BOUNDS FOR SOME FUNCTIONS USED IN SEQUENTIALLY TESTING
THE MEAN OF A POISSON DISTRIBUTION!

By Leon H. HERBACH
Brooklyn College

1. Introduction. Let z = log ;((—:’—%)2, where f(z, \:) = (¢™ \i)/xl,
) 0.

(¢ = 0, 1), is the elementary probability law of a Poisson variate X, under the .

hypothesis that the mean is equal to X;. Without loss of generality we shall
assume A1 > Ao.

Let H, be the hypothesis that the distribution of X is given by f(x, No). Wald
[1, pp. 286-287] has devised general upper and lower bounds for the probability
of accepting Hy , when M is the true value of the parameter, and the sequential
probability ratio test is used. This probability is called the operating-charac-
teristic function and is designated by L(A). Using these results he has com-
puted the bounds for the binomial and normal distributions [2, pp. 137-142].
We shall do the same thing for the Poisson distribution, since the restrictions
[1, p. 284, conditions I to III] under which these general limits are valid can
rather easily be shown to apply to the Poisson distribution, if we make the fur-
ther restriction that E(z) = 0.

These general results are

1-B 1 — B .
and
1 — A" 1 — q4" .
1 mSLO\)SB_"——n—A—’" if h <O,

where «, 8 are probabilities of committing errors of the first and second kind re-
spectively and

A=Q10-8)/a, B=g/{1-oa)

7 =gl {E’(e"’ | " < %) ¢ > 1

(2) ¢ ; )
6=1upr(e"‘|e"’2;)> 0<p<l;

P )

and % is the non-zero root of the expression, Ee*' = 1. Hence the only remaining
unknowns are 5 and 6.

1 The author is indebted to Professor A. Wald for suggesting the problem which led to
this note and for helpful discussions.
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The following bounds to En, the expected number of observations required
by the sequential probability ratio test defined by e, 8 have been derived [1, pp.
143-147]:

L\(@ogB+¢)+[1 — L(\)]log A <
Ez >

< LQ) log B + [1 — LM\)](log A + £)
> Ez ’

En

the upper or lower inequality signs holding according as Ez > 0 or Ez < 0, where

3 ¢ =MinE@z+r|z+r<0),
and
(4) § =MaxE@z—r|z—1r>0), (r>0).

Using the limits to L(\), we then find £ and ¢, which determine En.

2. Special terminology. By an almost-increasing function we shall mean one
that has the following properties: If z is any point of discontinuity, then (a) z + &k
is also where & is any integer and « + [ is a point of continuity if I is not integral,
() flx — ¢ <flx — ) < flx)for 0 < ¢ < e <1, (c) fz — 1) < f(z), (d)
lim, f(x + €) = f(z +) < f(z), () flx — 1 +) < f(x +). It is clear that the
minimum value for f(y) in any closed interval [a, b] is equal to min [f(a), f(a’ +)]
where o’ is defined as a if the closed interval contains no discontinuity, and as
the leftmost point of discontinuity otherwise. As special cases, if a is a point of
discontinuity this minimum is f(a +) and if z < @ < b < z + 1 the minimum
is f(a).

Almost-decreasing functions are defined similarly except that the inequalities
go the other way. In this case the maximum in the interval is max[f(a), f(a’ +)]
and we have special cases as above.

3. The case h > 0. Since ¢’ = a"¢°, where a = \;/Mpand ¢ = (A\; — \o) the
condition ¢” < 1 /¢ may be expressed as o’“¢"* < 1 /¢, whence

5) z < c¢/loga — log ¢/(hlog a) = s — r (say).
Sincez > 0,7 <s. Hence 0 < r < s. Also

0 —A\Z
(6) Ee" = Y (¢ a)" %?— = exp (—ch — X + A\,
z=0 .

and

)] CE(E™ e < 1/8) = ¢El(e™ ™) |r < s — 7).



402 LEON H. HERBACH

From (5), ¢ = @™ and (7) becomes

[s—r] —A\2z
e "N —ch zh
ea”

7] Z= (E! -
(7.1) o™ 0[8_'] s

2=0 z!
where [s — 7] is the largest integer < (s — r). Our problem is to minimize (7)
with respect to {. Since r is a strictly increasing function of ¢, this is equivalent
to minimizing ¢™C/D = 6 (say) with respect to r, where

[8—7r] xc zh [s—r] \z
a A
= , and D= 2 =.

z=0 ! z=0 x!

It will be shown that (7.1) is an almost-increasing function of 7 and therefore
the minimum occurs at either » = 0 or r = » +, where » = s — [s], since the
saltuses occur at r = » + kfork = 0,1,2, -+, [s].

Since a™ is an increasing function of r and C/D remains constant as long as
[s — 7] remains constant, condition (b) is fulfilled.

Conditions (c) to (e) refer to the saltuses only, hence, to show them, we may
assume, without loss of generality that r and s are integral. We proceed by in-
duction, using the notation (w) to mean the value of 6, when r = w, to show (c).

First we prove the following:

Lemma A. 6(s) > 6(s — 1).

Proor: Since we assumed Ay > Ao and & > 0, @ > 1. Hence (1 + Nd >
1 + Ad", whence, a fortiors, a™ > a“ M1 + /@ 4 N).

