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The upper end point of the confidence interval is the root in A of the equation

r Qa

and the lower end point is the root in A of the equation

N -pQ0) _
Q.

(2.19)

(2.20)

If equation (2.20) has no root, the lower end point of the confidence interval
1is put equal to zero.
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class frequencies”, Annals. of Math. Stat., Vol. 12 (1941).

s

ON THE SHAPE OF THE ANGULAR CASE OF CAUCHY’S
DISTRIBUTION CURVES

- By AurerL WINTNER

The Johns H. opkins University

1. Let £ be a linear random variable, that is, a random variable capable of
values z represented by points of a line — e <z <, and suppose, for sim-
plicity, that ¢ has a density of probability, f(x). Then, subject to provisos of
convergence, the series '

Fla) = "E”f(x +n)
represents a periodic function, of period 1, having the following significance:
F(z) is the density of probability of the angular random variable, say E, which
is obtained if all the states

) £—2’ £E—-1, § £+ 1, £+2"

of the linear random variable are identified.

In other words, if a circle of unit circumference rolls from — « to « on the
¢line, then every point of the circumference collects the various densities of
probability attached to congruent points of the £-line, and a state of E repre-
sents a point of the circumference. For a detailed study of the mapping ¢ — &
orf—F,cf. [2]. /

According to Poisson’s summation formula, the Fourier constants of the
periodic function F(z) can be obtained by restricting u in g(u) to an equidistant
sequence of discrete values, where g(u) denotes the Fourier transform of f(z);
cf., e.g., [5], p. 78 or [9], pp. 477-478.
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2. Consider, in particular, the case in which f(z) is the density of a symmetric
distribution whichis stable in Cauchy’s sense. The determination of the totality
of these linear densities of probability is due to Lévy [6]. It was shown in [8]
that every such f(x) = f(—z) is a decreasing function of | z |. As explained in
[8], p. 70, this fact makes superfluous one of the axioms occurring in Gauss’
postulational approach to “errors of observation.”

The purpose of the present note is the deduction of the angular analogue of
the fact just quoted. The analogue states that, if f(z) is symmetric and stable,
then the corresponding periodic F(z) is decreasing for 0 < z <  (and so, for
reasons of symmetry, is increasing for 3 < x < 1). This is contamed in the
italicized statement of §4 below.

In view of Poisson’s rule, quoted above, the periodic densities in question can
be defined by certain Fourier series representing generalizations of elliptic theta-
series. From this point of view, not even the existence (i.e., the positivity) of
the periodic densities is obvious, if arbitrary values of the “precision constant”
(denoted below by g) are allowed. The difficulties involved are explained in §3.

8. If ¢ and X are positive constants the first of which is less than 1, then the
(even, periodic) function

(1) O(x;q) =142 El q" cos nz,

where q"x > 0, has derivatives of arbitrarily high order at every real . It is
regular-analytic at every real z if and only if A > 0 is replaced by A = 1, where
the sign of equality holds if and only if the analytic continuation (from the z-axis)
is not an entire function. In fact, it is known that a Fourier series
>(a, cos nx + b, sin nx) is that of a function which is regular-analytic at every
real z, and has the period 2, if and only if | @, | + | b. | is majorized by a con-
stant multiple of the nth power of a positive.constant which is less than 1;
and that the latter constant can be chosen arbitrarily small if and only if the
analytic continuation does not lead to any singularity (at az 5 ).

Since the function (1) tends to 1 uniformly in z as ¢ — 40, if M is fixed, there
belongs to every A > 0 a positive ¢* = ¢*(\) having the property that

2) O(x;q9) >0for0 =2 < 2r

if0 < g < g*(\). It isless obvious that, if ¢ is sufficiently small with reference
to A, say if 0 < ¢ < ¢**(\), then

3) 0\(x ;q) is decreasing for0 < z = =

(hence, increasing for 7 < z < 2m). The existence of such a ¢**(\) < « for

every A > 0 can be assured as follows:
If s.(z) denotes the nth partial sum of the Fourier series Z(sin nx)/n, then
sa(z) is positive for 0 < 2 < = (Gronwall, Jackson; for a short proof, cf. [4]).
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Hence, a partial summation shows that the sum of a sine series, Zb, sin nz,
must be positive for 0 < z < =7 if
nb, — (n + 1)ba1 > 0 and nb, — 0.

Since the ﬁrst derivative of (1) (with respect to x) results by choosing

b, = ——an , it follows that (3) must be true if
nq _ (n + 1)2q(n+1))‘ >0 .
holds for n =" 1,2, .-+ . But the last inequality is readily seen to be satisfied

from n = 1 onward if, while X is fixed, ¢ tends to 0. This proves that g**(\)
exists for every A > 0.

