial distribution.

Let {X.}, ¢ = 1, 2, ---), be independently normally distributed with un-
known mean £ and known variance o;. It is desired to specify a sequential
procedure for obtaining confidence intervals of fixed length ! for the mean &.
This is provided by a rule according to which at each stage of the experiment,
after obtaining the first m observations X, - -+, X for each integral value m,
one makes one of the following decisions:

a) Take an (m + 1)st observation.

b) Terminate the procedure and state that the mean lies in the interval
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(Y — 3L, Y + 30, where Y = €nu(Xy, -+, X»), Cn being a measurable real-
valued function. The serial number m of the observation on which the proce-
dure terminates is, of course, a random variable and will be denoted by =.

For any relation R the symbol P(R | £) will denote the probability that R
holds when £ is the true mean of X;. The confidence coefficient of a sequential
procedure 8 is defined by

€Y a(S) = g-sl-b- PY -3 <&<Y+ 39

Denote by 70(S) the maximum expected number of observations, i.e.
(2 no(8) = l-g-b- E(n|¢ 8)

where E(n | £, S) denotes the éxpected value of n when £ is the true mean and the
procedure S is used.

A procedure S will be considered optimum if, for all S’ such that «(S") =
«(8),
@) m(8) < no(S').
It will be shown that an optimum procedure S(», ¢) can be obtained as follows:

a) For all m < », a fixed positive integer, take another observation.
b) For m = », terminate the procedure if

v v 2
@) > xi— % <Z X.-) > col
1 1

1 v
and let ¥ = ;ZX :. (The inequality (4) is used merely as a device for fixing
1

the probability of taking » observations, this random event to be independent
of whether (Y — 1, Y + 1) covers £, given ».)
¢) Otherwise take a (v + 1)st observation, terminating the process, and let
v+1

2 X,

v + 1
When ¢ = 0, this is the usual non-sequential procedure.
Clearly,
® lSe,0l = Pl > of (Y0) + 1 = Pl > ol (VL)
where
— _lm “ —3z? — 2 [ ~3z2
6) H(u) = Vo _ue dr = /‘/;L e dx.
Also
@) nlS@, )l = » + 1 — P{xia > ¢},

By a proper choice of » and ¢ we can achieve any desired confidence coefficient
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l
a>H (\_/—Qa_> . Thereisnoessential loss of generality in considering only the
1
case o1 = 1, and this will be done in the remainder of this paper.
3. A lower bound for ny(S) and an upper bound for «(S). Consider any
sequential procedure S for obtaining confidence intervals of length I. Put
® al, 8) = P{Y — L <E<Y + 3|

That is, a(£, S) is the probability that the confidence interval will cover the true
mean ¢ when the procedure S is used. According to (1),

9) a(S) = g.le.b. alg, S).

In order to obtain a lower bound for 7(S) and an upper bound for a(S), we
suppose that the procedure S is applied when £ is not a fixed number but a ran-
dom variable normally distributed with mean 0 and variance ¢°. Then the
probability that the confidence interval covers £ is

1 Feo
(10) 3@, 8) = =, [ P, 8) di 2 alS)
and the expected number of observations is
() Blo,8) = gz, [ ¥ Bt ) &t < m(s).
Let pn(¢, S), (m = 1,2, ---, ad. inf.), denote the probability that n = m

when £ is the true mean and procedure S is used. Put

1 e
12) Pmlo, S) = 2o _[w € E2’2:'21),,.(‘4’, S) d¢.
Since
(13) "En| 0, 8) = 2 mpns, 8)
we obtain from (11)
(14) ,,,Z} Mpm(o, S) = no(S).

We shall now derive an upper bound for a(es, S). Since X; = ¢ + ¢; where the
¢; are independently normally distributed with mean 0 and variance 1, the joint
distribution of ¢ and X;, (¢ = 1, - -+ , m), is a multivariate normal distribution
with

(15) Et=EX;=0
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and covariance matrix

