HEURISTIC APPROACH TO THE KOLMOGOROV-SMIRNOV
THEOREMS'

By J. L. Doos
University of Illinots

1. Introduction and summary. Asymptotic theorems on the difference between
the (empirical) distribution function calculated from a sample and the true
distribution function governing the sampling process are well known. Simple
proofs of an elementary nature have been obtained for the basic theorems of
Komogorov® and Smirnov® by Feller,* but even these proofs conceal to some
extent, in their emphasis on elementary methodology, the naturalness of the
results (qualitatively at least), and their mutual relations. Feller suggested that
the author publish his own approach (which had also been used by Kac), which
does not have these disadvantages, although rather deep analysis would be
necessary for its rigorous justification. The approach is therefore presented (at
one critical point) as heuristic reasoning which leads to results in investigations of
this kind, even though the easiest proofs may use entirely different methods.

No calculations are required to obtain the qualitative results, that is the
cxistence of limiting distributions for large samples of various measures of the
discrepancy between empirical and true distribution functions. The numerical
evaluation of these limiting distributions requires certain results concerning the
Brownian movement stochastic process and its relation to other Gaussian
processes which will be derived in the Appendix.

2. The problem. Let z;, 2, -+ be mutually independent random variables
with a common distribution function F(A),

F(Q\) = Priz; < \}.

In statistical language x;, - - - , 2, form a sample of n drawn from the distribu-
tion with distribution function F(\). Let »,(\) be the number of these x;’s which
are < N. According to the strong law of large numbers, for each A

@.1) Jim # = F()

with probability 1. For fixed n ».(\)/. is itself a distribution function (which
depends on the sample values x;, -+, x,) the empirical distribution function,
and an elaboration of the argument which led to (2.1) shows that (2.1) is true

1 Research connected with a probability project at Cornell University under an ONR
contract.

t Inst. Ital. Atti., Giorn., Vol. 4 (1933), pp. 83-91.

8 Rec. Math. (Matematiceskii Sbornik), N.S. 6, Vol. 48 (1939), pp. 3-26, Bull. Math. Univ.
Moscou, Vol. 2 (1939), fasc. 2.

4 Annals of Math. Stat., Vol. 19 (1948), pp. 177-189.

393

[
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%:%
The Annals of Mathematical Statistics. MIKOIRS ®

WWWw.jstor.org



394 J. L. DOOB

uniformly in A\, with probability 1; that is if

2.2) D, = LUB. =X _ py .
-0 AL ® n
then D, is a random variable and
lim D, = 0

with probability 1.5 This result would be of limited practical statistical importance
except that the distribution of D, does not depend on the distribution function
F(Q\) if F(\) is continuous. In fact in that case the random variables F(xz.),
F(x,), --- are mutually independent and each is uniformly distributed in the
interval (0, 1); if #,(\) is the number of F(z;)’s < A, forj < n,

vn(ﬂ) Vn(x)
0 —F(x)).

n

L.U.B.

0<u=<1

= L.U.B.

—0LAL 0

Thus it is no restriction, replacing z; by F(x;) if necessary, in finding the distri-

bution of D, to assume that F(\) = A for0 < A <1, and

Vn(>\)
n

The results will hold for D, defined by (2.2) for any continuous F(A). We shall
also consider D} and D7, , defined by

D% = L.UB. [”"O‘) x],

(2.2) D, = L.U.B.

0<A<1

N

021 n
(2.3)
D = —G.L.B. [”Jl) - x],
0sA<1 n

and again the results will hold (with the obvious definitions of D} and Dj in the
general case) for every continous F()).

The problem is to find the limiting distributions of (properly normalized)
D, , D}, Dy whenn — .

3. Derivation of the Kolmogorov and Smirnov theorems. Define
x,,(t)=n*<’%9—t), 0<t<1.

Since »,(0) = 0 with probability 1 and »,(!) — w.(s) is the number of suc-
cesses in n independent trials, with probability ¢ — s of success in each trial,
va(t) — v.(s) has expectation n(¢t — s) and variance n(t — s) [1 — (¢ — s)]. Hence

E{z.(t)} = 0, 0t

(3.1) \
Effza®) — 2@} = ¢ —9) 1 - (¢ —9), 0<s<t<1

8 Cf. M. Fréchet, Généralités sur les probabilités. Variables aléatoires, Paris, 1937, pp.
260-261.
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Now let {x(¢)} be a one parameter family of random variables, 0 < ¢ < 1
with the following properties:
(a) foreachjif 0 < # < --+ < t; < 1 the j-variate distribution of the random

variables z(4), - - - , z(¢;) is Gaussian;
(b) (3.1) holds, that is
(3.1 E{z@t)} = 0, 0<t<1;

Bllet) — 2@} =t —s)[1—(t—9)], 0<s<t<1L

(¢) Pr{xz(0) = 0} = 1.

