REPRESENTATION OF PROBABILITY DISTRIBUTIONS BY
CHARLIER SERIES*

By R. P. Boas, Jr.

Brown University

Summary. The paper describes some results concerning the representation
of a function by linear combinations of the successive differences of the Poisson
distribution, not necessarily the partial sums of the type B series of Charlier.

1. Introduction. For various purposesit is often desired to expand a probability
distribution f(z) in a series

0 1@) ~ 3 anlo),

where the 6:(z) are a given set of standard functions. Arguments of a heuristic
nature led Charlier [4, 5, 6] to suggest that it would be useful to take the 6;(x)
in (1) to be either the successive derivatives or the successive differences of some
fixed function; the two cases are often referred to as type A series and type B
series, respectively. Charlier gave formulas for determining the coefficients in the
two cases, but the question of whether the formal series represents the given
function in any reasonable sense has to be investigated separately for each
particular choice of the function generating the series. Only one special case of
each type has been much used: for the A-series, 6(x) is the normal density
function (2r) ¢ *; for the B-series, 6(x) is the Poisson function e \*/z! (when z
is restricted to take only nonnegative integral values). We shall refer only to
these special cases when we speak of A- and B-series in this paper.

There are two distinct problems (which have, however, often been confused)
connected with the representation of a function f(z) by a series (1); for con-
venience, we shall refer to them in this paper as the practical problem and the
theoretical problem. In the practical problem, we have an empirical function f(z),
defined only for a finite number of values of x, which we suspect is representable
by cofo(x) together with a small correction, so that we hope that a few (say three
or four) terms of (1) may give a good representation of f(x) in a relatively simple
analytical form with a reasonable amount of computational labor. In some cases,
and certainly with the classical A- and B-series which we are considering, we
could represent, as closely as desired, any f(z) (however irregular) which takes
nonzero values at only a finite number of points; but there is no interest in doing
this if the process involves finding too many terms of the series. (Neglect of this
fact has led to ill-founded statements by mathematicians about the satisfactory
nature of the A- or B-series; but see [27, pp. 38-39].)

Thus it would be of interest to know, if possible, under what circumstances a
given empirical density can be represented fairly well by a few terms of a series
of a given kind. If no simple criterion can be given, it is desirable to have a means
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of computing coefficients which will make a few terms of (1) give the best possible
fit—best possible being defined in a way appropriate for the problem at hand.
In the theoretical problem, f(x) is a function defined for all values of z, or at least
for all of an infinite set of equally spaced values of x, arising from theoretical
considerations which suggest cofo(z) as a reasonable first approximation to f(z).
For example, the central limit theorem states that under certain conditions the
cumulative distribution function of the sum of a large number of independent
random variables is approximately normal; then we might expect that this
distribution function would be representable by a series (1) with 6y(z) the normal
distribution function. For such theoretical purposes we should like to have
criteria for the representability of a sufficiently general f(z) by a series (1),
where representability is of course to be interpreted appropriately, as ordinary
convergence, uniform convergence, convergence in mean square, asymptotic
representation, etc., according to the requirements of the problem at hand. The
larger the class of f(x) for which we can prove a representation theorem, the
larger is the possible domain of applicability of the series to theoretical problems.

2. The A-series. This paper is concerned with the B-series, but for comparison
we first mention some properties of the A-series. In the case of the classical
A-series, we have the attractive fact that the functions 6,(x) are orthogonal
with weight function ¢**, that is,

[ 0,(x)0m(2)e?” dz = 0, m # n.

