ON THE GENERALIZED “BIRTH-AND-DEATH” PROCESS

By Davip G. KenpALL
Magdalen College, Ozford

1. Introduction and Summary. The importance of stochastic processes in
relation to problems of population growth was pointed out by W. Feller [1]
in 1939. He considered among other examples the “birth-and-death” process
in which the expected birth and death rates (per head of population per unit of
time) were constants, A and o, say. In this paper I shall give the complete
solution of the equations governing the generalised birth-and-death process
in which the birth and death rates () and u(f) may be any specified functions
of the time ¢. The mathematical method employed starts from M. S. Bartlett’s
idea of replacing the differential-difference equations for the distribution of the
population size by a partial differential equation for its generating function. For
an account of this technique,' reference may be made to Bartlett’s North Caro-
lina lectures [2].

The formulae obtained lead to an expression for the probability of the ultimate
extinction of the population, and to the necessary and sufficient condition for a
birth-and-death process to be of “transient” type. For transient processes
the distribution of the cumulative population is also considered, but here in
general it is not found possible to do more than evaluate its mean and variance
as functions of ¢, although a complete solution (including the determination of
the asymptotic form of the distribution as ¢ tends to infinity) is obtained for the
simple process in which the birth and death rates are independent of the time.

It is shown that a birth-and-death process can be constructed to give an
expected population size 77, which is any desired function of the time ¢, and among
the many possible solutions the unique one is determined which makes the
fluctuation, Var(n,), a minimum for all ¢.

The general theory is illustrated with reference to two examples. The first
of these is the (o, wit) process introduced by N. Arley [3] in his study of the
cascade showers associated with cosmic radiation; here the birth rate is constant
and the death rate is a constant multiple of the “age”, t, of the process. The
fii-curve is then Gaussian in form, and the process is always of transient type.

The second example is provided by the family of “periodic” processes, in
which the birth and death rates are periodic functions of the time {. These
appear well adapted to describe the response of population growth (or epidemic
spread) to the influence of the seasons.

2. The formulation and solution of the equations for the general (), 1) process.
Let the integer-valued time-dependent random variable n, measure at time £ the

1 It appears from some remarks by Arley and Borchsenius [5] that the generating func-
tion method was first employed in problems of this kind by Dr. C. Palm.
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size of a population, and suppose that in an element of time d¢ the only possible
transitions (and their associated probabilities) are:

Nepae = N+ 1,  NOndt + o(dl);
(1) Negds = Ny, 1 — (M) + p(®)indt + o(dt);
Neae =1 — 1,  p(t)ndt + o(df).

As an initial condition it will be supposed that the population is descended from
a single -“ancestor’, so that n, = 1, and thus

(2 Pi(0) =1, P.0) =0 (n # 1).
It then follows that the P,(f) must satisfy the differential-difference equations

and
@ 2 Put) = wPi(t)

(where for convenience of writing I have ceased to indicate explicitly the de-
pendence of A and p on the time). If P.(¢) is defined to be zero when n < 0,
the first of the above equations will then be true for all n, and accordingly the
generating function

0

) oz, ) = 2. Pat)e"

7} s 00

must satisfy the linear partial differential equation

dp _ _ _ do
(6) Ey i (2 (A2 ®) 32’
the problem is to find the solution to this equation when it is coupled with the
boundary condition ¢(z, 0) = z.
The equation (6) is of Lagrange’s type, and can be solved in the usual manner.
The auxiliary equation is

d
) = et At =,
and while in particular examples it might be convenient to attack this equation
directly, progress in general is more easily made by observing that (7) is of
Riccati’s form, for which a general theory is available.? The fundamental
property of a Riccati equation is that the general solution is a homographic

1 See, for example, G. N. Watson [4], pp. 93-94.
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function of the constant of integration, so that