According to the central limit theorem, the j variate distribution of
Za(t1), - - -, xa(¢;) is asymptotically that of x(4), - - -, z(¢,); in fact the normalizing
factor n? in the definition of z,.(f) and the choice of means and variances in (3.1)
were made precisely to bring this about. As far as first and second moments are
concerned the z,(t) and x(t) processes are identical; when n — <« the distribu-
tions, or at least the j variate ones mentioned, become identical also.

We shall assume, until a contradiction frustrates our devotion to heuristic
reasoning, that in calculating asymptotic x,(t) process distributions when n — o
we may simply replace the x,(t) processes by the x(t) process. It is clear that this
cannot be done in all possible situations, but let the reader who has never used
this sort of reasoning exhibit the first counter example.

The z(t) process has continuous sample functions (cf. Appendix). Define

D = Max |z(d) |,

0<st<i
Dt = Max z(2),
0<t<l1
D™ = —Min z().
0<t<1

Then in accordance with our substitution principle #'D,, n!D}, ntD have asn

becomes infinite the distributions of D, D, D~ respectively. (The latter two

are the same because the —x(¢) process is stochastically identical with the x(¢)

process.) Thus these simple qualitative considerations have led to the existence

of the limiting distributions derived and evaluated by Kolmogorov, who proved:
Tueorem® (Kolmogorov).

3.2) lim Pr{ntD, > A =2 Z (_1)m+1 6_2'"2)‘2;
n—x 1
(3.3) lim Pri{n!D} > A} = lim Pr{nD; > A} = ¢

To complete our treatment we shall prove in the Appendix that

(3.2") PriD >} =23 (=) mn
1

¢ In Feller’s paper (loc. cit., p. 178, equation (1.4)) the factor 2 in the exponent was
omitted by the printer. The same misprint occurs in Smirnov’s table of the values of the
series in our (3.2), Annals of Math. Stat., Vol. 19 (1948), pp. 279-281.
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(3.3) Pr{iD* > A} = Pr{D™ >} = ™,

so that in fact the above considerations have led not only to the existence but
to the evaluation of the asymptotic distributions. (Actually we shall prove
somewhat more general results about the z(¢) process.)

So much for the Kolmogorov theorems. Smirnov obtained results (also
independent of the given continuous distribution function F(A)) of a somewhat
different nature. Let 21 , 3 , --- be mutually independent random variables
with the same individual distributions as the z;’s, that is each distributed
uniformly in the interval (0, 1); define »x(\) as the number of the first n z,’s
which are < A. Smirnov considered the difference between empirical distribution
functions,

m) _ v
m n

Dpy, = L.U.B.

0<A<1

)

as well as Dj. and D, defined in the obvious way. To avoid stressing the
obvious we consider only the D,,, .

THEOREM (Smirnov). If m, n — o 4n such a way that %z — .1, and if

N = mn/(m + n),

(3.4) lim Pr{NiD,, > \} = 2 3 (—1)"H g2,
1

n—00

To derive this result define an z*(t) process stochastically identical with the
z(f) process but independent of it. Then if z(t) is defined by

*
zX(t) = nt (”_ﬁ_@ - t),
n
we identify, in accordance with our heuristic principle the process with variables

{z(t) — rz*(1)}

with the one with variables

{xm(o _ (’g)m x:u)}.

Doing this leads to the fact that the distribution of
1/2
an(t) — <7—n> xf(t)‘
n

n 1/2
(N Dy = ( ) L.U.B.

m+n 0<sti<1

converges to that of

( 1 )1/2 Max |z(t) — ()" a*(1) |
147/ o<i<1 v )
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Now the z(t) process and the process with variables

{x(t) - (" x*(t)}

are stochastically identical. Hence we are led to the conclusion that the distri-
bution of (N)'”’D,.. converges to that of D, and this is Smirnov’s theorem,
stated above. (The method we use does not seem applicable to Smirnov’s deeper
theorems on the number of intersections between empirical and true distribution
curves or between pairs of empirical distribution curves.)