To show that if 6(r 4+ 1) > 6(r), then 6(r) > 0(r — 1), we shall show that

®) CD + Dba™™* < CDd" + Cb
implies
) CD + Dbga"*™ < CDd* + Cbqd,

wheren = 8 — r,b = \"/nl, ¢ = N/(n + 1).

Since, as we shall see below,

(10) Dba™™*(g — 1) < Cb(gd" — 1),
or LN
(11) Da™Hg — 1) < Cgd" — 1),

addition of (8) and (10) yields the desired result, (9).
It now remains to prove (11) or that

(12) [S:,; 2—,] a"MP A —n—1) < [S:,; “Zz"] (a* — n — 1).
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Setting (6) equal to 1 we get A\a* = ch -+ A, which when substituted in (12)
yields

(ch + N0 —n — 1) Eo%a-:<)\”+l(ch+)\—n 1)20(""""‘) .
Upon letting p = ch + A, we have
A=+ DN _p—(n+ )§p° _
A=k DEN p = (ot DS g,

At ~=z! pn-l-l say.

Then our problem reduces to showing that F(y) is increasingin0 <A <y < p
or that the derivative with respect to y, F’ (y) is positive.

, i — )@ - )™ A
F'(y) = Z———'—'—+(n+1)zE=OTFT+(n+1)y ?
>m 4+ D%  since (n + 1) > (x + 1);
>0 since y > 0.

Thus condition (¢) is demonstrated. To show (d) we must show that
0(r +) < 6(r), which means that
mC — ba”h m C
“ D= “*D°
But this is true if C < Da™ which is easily verfied. Condition (e) is equivalent
to showing that

o g mC — ba™
D D—-b "’
which is proved just as (c) was.
Hence, §
[8] —Ayz _hz [s] A 2z
71=min{ DI >\ /Zex?:
z=0 z=0
(13) h - [s—1]) 6_)‘>\ a [s=1] 6—)\ N
o
zgo z;o z! }

As special cases we have (i) if s is integral, 5 is the latter Wlth v = 0 and (ii)
if s < 1 (b) is the only applicable condition and we have an ordinary increasing
function, hence % is the former.

Similarly, it may be shown that

(14) & = max [¢ *E(@®|z > {s}), ™ ?E@® |z > {s + 1]}
where {s} is the smallest integer > s and p = {s} — s. Here there is only one
special case, namely (i). If h < 0, & is the larger of the two expressions on the

right side of (13) and 7 is the smaller of the two corresponding expressions in
(14).
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4. Since z = — ¢ + z log a, £ may be written
Max log aE(x — t | z > t),
t

where t = (r + ¢)/(log a). Hence s = c/loga < ¢t < . Therefore if we can
show that E(z — t |z > ) = () (say), is an almost-decreasing function of ¢
we will know that £ occurs either when ¢ = s or {s} + since, as will be seen, the
jumps occur at integral ¢.

To show (c) we make use of the following which is easily proven:

Lemva B. Let X, Y, Z each be greater than zero. Then a necessary and suffi-

cient condition that X X+r, is that XZ < Y*.

Y + Z
Therefore, to show for integral ¢ that
(15) vy < - 1),
or that
Zu—ﬁ—- Z@—0—~ Z;
— N T = ’
Z‘:x' ;zx'-i_(t—l)'
we need only show that, for all integral ¢,
N (x — t)>\ [ x]
(16) @t - D! Ez ! :;tx'

Since both sides of (16) are power series in A where the exponents start with 2¢
we need only show that the coefficient of every term on the left is less than the

corresponding term on the right.
In the case of the coefficient of A*****, (j > 0) we have to show that

2% +1 2 2

@+ 2+ DI — D! < @+ 2! + t+ 25— DI+ 1!
+ -

1
Ik
or by multiplying both sides by (2¢ + 2j)! that

% + 2 2t + 24 2 + 25 % + 2j
@ + 1) <2 + 2 42l T
t— 1 t t+ 1 t+j—1

<2t + 2j>
+ . ] = M, say.
t+J

Replacing all the binomial coefficients on the right by the smallest one we have

2 +1)<2t+2])<(2 +1)<2t+2j)<M,



BOUNDS FOR SOME FUNCTIONS 405

since (s ﬁ 1> < (Z) for n > 2s. Thus the truth of (16) has been established

for even exponents. The odd terms are treated similarly.
Hence, we have shown that y(¢) is a strictly decreasing function of ¢, if ¢ takes
on integral values only. We shall now show (b), i.e. that

Ye-0)X X w-t+eol

Z=t x! z={t—¢}
<

(17) y(@®) =

The denominators are equal and each term of the numerator on the right is
greater than the corresponding term on the left, hence (17) is valid.
Conditions (a) and (d) can be shown, by showing in a similar manner, that

(18) vE+) =140+ 1)

and y(¢) > 1 + v(t + 1) for integral {. By using (18) for ¢ and ¢ — 1 together
with (15) we show y(t — 1 +) < (¢ +), which is condition (¢). Thus we have
shown that

0 )\r—)\ 0 r —\
—c+logazx—e—/z>\e ’

e=(s} ! o=(s} T!

© z —\ o z —\
loga[—{s}—i— » Z\"e / ) Ne ]
omfsrl} X! z={oy1) X!

As in Section 3, ¢ is the lower analogue of £, i.e.
g =min{—c+ E@|z < [s]), —[s]loga+ E@x|z < [s — 1]},

and the special cases are as in that section.

¢ = max
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