;= fi + Cfa
s + Cfd’
and equally
_ s —fi
¢ fa — o

where f1, f2, fs and f, are all functions of the time ¢. Thus the general solution

of (6) is of the form
_ 2fs — f1l
‘p(z7 t) - @{fz — Zf4}’

and from the boundary condition ¢(z, 0) = z it then follows that

91(t) + 2gs(8)
gs(t) + 2g4(8)°

S’(z: t) =

On expansion, one obtains
® Po(t) = & and Pa()) = {1 — Po(®}(1 — ndni™ (n 2 1),

where £, and 7, are functions of the time ¢&. Thus, for the general (\, p) process,
the population size at any time is distributed in a geometric series with a modified
zero term

The next stage of the solution is to determine the functions £, and #,. From

&
(9)

oz, ) = £ (i — jz— we

and if this expression for ¢ be substituted in (6) it will be found® that
(" — &) + 2" =21 —-9QA - ),
and
g =ul-5Q10-n.
Nowlet U=1—¢tand V = 1 — 9, so that
U/U = =V,
and
Vi=(u— NV —puVi
The last equation is of Bernoulli’s type and can be solved by writing
W =1/V,

3 Here &’ = dt/dt, eto.
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so that
WA (u=NW = p

Initially ¢ = n = 0,and U = V = W = 1; the solution of the W-equation is
therefore

t
(10a) W=¢’ { 1+ f e""’u(ﬂdf},
0
where the function p is defined by
t
an o) = [ {u(r) = An)}dr.
0

Integration by parts gives two other formulae for W which will prove useful;
they are

t
(10b) Wo=1+ ¢ j ¢ ON(r)dr,
0
and
t
(10¢) W= 30+ 67) + 3¢ [ @O0 + un)dr.

The quantities U and V, and hence also £ and 7 can now be expressed in terms of
p and W, for

T E T w s Tw
and so
—p
(12) f=1-% and m=1—%.

These results, together with (8), suffice to determine completely the P.(f) as
functions of the time ¢.

It is easy to deduce formulae for the mean and variance of n, (these could also
be obtained directly from (6)). For the mean,

13) ny =

while for the variance,

Var (n,) = (—1——('1—5)_(5—”)_:—"—) ='W —1—¢"

(14¢) .
= e”2’£ P INT) + ul(r)}dr.
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Alternatively, using the other forms for W, one can write

¢
(14a) Var (n,) = ¢* {e" -1+ 28_'7./0‘ e"(')y(-r)d-r},

(14b) =¢* {1 —€¢P+ 2" £ ‘ e’('))\(r)df}.

If the initial population ne = N > 1, these formulae for 72, and Var(n,) are to
be multiplied by N.

It is now a simple matter to apply these formulae to the Arley (s, wt) proc-
ess. It will be found that

p = %#1t2 - )\ot.

and

t
W =1 4 N it f el g

0

The mean growth of the process therefore follows the Gaussian law

_ Not—3ut?
By = €9 fu1 ,

while for the variance (using (14b), since \ is a constant) one finds

¢
Var (n) =1 — 70 + Dt [ ar
0

in agreement with Arley [3] and Bartlett [2]. The distribution of n, at time ¢
follows on inserting the above values of p and W into (8) and (12).

3. The chances of extinction. The simplest special case is that in which
(A, u) have the constant values (Ao, uo); this is the process introduced by Feller
(1] and later discussed by several writers." The formulae (13) and (14c) give
at once the results

Ao 4+ mo

(15) fi, = e and  Var (n,) = (A — 1),
Xo — Ko
due to Feller, while since
N7y — po
W= ——2=>",
)‘p — Mo

equations (8) and (12) give

a9 P = 28D g p) = (1 - POIL - i (0 2 1),
07 — Mo
4 See Arley [3], Arley and Borchsenius [5], Bartlett [2] and Kendall [6]. Palm’s formulae
(16) are stated without proof by Arley and Borchsenius, but it appears from their remarks
that he used a generating-function method probably identical with that later employed by
Bartlett and myself.
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where
o N(e — 1)
= - P ) = ———— ¢ .
” Ko o) Nofle — po