4. From these deductions alone, it is quite unexpected that (the best values of)
both ¢*(A) and ¢**(\) turn out to be independent of A\ when

4) 0<\=2

i.e., that (1) satisfies both (2) and (3) for 0 < q < 1, if (4) s assumed. This
fact is of statistical significance, since, on the one hand, it is precisely the restric-
tion (4) which is necessary and sufficient for the existence of Cauchy’s (sym-
metric) “stable” distributions (cf. [6], pp. 254-263) and, on the other hand,
the reduction (mod 27) of the densities of these linear distributions leads to
the functions (1) as angular densities (cf. [9], pp. 477-478); the numerical value
of ¢(< 1) being determined by the “precision” or “dispersion” of the resulting
angular distributions.

Under the necessary restriction (4), the linear analogue of ¢*(\) = 1 and of
¢**(\) = 1 was proved in [6], pp. 258-263 and in [8], pp. 71-77, respectively.
It will remain undecided whether the restriction (4) is necessary in either of
the angular cases.

B. Suppose that \ has a fixed value in the range (4). Then there exists a
monotone function of ¢, say ax(f), for which

oxp (—i) = [ exp (—u) dan()

is an identity in w, where 0 < u < e (cf. [1], p. 769, where further references
will be found). Hence, a change of variables shows that

= ‘£ q"‘2 den(t | log ¢ ")

is an identity in ¢ and n, where 0 < ¢ < 1 andn = 0, 1, 2, - - - (the integration
variable is £). Consequeatly from (1),

O(z;q) = K 82(x; ¢°) dan(t | log g "),
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where0 < ¢ <land —® <z < «. ‘Infact, the legitimacy of the term-by-
term integration is obvious from 0 < ¢, < 1 and dey = 0 (even though the inte-
grals are 1mproper)

6. Since o is a non-decreasing function, it is clear from the last formula line
that both (2) and (3) will be proved for 0 < ¢ < 1 and for every X (satisfying (4)),
if it is ascertained that both (2) and (3) hold for 0 < ¢ < 1 when A = 2. But.
the case A = 2 of (1) is an elliptic theta-function, for which both properties in
question (cf. the diagram in [3], p. 44) are knowh; a simple proof can be con-
cluded from what, in Hecke’s terminology, is the Eulerian factorization of
02(x ; @), as follows:

According to Jacobi, the factorization of the case A = 2 of (1) is

Ox(x 5 q) = II1 1 =g+ 2¢" " cos z + ¢

(cf. [7], pp. 64-65). Thus
0(z ;9) = ¢q H1 Pz + ;9™

where
Cq = III (1 - qzn)
and
(5) P(x;r) =1 — 2rcosz + 7*, 0<r<i),
hence

P(z;r)> 0 O<r<1).
Since 0 < ¢ < 1, this proves the case A = 2 of (2). Furthermore, logarithmic
differentiation of the product representation of 6:(x ; ¢) gives

6:(z39) = 6s(z 5 9) 2:31 P'x+ 7;¢" /P + =;¢" ),

where f’ = df/dz; so that, by (5),
Pz 4 w;r) = —2rsin z.

Since 0 < ¢ < 1, the last three formula lines and the caée A = 2 of (2) imply that
0(z;q) <0if0 <z <,

as claimed by the case A = 2 of (3). _
This completes the proof of the italicized assertion.
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A NOTE ON THE FUNDAMENTAL IDENTITY OF SEQUENTIAL ANALYSIS

By G. E. ALBERT
U. 8. Naval Ordnance Plant, Indianapolis

1. Introduction. Let {z;}, ¢ = 1, 2,3, --+), be a sequence of real valued
random variables identically distributed according to the cumulative distribution
function F(z). Define the sums Zy = 2, + 2, + --- + zy for every positiwe
integer N. Choose two positive constants a and b and define the random vari-
able n as the smallest integer N for which one of the inequalities Zy = a or-
Zy < —bholds. The notations P(u | F) and E(u | F) will denote the probability
of  and its expectation respectively assuming that F is the distribution of the z;.

Wald [1] has established the results contained in the following lemmas.

Lemma 1. If the variance of F(z) is positive, P(n < o | F) equals one.

LemMma 2. If there exists a positive number & such that P(e* <1 — §|F) > 0
and P(e* > 1 + 8 | F) > 0 and if the moment generating function ¢(t) = E(e* | F)
exists for all real values of t, then o(t) has one and only one minimum at some finite
valuet = t,. Moreover, ¢”'(t) > 0 for all real values of t.

It is the purpose of this note to establish the following extension of the validity
of certain results given by Wald [1], [2].

TrreorEM." Under the conditions of Lemma 2 the identity

m Efe™[e(] " | F} =

1Wald’s results show (1) to be valid for all complex ¢ in the domain over which | ¢(t) | =1
and the validity of the differentiation clause for all real ¢ in that domain. Thé import-
ance of the present éxtension arises from the fact that, if E(z| F) 5 0, then 0 < o(f) < 1
on a certain interval of the real axis.