APPENDIX

4. The Brownian movement process. Consider any Gaussian stochastic
process, with random variables {x(f)} where ¢ varies in some interval. That
is, we assume that for each ¢ in the interval z(t) is a random variable and that
for anyj > 1if ¢4 < .-+ < t; are in the interval the j variate distribution of
x(t), +-+, x(t;) is Gaussian. In the following we shall always assume that
E{z()} = 0. Then the process is determined stochastically by the covariance
function

r(s, t) = Ef{z(s)z(t)}.

In particular, if the range of parameter is the interval [0, ) and if
(s, t) = o Min (s, t), 0<st< x,

the process is called the Brownian movement process, or sometimes the Wiener
process; ¢ is a positive constant. When considering this process we shall write
¢(t) instead of x(t). For the {(t) process
Pr{z(0) = 0} =1,
E{k@ — ¢@F) = o' |t — s,

and if 0 < &1 < #i < 82 < 1 the increments z(t;)) — x(sy) and x(tz) — z(sy) are
mutually independent. We shall use the following properties of this process, of
which the first two are well known.

(a) The sample functions are everywhere continuous with probability 1. In
the following we can therefore write as if all the sample curves were continuous.

(b) For fixed s

(4.1) PT{OMza}; s+ — (6] 2N = 2Pr{g(s + T) — ¢(s) > A}
<t=<
(Note that the use of a general initial value s, rather than 0, has not added

to the generality and we drop this affectation below.)
() Ifa>0,b0>0,a>0,8>0,then

(4.2) Pr{ L.UB. [¢(t) — (at + b)] > 0} = ¢,
0<t<oo

" Due to Bachelier; cf. the proof by P. Lévy, Comp. Math., Vol. 7 (1939), p. 293. One way
to prove (a) is to prove (4.1) first, with L.U.B. instead of Max, and then use it to calculate
the probabilities relevant to (a).
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(4.3) Pr{ols,.g.f. k@ — (at+0b)] >0 or GL.B.[(t) + of + 8] < 0},

)
Z { e«—zlm?ab+(m—1) 2af-+m(m=1) (af+ab)]
me=]

+e—2[(m - 1)2ab + m2af + m(m — 1)(af + ab)]
_e—2["t’(ab + af) + m(m — 1)af + m(m + 1)ab]

_e—2lm’(ab + af) + m(m + 1af + m(m — l)abl},
)

in particular (¢« = @, 8 = b)

' @) | }_ 3 __1ymH —2m2ab .
a0 > af =2 o

“The probability in (4.2) is the probability that a {(f) sample curve will ever
reach the line with slope a and ordinate intercept b; the probability in (4.3) is
the probability that a sample curve will ever reach either of the indicated
halflines, one above and one below the ¢ axis. Since the right hand sides are
continuous functions of a, b, @, 8 we could write >0 instead of >0 and <0
instead of <0 on the left, so that these probabilities are also the probabilities
that a sample curve will ever rise above the indicated line or leave the indicated
angle.

It will be convenient to describe a line by its slope and ordinate intercept;
the line [u, v] is the line with slope u and ordinate intercept ». We shall take
¢ = 1 in the proof; this is no essential restriction since {(¢)/c is the random
variable of a process of the same type whose ¢ is 1.

To prove (4.2) let p(a, b) be the probability on the left, the probability that a
sample curve will reach the line [a, b]. If b = b, + by, b; > 0, a sample curve
which is to reach [a, b] must first reach [a, b;] and then move up to meet a line
with slope @, b, units above the first meeting with [a, b;]. Then

¢(a7 b + b2) = ¢(a7 bl) ¢(a7 b2)'

Now ¢(a, b) > Pr{i(1) > a + b} > 0 and ¢(a, b) is monotone non-increasing in b,
for fixed a. The only solution of the functional equation with these properties is
ola, b) = ¥,

Now ¢(a, b) is the probability of reaching [0, b] at some first time s and then
going on to the line [a, b] which from the vantage point of the first common point

(s, ¢(s)) is the line [a, as]. In other words, using (4.1)

gY@ f e V@es g, Pr{ Max {(f) > b}

0 0<t<s

— e
_ [T v b . ds
A (2m)1/2 5302
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_2 (" e b2a¢<a)]
=5 l exp[ s 35t ds

«b(2ay(a))1/2
€ b

from which it follows that ¥(a) = 2a, and this yields (4.2).