In fact, e*"a,,(x) is, except for a numerical factor, the nth Hermite polynomial.
This orthogonality property enables one to compute the coefficients in a series (1)
with great ease from

@ ne= [ fa@e+ dx,

or since O,(z)e™ is a polynomial, from the moments of f(z). By the classical
theory of orthogonal functions, this means that if the ¢, are so computed, and we
take N 4 1 terms of the series, we minimize

3) f : e [f(zx) — Fy(@)] dx

‘

for all possible sums

N
(4) Fu() = 2 cafa(a).
The convergence theory of Hermite series has been thoroughly investigated by
mathematicians, so that it would appear that in theoretical problems, in which
f(z) is given for all values of , we are in a position to find out everything about
the representation of f(z) by an A-series. Alsc in problems of practical curve-
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fitting, the fact that the closest approximation to f(z) (in the sense (3)) by sums
of the form (4) is given by choosing the coefficients according to (2) seems to
leave no more to be said.

However, the formal elegance of the A-series seems to be somewhat misleading.
Even when a series converges it by no means follows that its Nth partial sum is
the best selection of N terms for representing a given function. Even though the
partial sums do give the best fit in the sense of (3), it may not be desirable to
measure the closeness of approximation by (3); some other measure of approxi-
mation may be better suited to the end in view. For example, it is known that
the partial sums of Edgeworth’s series (see [8]), which is a rearrangement of the
A-series, are more satisfactory for some purposes than the partial sums of the
A-series with the coefficients determined by (2). More precisely, Edgeworth’s
series furnishes an asymptotic expansion, with a remainder term whose order of
magnitude can be estimated quite precisely, in circumstances where the series of
orthogonal functions does not do this. Again, for practical purposes a few terms
of the A-series sometimes exhibit undesirable properties (such as negative
frequencies). If f(x) is a function defined only for integral values of z, A. Fisher
[10] has suggested and applied the idea of minimizing, not (3), but the sum
D 20| f(@) — Fa(x)[’ in order to determine the coefficients of the approximating
sums.

3. The B-series. We can now see how the status of the B-series resembles or
differs from that of the A-series. Here we deal principally with a function defined
for integral values of z; 6(z) = 6(z) = € "\/z!, A6(z) = 6(x) — O(x — 1),
A*9(z) = A(A*'60(z)) and O(z) = A*6(x); 6(zx) is taken to be O for negative
integral z. We shall refer to this as the discrete case of the B-series. The liter-
ature of the subject contains a number of rather painful attempts to put the co-
efficients into usable form, persisting even after the simple formula

© = a/m) 35 (7) (-0
had been obtained, where u, is the nth factorial moment,
pn = 25 SUE!/ (6 — )L,

Formula (5) can be derived, for example, by using orthogonality properties of
the 6,(x). We have, in fact, that ) a0 0,(2)0,(x)/80(x) is 0 or n! \™" according as
nF morn = m.

The parameter \ in the B-series is at our disposal, and can for example be
chosen in such a way as to improve the convergence of the series. For purposes of
practical curve-fitting, it has been customary to choose M equal to the mean of
the distribution f(z), a choice which makes the coefficient ¢; of A6 equal to zero.
Charlier also suggested other methods in which ¢; and ¢z, or ¢, ¢; and ¢; are
zero [7]. Such choices, of course, may reduce the amount of computation needed
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to make use of a given number of differences in fitting a curve; aside from this
consideration their use seems to depend on the belief that one improves the
convergence of a series by adjusting any available parameters so that as many as
possible of the initial terms of the series are zero. This belief does not always
seem to be confirmed by the facts. (In particular, compare columns 2 and 5 of
Table 1, columns 2 and 4 of Table 2, or columns 2 and 4 of Table 3.)

The theoretical problem of what f(z) can be represented by convergent
B-geries has been studied by several authors [12, 13, 17, 19, 20, 21, 23, 24, 26, 28];
the study by Schmidt [24; see also 25 and 17] gives necessary and sufficient
conditions for the representation in the case of a nonnegative f(x), so that, at
least in all cases of interest in statistics, the theoretical problem seems to be
completely solved. However, one of the purposes of the present paper is to
reopen this apparently closed problem.