These formulae were first given by C. Palm.! They actually hold only if
Mo ¥ uo ; in the case of equality, W = 1 + A, and then

e = 1, Var(n, = 2\d,

Mot
1+ Aot

where Nt = Po(t).
One particularly interesting point is that

A7) Pot) = and Pa(t) = {1 — Po()}(1 — n)mi™  (n 2 1),

Pyt) > 1last— o if \g < o,

so that the population is “almost certain” to die out, even though in the critical
case (Ao = uo) the expected population size 7i; has a constant value. The same is
true for any initial size of population; the new expression for Py(f) is then simply
equal to the former one raised to the power no = N, and therefore tends to unity
as before. This phenomenon of extinction was first noticed in a similar problem®
by Francis Galton and H. W. Watson; an account of their work is given in Ap-
pendix F of Galton’s book [7].

The formulae of the last section now make possible a discussion of the chances
of extinction for the general (A, u) process. When ny, = 1,

t
f e udr
_

(18) Po(t) = :
1 +[o e’ udr

)

and so the necessary and sufficient condition for the ulttmate extinction of the popu-
lation is that the integral

(19) 1= fo © () dr

should be divergent.

It will be noticed that the integrand of (19) is non-negative, and so the in-
tegral must either diverge to plus infinity, or have a finite value. Hence in any
case the population always has a definite chance of extinction, given by 1/(1 + I).
For a population descended from N initial ancestors, the P.(f) are generated

by the function
e+a—s—w§"
1 — 9z ’

(20)

§ The extinction of family-names. Further references will be found in my paper [6].
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so that
PO(t) = g?y
and the chance of ultimate extinction is
I N
0 ()

which is or is not equal to unity for all N indifferently.

Extinction is impossible, in the sense of being an event of zero probability, if
and only if u is identically zero, so that the process is one of reproduction only.
It is also worth noting that a necessary but not sufficient condition for almost
certain extinction is the divergence of the integral

(22) '[" p(r)dr.

For if (22) had a finite value, p(¢) would be bounded for all ¢, and so (19) could
not be divergent. In general, when I = o and the population is almost cer-
tainly doomed to extinction, I shall speak of the process as transient.

For a transient process it is of interest to consider the random variable T,
defined to be the “age’ of the process at the moment of extinction. Since

Py(t) = Probability {T < t},
the probability distribution of T is Po(T)dT, or
e*D y(T)dT

T 2,
{1 +]; e p(r)d‘r}

For example, in the simplest birth-and-death process, when A and u are equal
constants, the distribution of T is

A dT
(L 4+ NT)%

This is for an initial population o = 1; more generally, when ne = N > 1, the
distribution of T is

(23)° 0<T< .

(24) 0<T < w.

NPy(T) {Py(T)}*dT.
The median life-time T, is determined by the relation
Tm
(25) [ ¢ utmar = 1.
0

For the simple process, T'» = 1/A when \¢ = o, and more generally

1 A
- 108( - _o) (Ao # po)
Ho

Ho — Mo

(26) Tw =
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if no = 1. Whenn, = N > 1, the formula for T,, becomes

Tm N
(27) L P w(r)dr = l/(2llN -1~ lm_g—z
For the balanced process (Ao, o) it therefore follows that
(28) Tw(N) = Tw(1)/@"™ — 1) ~ 144 N T,(1),

as V tends to infinity. If the process is unbalanced, however, so that Ao < e,
this asymptotic proportionality to N does not hold, and instead

., 1 21INM0 — X } IOg N
(29 Tw = ——— log ~ ,
) Mo — Ao {(2”” - 1)#0; Mo — Ao

as N tends to infinity.

4. The cumulative population. There is associated with a birth-and-death
process another random variable, M, , which is of importance in some applica-
tions. This is"defined as follows: initially My, = n,, while for ¢ > 0, M, shares
all the positire jJumps of n, .