To prove (4.3) we consider first the following general problem: Let [u;, v1],
[z, 0], -+, u; > 0,v; > 0be asequence of lines; let ¢ = # be the first value of ¢,
if any, at which a sample curve meets [u; , v1]; if # is defined for a sample curve
let & be the first value of ¢ > 4, if any at which the curve meets [—uy , —uvs]; if
f; is defined for a sample curve, let ¢ be the first value of ¢ > #,, if any, at which
the curve meets [us , v3], and so on. Let 7, be the probability that there is a point
tn, in other words the probability that a sample curve meets the lines [u; , vi],
[—uz, — va, - -+ [(—=1)"Mu, , (—1)"*',] in at least 7 successive points. We write

Tn = Ta(ly, V1, v*% , Un, VUn).
In particular, according to (4.2)
(44) 7l'1(u1 ) 1)1) = e'z""".

To evaluate ,, let Q be the point ({,—1, ¢(f.—1)) on the sample curve, and
suppose for definiteness that n is even. Starting at @, if there is a ¢, , the curve
must finally reach [—u, , —v,], that is it must go to a line of slope —u,, , which is
Un—1bn—1 F Vo1 + Untas -+ v, units vertically below its initial position @ when
t = tn1. According to (4.2) the probability of doing this is

6—2“0(“11- 1in—1+vnaytugtnog+og)

Now we replace the line [—u., —v,] by a line which depends on #,_; but which
leaves this probability unchanged; the new line has slope — (un_1 + u,) and is

Un
h=—"—
Up—1 + Un

(un——l t‘n—l + Un—1 + Un tn—l + vn)

units below @ when ¢ = #,_; . Finally we reflect this new line in the line parallel
to the ¢ axis through Q. These two changes do not affect the probability we are
discussing because the changes of ¢(t) after ¢,_; are independent of the changes
before and have symmetric distributions. The final line has slope %,y + v,_;
and is h units above @ when ¢ = ¢,.; ; it is the line

[un—l + Un Un—1Vn—1 + UnVn + 2U, vn—l]
« Up—1 + Un
which does not depend on #,_; . This line lies above [ua—1 , va—1] in the first quad-

rant, so that if a sample curve reaches it the curve must also intersect [t,_; , vn_1].
We have thus proved that

(4.5)  walur, o150 U, V)

Un—1Vn—1 + Un Un + 2unvn—1)

= Tpal Ui, 015 0 3 Un2, Ung j Un—g + Un,
< ’ ’ ’ Un—1 + Un
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The fundamental identity (4.5) makes it possible to reduce the evaluation of
s to 7 In m — 1 steps; m is evaluated in (4.4). Thus successive meetings with n
lines have been reduced to a meeting with a single line. As a first example suppose

U = *+° = Uy = U, V9= +o0 =0y = 0,
Then we have
Tty 0 o ¢ 5 U, 0) = Tpma(uy 05 -+ 3 2u, 20) = o«

m(nu, nv),

i

so that

(4.6) Taltly 05 -0 U, 0) = €

More generally suppose
U = Uz = -+ = aq, 01=1)3=”'=b,
U = Uy = -+ = q, Vo =0y = ¢++ =[5,

Then we show that for suitably chosen C{™’s we have according as n is even
or odd

(») (n) (n) (n)
Ta(a, b; -+ ja, B) = rl[g(a+a), 17 ab + C2"aB + Ci"aB + Ci"ab ,

gm+@

71'7,((1, b7 5 a, b)
(4.7)

a+ )
2 “ ntl,  ntla
5 2

n+1 n—1 CPab+ CPaB + CPaB + C}")ab:l

For n = 1 this form is correct with
P =1, =C¢"=0"=0
If now n is even and if the equations are true for n,

(n) (n) (n) (n)
mori(a, b; e a,b) =m|a, b;g (@ + a), Cilaf + Cy"ab + Ci"ab + Ci"af
‘ ga + a

_ [n42 n_ab+ C + CMab + C§ab + C{MaB + nla + a)b
R R n+ 2 n ’
2 a + é a

and comparing this with (4.7) we find that
Mt =050 1,
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C(n+1) = C(n)