There is also a continuous version of the B-geries, which is suggested by the
fact that

(6) o) = Cm) e [r ¢ exp (\e™) du

reduces to the Poisson function ¢™\*/z! for positive integral z (and to 0 for
negative integral ). This form of the B-series has not been much used, and its
use is subject to suspicion since it has rather peculiar properties. In particular,
it cannot represent, in any reasonable sense, a positive function f(x) or one which
is too small as z — o [26, 3]; since the functions which present themselves for
representation in practice are both positive and small at infinity, the continuous
case of the B-series looks unpromising for applications. (See also [27a], 1a.) How-
ever, it has been applied [15].

The purpose of this paper is to describe some results on the B-geries which
have been obtained in a mathematical paper [3], devoted to what we have
called the theoretical problem; some contributions to the practical problem
will also be given in the present paper. The starting point of this investigation
was the question of what happens if one tries to approximate a function, not
by the partial sums of the series (1), but by some other combination of the
first N functions 6,(z), when approximation is taken in the sense of (unweighted)
least-squares. This method of approximation seems well adapted to statistical
problems, and leads to simpler mathematical work than ordinary point-by-point
convergence of the partial sums. The B-series itself gives a least squares approxi-
mation with a weight function 1/6c(z). We consider here only the classical B-series,
when 6o(z) = 0(z) = ¢ N/z!, 0,(x) = A™6y(x); the main results are substantially
the same for rather more general cases [3; see also 14, 25]. In addition, here we
consider only nonnegative f(x), assumed zero for negative z. Functions which
need not be zero for negative = are handled easily by generalizing the B-series
to the form [3]

Q @) ~ T 070 + 3 0,8%000)
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where V denotes the advancing difference: V0(x) = 6(r) — 6(z + 1); there
seems to be no particular reason (other than a historical one) for preferring one
kind of difference to the other. The generalized series (7) might be useful for
graduating symmetrical probability distributions, although it does not seem to
have been considered in the literature (cf. [1a]).

4. Results: practical problem. Our question takes somewhat different forms
in the two cases which we have described as the practical and the theoretical.
In the former, we ask what the coefficients ¢ should be so that

®) 3 i) — a2t [

shall be a minimum, where f(z) is an empirically given function and N is a given
integer, in general not very large. If N is 0, 1 or 2, that is, if we use 1, 2 or 3
terms, the best choice of the a™ in (8) can be calculated without difficulty.

For N = 0, our question is that of finding the best least-squares fit to f(x)
by a Poisson distribution a§”e™\*/z!; the best choice of a{” is then

9) a® = {q)‘zw% f(x))f/x!} / Jo(20N),

where
Joy) = 1+ 4%/@) + v'/@n’ + ...

(Jo denotes the Bessel function of order 0); on the other hand, the usual formula
(5) gives the different coefficient

Ny

This, of course, is simpler than (9) to compute, although its use is based on the
uncritical assumption that the first term of the series (1) is the best one to take
if only one term is to be used. Charlier [7; see also 10, pp. 101-103] suggested a
different formula in which one uses, not A*8(z), but A*6(pz + ¢), the parameters
P, ¢, A being adjusted to make the terms of (1) in A9, A%, A9 all zero; here 6(z)
is defined when z is not an integer by interpreting ¢ *\*/z! as e ™N*/T'(x + 1),
and not by using formula (6). Table 2 shows that in at least one numerical case
(9) gives a better least-squares fit than Charlier’s method (and without intro-
ducing gamma functions to take care of 6(z) for fractional x). However, it is
not excluded that Charlier’s method will give better results in other cases,
since with the change of the functions 6.(z) the results of this paper cease to
apply.
For N = 1, we get the best least-squares approximation to f(z) by

asP0(z) + af®A6(z)
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if
A

a-l-ﬁ (Zo + Zl)’

o = {z‘ﬁ—m 3, — a%ﬁzzl} .
where D0 = D50 f(2)0(x), 2 = Doee f@)0E — 1), @ = Jo(2N), B =

—1J1 (2i)), the J’s again denoting Bessel functions. For N = 2, the corresponding
formulas involve also y = —J(2\) and 23 = 2 oy f(x)8(x — 2). They are:

_ - 28 — a — -
o = B — Zo+zﬂf “,__1721+2ﬂ,‘6 = Zz,

26 — o — ay -« —at—ay

aél)

(10)

e

P af® = By = of + 26" — 2y 2o+ 2;2_'-7 k2

(¢ —7)(28% — o — ) —a— ay
2o’ — 28" + By — of
(an t g A 2
@ _ ay — 8 B8
il e 1O e ey DIR gy D2

g —a
+ (@ — 7)(26% — o — av) 2.
The functions ¢"J,(zy) are real for real y, and extensive tables are available [32].
Some numerical examples showing the comparison between graduation by
these formulas and by the corresponding number of terms of the B-series are
given in Tables 1-3. It will be noticed that (as the theory indicates) one gets a
better least-squares fit by formulas (9), (10) or (11) than by a corresponding
number of terms of the B-geries using the coefficients (5). However, one may not
get a better fit if goodness of fit is measured in some other way, e.g. by x*.
Unfortunately the coefficients calculated by this method increase rapidly in
complexity as the number of terms increases, and even the coefficients for N = 3
would involve very heavy algebra. Since numerical examples [2] indicate that it
is often necessary to go to terms in A‘9 for a satisfactory fit, it might be worth
while to calculate the next few coefficients.

b. Results: theoretical problem. In the case of a theoretical distribution we
ask how coefficients should be determined so that

[

N 2

(12) 2 | f@) - 2 o 8" 0()
z=0 -

will tend to 0 as N — «. The convergence to 0 of (12) is a rather strong kind of

convergence, since it implies convergence of the approximating sums to f(z),

not only for each x, but even uniformly for all z. Of course, the “best” choice of
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at™ as above would be expected to give convergence under the weakest hypothe-
ses, but because of the complexity of these coefficients it seems desirable to
make (12) only approximately a minimum; this actually makes no difference
in the limit, although the approximation is not usually satisfactory for small
values of N. To see the connection between the formulas used here and the
“classical” formula (5) for the coefficients in (1), we note that (5) can be written

(13) ap = Z.f (k) — [b Ml—')]o- ’
. k=0 dz»
(5) results if we expand the derivative by Leibniz’s rule and rearrange the sum.
If we expand ¢ in a power series before differentiating in (13), we obtain
)l—k

= —1)"Zf<k) Z ()*( N = (= 1)"2(’)2( A = ®

If now we break this series off at n = N to obtain

-k

N
(14) o = o=y (L) 5 52 o,
l=n =0 (I — k)!

we obtain a sequence of approximations to f(z) by sums oy o a” A*6(z) which
has, in general, much better convergence properties than the partial sums of the
B-senes with coefficients a, given by (5). In particular, if f(zr) = 0 forz = —1,
—2, - - -, this sequence of approximations converges to f(x) whenever Do |f(@) [
converges; on the other hand, for nonnegative f(z) it is known [24] that the
B-series converges if and only if limz—. f(z)2°z* = 0fork = 0,1,2, - - - , a much
more restrictive condition. If we demand that the partial sums of the B-series
converge in mean square, that is, that (12) tends to zero with o™ independent of
N, we have the even more restrictive condition [3] that lim sup,—. {f(z)}'* < &.

The approximating sums with coefficients (14) have the additional property
that they reproduce f(z) exactly for x = 0, 1, 2, ---, N. One would expect
that in general they would then tend to deviate rather widely from f(z) for
larger z, and so would not be satisfactory for practical curve-fitting. However,
it seems possible that if we fit such a sum not to f(z), but to f(px + ¢), with
suitable integers p and ¢, thus making the approximation agree with f(z) at a
set of values covering the whole range of definition of f(x), it might give a satis-
factory fit elsewhere. This possibility has not been investigated; a similar
approach using the partial sums of the B-series was suggested by Charlier [7]
and Fisher [10].