For example, if n, represents the number of cases of a disease in a population
at time ¢, ]/, will be the total number of cases which have been recorded up to
that time. If the process is transient, so that the epidemic is almost certainly
extinguished in the course of time, M. will then be a measure of its overall
severity.

Again, if n, represents the viable count of a population of bacteria® with a birth
rate A(f) and a death rate u(¢), M, will be equal to the total count in which living
and dead organisms are not distinguished.

In order to discuss tle joint variation of 7, and M, it is necessary to introduce
the new generating function

(30) ‘0(27 w, t) = Zw:o iﬂ P,.,y(t)z" 'w" .

Here the P, x(f) give the joint frequency-distribution of n, and M, at time &.
By the usual argument the differential equation satisfied by the function ¢
will be found to be

W _ 2 1321
(31) a { Mwz A + wz + u} 32’

and the associated boundary condition (if initially ne = M, = 1) is
(32) Y(z, w, 0) = zw.

I have been unable to solve this equation for general A(¢) and p(f); the solution
when \ and u are constants will be given in the next section. It is however

¢ For some general remarks about birth-and-death processes in relation to bacterial
growth, reference may be made to my paper [6].
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possible to find general expressions for the mean and variance of M, ; for this
purpose it is more convenient’ to work with the cumulant-generating function

(33) K(u, v, t) = log y(e*, €, t).
This satisties the differential equation
3K oK
) it U+0 _ _ — — Dt
(34 = N = 1) — W — )

and of course
K = un, + oM, + 1* Var (n,)
(33)
4+ Y% Var (M) + wCov (n,, M) + «--.

Expanding both sides of the equation in powers of % and v, and equating coeffi-
cients, one obtains the differential equations

d
(36) ™= N\ = wn,
37) 9 Var (n) = O\ + we + 200 = ) Var (n0),
d = B}
(38) d—t Z‘/Iz = )\n,,
(39) g{ Var (M,) = M + 2\ Cov (ng, M),
and

(40) gt Cov (ne, Mi) = M + A Var (n) + (\ — ) Cov (ne, My).

The solutions to the first two equations have of course already been given in
section 2; from the third it follows that the mean value of M, is

(41) M,=1+ fo‘ ¢ PON(r)dr.

The solution of the fifth equation is '

(42) Cov (ne, M) = 7 f { QAL ("’)} A(r)dr,
and so the variance of M, is

(43) Var (M, = ]: {7, + 2 Cov (n,, Me)}N(7)d7.

7 Compare Bartlett [2].
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In illustration of these formulae, consider first the Arley (Ao, mt) process; from
(41)

t
(44) M, =1 + )\of 6)\0’—4“7’ dT,
0

but the complete expression for Var (M) will be a multiple integral which does
not appear to admit of much simplification.
For the simple (A, uo) process, however, when Ao < g, it readily follows that

(45) M, = "0__)‘07_",
Mo — No
(46) Cov (ne, 39 = 2% oy — ot 0o g g,
Mo — )\0 Mo — >\0
and
No(uo + No) ANG po 173, A (s + No) 2
47) Var(M,) = —————2L (1 — 7)) — 1 — 7).
#7)  Var (M) (Ho — No)? ( ) (o —No)2 ~ (w0 — No)® (1=
Thus in the limit, as { — «, the mean and variance of M, are
M‘u = ,.‘o )
Bo — No
(48)
and Var (M) = 2ol )
(#o — o)

the covariance of course tending to zero. If the process is balanced, so that
Ao = uo and 7, = 1, the integral for M, has the value 1 + \ot, which increases
without limit as ¢ tends to infinity. This will always be so for a balanced process
if the integral

.[" A7)dr

is divergent.

If the initial population ng is equal to N > 1, and if all its members are counted
into My, the only modification necessary to the above formulae is that in each
case the right-hand side is to be multiplied by N.