(02 i o )
¢ o o +1 7 P
-XI 2 2 1 2
) E|.|@Xi, e, X = vooF ’
Xm 2 :z 2
Lo o v e 1

Thus the conditional distribution of ¢ given X;, -+, X,, is normal with mean

2 2 2 Y1
0’-[;1 20 0’2 (Xlﬂ
2 2 o o+1 - g .
BEI Xy, Xa) = (e, | o b l
.0'2 0'2 cee 0-2+1J X"‘)
f(m—l)az—l—l _ o L i 1
me® + 1 mo? + 1 mo? + 1
- o (m —1)d" +1 L o
a7 =4a,1,---,1) mo? 4 1 mo? + 1 ma? + 1
¢ L m=1)d+1
L ma? 4+ 1 ma? 41 moe?2+1 )

and variance

4 m 2 2
2 4 — d
(18) v ‘mE@X) TmAF1

If X;, -+, X.is a sequence for which the process is terminated on the mth
trial, the conditional probability that the interval of length I will cover ¢ is
clearly maximized by taking

2 m
(19) Y=E($|X1,---,X,,,)=ma;’+lzl:X.-

and, by (18) this probability has the value H(c,,) where H is defined by (6) and

11
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Hence,

@1 50, 8) < 3 fulo, HH(en).
From this and (10) we obtain -

(22) &(8) < 3 fule, HH ()

This upper limit of «(S) and the lower limit of 7,(S) given in (14) will be used
later to prove that S(», ¢) is an optimum procedure.

4. Maximum value of ) Pn(o, S)H(cn) subject to the condition that
1

D mpm(o, S) does not exceed a given bound. We shall show that the maximum
1
of X, Pm(o, S)H(cm) subject to
1

Emnle, 8S) = zl:mi)m(a, S) =v+a,

where » is a positive integer and 0 <'a < 1, is obtained by choosing pm(e, S) =
*
Pn® defined by

pm =O0form <vorm>»+1
(23) pp =1—a

*

Dv1 = Q.

For, suppose to the contrary that there exists a sequence {pn} such that the
following conditions hold:

Pn20,  ipm=1
(24) lemp..sy+a=;mp,’:

zl:pmH(c,,.) > fl_‘,p:.H(c,,,).
We have
_ /2 (" e, _L_f"’ ~3 by
(25) H@w) = ,‘/;'[ e dx ord y e dy.
Put

c41
(26) C = Hews) — Hie) = —12= [Tvteta.

T ved
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With the aid of p, = 1 — Y .z Pm , We obtain from the last two inequalities
in (24)

@) 0< 3 (on = P = C 3 (pm = plim = 3 (om — K

where
(28) K. = H(cm) — H(c,) — (m — »)[H(c,41) — H(c)].

Clearly K,;1 = 0. Also, for m < v, since the integrand is a strictly decreasing
function of y,

ef+1 3
Kn= (v —m) f; y e dy — f y e dy
(29) ’ oh .
—3 —y
- —m) - € = 0,
s @ ) iV

y=c}

2
< @- m)fz y ety

Similarly form > » + 1, K, < 0. But pjs = 0 for m 5 », » + 1 so that

myby,1v+1

which contradicts (27) since K, = 0.
Thus, we have shown that the inequality

(31) Em|o,S) <v+a
implies the inequality

62) 32 o, HH() < (L~ DH) + aH (o).

6. Proof that S(v, ¢) is an optimum procedure. Since, according to (14)
and (22)

69 w® 2 B0]eS wd al) < 3 fale, HHen),

it follows from the result expressed in (31) and (32) that, for any procedure S
satisfying the inequality

(34) no(S) < » + q,

we must have

(35) a(8) < (1 — a)H(c,) + aH(c,41)
identically in 0. Since H(u) is continuous, it follows that

(36) ol8) < (1 — a)H(\/; N+ aH( | g)

for any procedure S satisfying (34).
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The right hand side of (36) is a[S(», ¢)] where ¢ is chosen so that
37) 1 —a=P{xa>c}.

We use an indirect proof to show that S(», ¢) is an optimum procedure. Sup-
pose to the contrary that there is a procedure S’ such that

(38) a(8) = o[S(», )]
but
(39) 10(8") < no[S(», 0)].

By (5) and (7), o[S(», ¢)] is a continuous strictly increasing function of
v+ 1 — P{xiy> ¢}
and this latter is no[S(», ¢)]. If we choose »’, ¢’ so that
no(8) < ¥ + 1 — P{xi > ¢}

(40)
<v+1 —P{¢.>c},

it follows that
(41) o[S(, ¢)] < alS(v, ©)] = a(S").

But (41) and the first part of (40) contradict the result expressed in (34) and
(36).
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