Cm = o, (n even).
C(n-i-l) C(n) +n
]
If n is odd we find similarly that
C(a+l) = C(n) +n
t )
C(n+l) C(n)
C(n+l) C(n)
C(n+1) C(n) +n 4+ 1.
The solution of these equations is
n even n odd
2 2
m_ T m_ (n+1)
C, i C 1
2 2
(n) — n (n) (n - 1)
Cz 1 Cz 1
-2 n — 1
o™ = n(n m _
4 Cs 4
o = 1+ 2 o _ =1
¢ 4 ¢ 4
Then
(4 8) T = e—%[nzab + n2af + n(n — 2)af + n(n + 2)ad] (n even)’
: = g 3ln Db+ (3 = D2af + (n? — DB + (2 — Dab] (n odd).

We can now prove (4.3). In fact the left side is equal to
Wl(a, b) + Wl(ay 6) - 77'2(a7 b: @, B) - 7"2(“; B; a, b) + .- 5

which gives (4.3), on substituting (4.8). Only (4.3"), which follows from the
simple (4.6), is used in the application to the Kolmogorov-Smirnov theorems.

5. Transformations of Gaussian processes to the Brownian movement process.
The ¢ () process studied in section 4 is so simple that it is important to be able to
reduce others to it by elementary changes of variable. For example if the co-
variance function of a Gaussian process has the form

(5.1) r(s, t) = u(s)v(?), s <t
for s, t in some interval, and if the ratio
ul) _ 40

o)
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is continuous and monotone increasing, with inverse function a,(t). We define

_ ()]
O

With this definition the ¢ process is Gaussian and since if s < ¢

ulas(s)]vlax (9)] .

E{f(s)g‘(t)} = m = alai(s)] = s = Min(s, 1),
the ¢ process is the Brownian movement process with ¢ = 1. This transformation
from the z to the ¢ process is effected by a combination of a change of variable
in ¢t and the application of a variable scaling factor. (Conversely, if such a trans-
formation is applied to the Brownian movement process it is trivial to verify
that the new covariance function will have the form (5.1). The Gaussian processes
with covariance functions of this form are easily seen to be the Gaussian Markov
processes.)

6. The Gaussian process with r(s, t) = s(1 — t). In section 3 the Kolmogorov-
Smirnov theorems were reduced to properties of a Gaussian process with param-
etert, 0 < ¢t < 1, for which

Pr{z(0) = 0} = 1;
E{z()} = 0;
E{lz@t) — 2@} =t =98l —(Ct—39), 0<s<t< L
Now these equations imply that

E{z@t)} =10 — 1), EB{z(s)} = s(1 — 9),

and combining the set we find that

r(s, ) = E{z(s)z(t)} = s(1 — 1), 0<s<tLl
This covariance function has the form studied in section 5, and using the trans-
formation of that section

s“(t)=(t+1)x(t+—tl), 0<t< w,

defines a Brownian movement process (with ¢ = 1). Then if D, DF, D™ are
defined as in section 3, we have from (4.3")

_fit_)_ ‘ Z >\} - :Z (_1)m+1 6—2m2)\2,

t+ 1

Pr{D > \} = Pr{L. U. B.
0<it<®
and from (4.2)

PriD* > A} = PriD” > \} = ™.
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This proves (3.2") and (3.3"). Note that we could go beyond these results, because
of our detailed knowledge of the x(f) process. For example we can evaluate

lim Pr{®)’D; < A, @)DE <\l

n—»w0

If A = Ay = X the probability is the probability that (n)'?D, < A which we have
already treated. In general it is, in the limit,

Pr{Min z(¢) = — Ay, Max z(f) < Ay}
0<t<1

0<tgl

- pr {G.L.B. $0 5\ rus f0 < M}

ost<wo L+ 1 7 ost<o ¢4 1
0
— 2)\2 —1)2)\2 — — —~1)2)\2 2)\2 ]
=1 Z (e 2AHm—DINmm—D ] =2l (m=DIE+mIN-H2mm=DA 1]
m=1

— o 2MEO2END) tmm—DA N g tm(m DA ] e—ztmf(x§+x:)+m(m+1)h>\2+m(m—1)xm)}

L

1 — Z {6—2[m)\2+(m—-1))\112 + o2 —DAptmn 2 26—2m2()\1+)\2)2}

me=a]

obtained:by settinga = b = N\, @ = 8 = A\ in (4.3).