6. The asymptotic distribution of the,cumulative population for a simple
transient birth-and-death process. The equation (31), which appears in the
general case to be intractable even if one only requires the asymptotic distribu-
tion determined by ¥(1, w, «), can be solved completely in the specially simple
case when the birth and death rates A(f) and u(f) have the constant values \o
and o .

Let o and 8 be the roots of the quadratic

(49) Awet — (o + po)z + po = 0,
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so chosen that 0 < a < 1 < B; then the general solution of (31) will be found by
the usual method to be

T

B—z
The boundary condition ¢(z, w, 0) = zw therefore gives
_ c@—@+¢@—@ﬁmmﬁ
50 VoG e )

and it may be noted that if no = M, = N > 1, this formula for ¥ would have to
be raised to the Nth power. It will suffice, however, to discuss the simplest
case when no = M, = 1.

Let the process be transient, so that Ay < uq ; then the asymptotic frequency
distribution of J, when { — « is determined by the generating function

Ao+ w0 — V{0 F wo)® — hopow}

(B) (L, ) = wa = o~ :

and here it is the positive square root which must be taken. The probability
distribution of M, is thus

o+ pme 2M)! M

(52) QH = 2)\0 22"(M!)2 oM —1 ) (M = 1; 2; 3; ° ")’
where
4o o
53 = __=hoko
(53) T o F wo
The first few terms are
(54) —‘Et‘)— {1’ %xy %’Izy '6.:,1'1:3’ ot },

Ao + mo

and it is easy to verify that the mean and variance of this distribution agree
with the values given in the last section. When Ay = o, 2 = 1, and then the
terms in (54) fall off to zero like M *"*, M, being infinite (in accordance with the
remarks at the end of section 4).

6. The determination of the process when its mean growth, 7, is given.
Since 7, = €, it follows that

(55) MO = u(t) = 3 log 7,

and thus if 7, is required to be a given function of the time, the birth and death
rates must be chosen in accordance with (55); the only other condition is that
for all ¢, A(?) > 0 and u() > 0.

Arley has pointed out that the simple process (A(f) = ¢, u(f) = 0) gives a
smaller fluctuation, Var (n,), than any other simple process with the same mean
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growth, say (Ao, no) where Ao — wo = ¢. This suggests that one should consider
the more general question: if 71, is giwen for all t, for which choice of the functions
At) and u(t) will the fluctuation Var (n,) be a mintmum?
Suppose then that the whole region ¢ > 0 consists of three sets of intervals,

E,, E; and E;, and that within an interval of the set E,,

i, is a decreasing function if j = 1,

7, is an increasing function if j = 2,
and 7l is a constant if j = 3.
Then one can write

Var (n) = ¢ *327] + 27 [ &P

Ey

+ e + 27 [ (e

Lo f SN + u(r)ldr.

Here the terms involving A and g explicitly are all non-negative, and so Var
(n,) will be a minimum for the (unique) choice of A and u which makes them all
vanish, namely:

) mE;, At =0 and u(t) = — 2/ /7 ;
(56) in B2, N#) = a//f¢and u(t) = 0;
in E; , A\(¢t) = u() = 0.
However, when one is looking for a (A, u) process with a given 7, function,
this minimum-fluctuation solution would frequently be an artificial one. For

example, suppose it is required that 7, shall be a Gaussian curve, reducing to
unity when ¢ = 0; then

(57) A = eko‘—iiu"’
say, and A(t) — p(f) = Ao — mf; the most natural solution is then the Arley proc-
ess,

MO =Ny, u(®) = pt.

It is of interest that a (A, 1) process can be found for which the expected growth
follows a logistic law,

a

(58) U, = m (a > 1, 6 > O).
According to (55) one must have
(«—1)8

MO —wl) = e oDy
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The minimum-fluctuation solution is thus the purely reproductive process

(@ — 1B

(59) O FF@—1) p(t) =0,
which satisfies the relation
(60) Ao =8(1-2),

as might have been expected, since the Verhulst-Pearl-Reed differential equa-
tion (which forms the deterministic basis for the logistic law) is

(61) %%—'}=ﬁ(l—g>.