6. The continuous case of the B-series. In the continuous case we again ask,
not when

(15) f@) = Z_ an A"0(2)
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with uniform convergence in every finite interval, but when

(16) f(z) = lim. i a® A"9(z),

N= n=0

which means that
(17 lim [

For (15) the following negative results are known [26]: if f(x) = 0, (15) cannot
converge uniformly on every finite interval (unless f(xr) = 0); the series, if
convergent uniformly on every finite interval, cannot converge to f(x) unless
the Fourier transform of f(z) vanishes outside (—, 7), a condition which

f@) — ZN: a®™ A™6(x) i dz = 0.

n=0

TABLE 1
Number of petals on buttercups. A\ = .631

2 3 4 5 6
1 Calculated | Calculated | Calculated | Calculated | Caleulated
z Observed | 3 terms 1 term 2 terms 3 terms 3 terms
frequency | (formula | (formula | (formula | (formula | (formula
5) 9) 10) 11) 14)
5 133 134.9 119.9 130.6 132.9 133.0
6 55 51.6 75.6 62.3 55.3 55.0
7 23 22.5 22.5 13.3 22.1 23.0
8 7 9.5 5.0 1.5 8.5 9.1
9 2 2.9 0.8 0.0 2.4 2.6
10 2 0.6 0.1 0.0 0.5 0.5
Total...... 222 222.0 223.9 207.7 221.7 223.2

automatically excludes any f(z) which vanishes for all large | z | or even is too
small as z — . Nevertheless, Jgrgensen [15] applies the continuous case success-
fully to practical problems. A possible explanation of this apparent discrepancy
is that if the a3 in (16) are properly determined, (16) will be true under fairly
general conditions. To be sure, the mean square difference in (17) cannot be
made arbitrarily small unless the Fourier transform g(x) of f(x) vanishes outside
(—m, ), but if | f(z) [* is integrable the difference can be made small if g(z) is
itself small. If g(z) does vanish outside (—u, ), then (16) is true; and in fact
the coefficients a5"’ can be taken the same as in (14), so that the approximating
sums depend only on the values of f(x) for integral values of z; these values are
known to determine f(z) under our hypotheses on g(z).

7. Discussion of some numerical results. Table 1. Column 2 gives the fit by
two terms of the B-series (really three, since the coefficient of A8 is zero when
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formula (5) is used), as calculated by Charlier [7] (that is, using terms through
A%9). Column 3 gives the best least-squares fit by a single term, i.e., a Poisson
distribution, calculated by formula (9); it is clear that this term alone does not
represent the observations very well. Column 4 gives the best least-squares
fit by terms through Af. Column 5 gives the best least-squares fit by terms
through A’6; the improvement over Charlier’s fit by the same number of terms
is evident by inspection. Column 6 gives, for comparison, the same number
of terms calculated by formula (14), which gives an approximation to the best
least-squares fit and necessarily reproduces the data exactly for the first three

TABLE 2
Failure of grains of barley. N = 2.757
1 Cl2ltd Cl3ltd Cl4ltd Cl5ltd
alculate alculate alculate alculate
z fO bserved 4 terms 1 term 2 terms 3 terms
requency | (Charlier) | (Formula 9) | (Formula 10) | (Formula 11)
0 53 63 47.3 49.9 48.4
1 131 139 130.4 134.7 133.4
2 180 174 179.8 181.6 182.3
3 170 151 165.3 163.2 164.3
4 111 111 113.9 110.0 109.8
5 50 60 62.7 59.3 58.1
6 22 32 28.8 26.5 25.2
7 22 14 11.4 10.2 9.3
8 7 6 3.9 3.4 2.9
9 2 2 1.1 1.0 0.8
10 1 0 0.3 0.2 0.2
Total...... 749 752 744.9 740.0 734.7

values of z. The fact that (14) gives good results here is presumably connected
with the small size of A.