7. “Periodic” birth-and-death processes. As a further example of the general
theory it is worth considering the “periodic” processes for which the expected
growth 71, is a function of the time which repeats itself with the period &. It
will then follow that p(t) and so also A(f) — w(t) have the period &, while p(t)
must be zero whenever ¢ is an integer multiple of . The only cases of interest
are those in which A and u are separately periodic, and then it can be seen from
(14¢) that

(62) fi = no and Var (n) = kno j: ¢ (N(7) + u(r)}dr,

whenever t = k@, for every positive integer k. Thus, although the expected
value of n, repeats itself regularly, in practice this “periodicity’ would be ob-
scured by the rapid increase, with increasing ¢, in the magnitude of the random
fluctuations (as measured by Var (n;)). Moreover, since

k@ @
f e Pu(r)dr = kf & u(r)dr,
o ]

it is clear that the process is necessarily transient, there being unit probability
that n, will ultimately be reduced to zero.

Periodic birth-and-death processes are likely to be of importance in biology;
it should be pointed out, however, that this type of process describes the stochas-
tic modification of a regular periodicity imposed on the model from outside, and
it is not to be confused with other stochastic models which themselves generate
irregular (non-phase-keeping) oscillations. The models discussed in this section
are in fact suitable for the quantitative description of seasonal influences.

Before going into further detail it is natural to specialise the model by assum-
ing that the functions X and p are at most stmply harmonic. If ny = 1, and since
there is to be no damping, one will then have

63) fig = eoleinr e+ —sinre) (@ > 0),
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where v& = 2r, and @ and ¢ are amplitude and phase constants, respectively.
The functions A and u are now to be determined from the relation

AN — u=avcos v+ e,

and this can be done in many ways. The minimum-fluctuation solution would
here be artificial, and it is more natural to select two other solutions,

(64) A= av{l + cos »(t + ¢}, L= av,
and
(65) A= ay, u = av{l — cos »(t + ¢},

for further consideration. In the first of these the death rate is constant and
the birth rate executes simple-harmonic oscillations, while in the second it is the
birth rate which is constant, and the death rate which oscillates. It can be seen
that, of all solutions of these two types, (64) and (65) are those with the least
value for Var (n,). From formulae (14a) and (14b) it will be found that, for
either process,

(66) Var (n) = 4rkalo(a)e™™* when t = ka

where () is the Bessel function of zero order, of the first kind and of imaginary
argument. (It will be noticed that, whenever ¢ is an integer multiple of &, the
distribution of the population size n, is the same for the two models.) For small
oscillations, when ¢ = k&,

(67) Var (n) ~ 4xka asa — 0
since I,(0) = 1, while for large oscillations
(68) Var (1) ~ 2k(2r)}/fimin a5 & — .

(Here imia is the minimum value of 7, .)
The calculation of Py¢(&%) presents some points of interest. For either model
it proves to be

21ra 10 (a) ea.inn )
1+ 2rad(a)e=™"’

(69)

this is the probability that a population element, known to be descended from a
single individual at time ¢ = 0, will havé become extinct one year later (if one
identifies the oscillations with a seasonal effect). It will be seen that Py(&)
will be least when sin ve = —1, and greatest when sin ve = +1; i.e. when
7, 1s expected to have a minimum, or a maximum, at { = O, respectively. Ac-
cordingly it follows that the progeny of a new member of the population is most
likely to survive till the following year if the ‘“‘ancestor’” commences its “mem-
bership” at a time of year when the population would normally have its mini-
mum value.
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In conclusion, I wish to thank Professor M. S. Bartlett for many helpful dis-
cussions on the subject of this paper.
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