Table 2. Column 2 gives the values calculated by Charlier [7] for a fit after
the linear transformation  — pz + ¢, with A, p and ¢ chosen to make the terms
in A6, A%, A% all zero (the values were read to the nearest integer from Charlier’s
graph). Column 3 gives the best least-squares single-term fit calculated by
formula (9); this is a considerable improvement for ¢ < 6, but for the remainder
of the table it is rather poor. Column 4 gives the best least-squares fit by two
termns; column 5, that by three. The x’-test indicates that the graduation is
rather poor in all cases.

Table 3. Column 2 gives the classical calculation with terms through A%6;
this was given by A. Fisher [10] and (more accurately) by Aroian [2]. Columns 3



REPRESENTATIONS OF DISTRIBUTIONS 385

and 4 give the best least-squares approximations by two and three terms;
column 4 is better than column 2, in this sense, as expected. However, column 4
is a poorer fit when tested by x*, chiefly because of the poor fit at z = 0. It should
be noted that two more terms of the B-geries give a more satisfactory fit [2].

TABLE 3
a-particles from a bar of polonium. N = 3.87155
. Obsarved Calodlated Caloslated Calelated
frequency (fgntﬁfxﬂss) (fc?x‘xflﬁzle) <fo3r$‘iﬁ’§il>
0 57 49.5 51.3 45.2
1 203 201.3 213.3 190.9
2 383 403 .4 399.0 393.5
3 525 532.3 524.8 529.8
4 532 520.6 517.2 525.4
5 408 402.6 407.7 409.7
6 273 254 .8 267.7 261.9
7 139 137.1 150.6 141.1
8 45 64.0 74.1 65.3
9 27 26.1 32.4 26.3
10 10 9.4 12.8 9.3
11 4 3.0 4.6 2.9
12 0 0.9 1.5 0.8
13 1 0.2 0.5 0.2
14 1 0.0 0.1 0.0
Total. .-..... 2608 2605.2 2657.6 2602.3
x® = 10.2 x? = 16.2 x? =114
n=717 n =38 n=7

8. Proofs: theoretical problem. We now outline the proofs of the results which
we have stated. They depend on the fact that the numbers 6(z) (x = 0, =1,
=2, -+ +) (where §(z) = 0 when z is a negative integer) are the Fourier coefficients
of the function () = €™ exp (\e™), i.e.

0(z) = (21)_1[ o(u)e™™ du, z =0, =+l +£2, .-

Furthermore,

A0) = @0 [ o)1 = 6™ = du,

—



386 R. P. BOAS, JR.

If we then assume the condition 2.2, | f(z) |° < , with fix) = 0 forz =
—1, =2, ..., the numbers f(x) are the Fourier coefficients of a function g(x)
of integrable square, by the Riesz-Fischer theorem from the theory of Fourier
series [31, p. 74]:

flx) = (21r)_1f g(w)e ™ du, T =0 %12 .
Thus

(19) f(&) — Z ot a*o(z)

= @ [ [ o0 - o) 3 a0t — ¢ | a,

and so the expressions on the left appear as the Fourier coefficients of the expres-
sions in square brackets on the right. By Parseval’s theorem for Fourier series
[31, p. 76], then, we have

w0 > i@ - }Z: af™a*o(z)

= (2m)~" /; :

Thus we have reduced the problem of minimizing the mean-square difference
on the left of (19) to that of minimizing the integral on the right of (19). By
rearranging the sum in the integrand, we see that an equivalent problem is to
minimize

2

o) = o) 3 o — o) [ au.

T N 2
(20) D= e [ o) - ot e e "
—7 k=0
where the ¢f”’ and af" are readily expressed in terms of each other; in fact,
N
(21) o = (= 1 (L) e
= \k
Since | p(w) | = €™ = ¢ > 0, we can write D in the form
T N 2
D= (07| |gw)/e@w) = 2 ™ e* | | olu) [ du,
—T k=0
so that
T N 2
[ o/ed = 2 e e™ | duz 20D
- =0
(22) .

N 2
g@w)/e() — 2 efMe™ | du,
=0

T
ze® f
—x
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since €™ < | ¢(u) | < 1. Thus we can make D arbitrarily small if and only if
we can make

(23) D = @ [ /et — 3o e[ au

arbitrarily small. Now the Fourier coefficients of g(u) are f(z); those of 1/¢(u)
are ¢ (—\)*/z! for x = 0, 0 for x < 0; by the convolution theorem for Fourier
coefficients [31, p. 90] the nth Fourier coefficient of g(u)/o(u) is

(24) l;:f(n — k)é(— N¥/kl, n=2012---,

and zero for n < 0. Furthermore, it is well known from the theory of Fourier
series that D* is a minimum if ¢{" are chosen as the first N + 1 Fourier coeffi-
cients of g(u)/o(u), and that this minimum is arbitrarily small for large enough N
if and only if the Fourier coefficients of g(u)/¢(u) are zero for negative indices
—which is in fact the case. If we then take the values (24) for ¢f™,k = 0,1, - - -,
N, and express af™ in terms of ¢f™ by (21), we arrive at the formula (14).

It will be observed that the minimum D is connected with the minimum D* by

min D

_mmbD o
min [o(u) | = ° o D,

min D £ max | () | » min D* £ min D* £
so that all that we can say about the approximation given by (14) with a small N
is that it is an upper bound for the best possible mean-square approximation by
sums (18), and that the best mean-square approximation is at worst ¢ times
it. This means that if D* is small, so is D; but D* is not necessarily small even if
D is. Hence we cannot in general expect the coefficients (14) to be suitable for
practical curve-fitting, since they may increase the mean-square error by a
factor of as much as ¢; we may, however, expect (14) to be better when A
is small.

Now, as we have already observed,

»
fz) — 2 ai™ A*8(x)
k=0
is the zth Fourier coefficient of
N
gw) — o) 2 af™ 1 — )
k=0
if we write (18) in the form
N : T . N X
@) @) — Sa a0 = [[ o0/ = 3 a0 - 9 o)

and choose the ai" as specified above, the expression in square brackets is
g(t)/o(t) minus the first N 4+ 1 terms of its Fourier series, and so the Fourier
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series of [- - -] involves no ¢** with ¥ < N + 1. Since the Fourier series of o(t)
involves no ¢* with k& < 0, the product o(#)[---] also involves no ¢** with
k < N + 1, and therefore the integral in (25) is zero forz = 0,1, 2, -+ , N
(since it represents the zth Fourier coefficient of ¢(£)[- - -]). In other words,

~
flx) — Z a'EN)AkO(x) = 0, =012 -, N.
k=0

Furthermore, we can compute f(z) — 2_i— af A*6(z) for z > N by the convolu-
tion formula from the Fourier series of ¢(t) and [- - -]; for n > N, the nth Fourier
coefficient of [---] is just that of g(¢)/e(f), given by (24), and that of o(f) is
e\"/nl,soforz > N

@) — X o o) = 3 (if(z — K- x)"/m) o — 1
Fowa() l=N+41 k=0
and in particular
N+1

SN +1) = 3 a0 4 1) = 3N + 1= K= YL

9. Proofs: practical problem. We have so far obtained only an estimate for
the minimum of D, by obtaining the minimum of D*; this estimate is satisfactory
for large N and so for theoretical purposes. However, to obtain precisely the
best mean-square approximation to f(z) by a small number N of terms of the
sum in (18), we have to choose a{" so that

N
,;o a1 — ") (1)

is the first N 4 1 terms of the expansion of g(f) in terms of the set of functions
obtained by replacing (1 — **)*o(t), k = 0,1, 2, --- , by an equivalent ortho-
normal set. The process for obtaining this orthonormal set is well known; it
turns out that the integrals that have to be evaluated are expressible in terms of
Bessel functions of imaginary argument; the result is that the first orthonormal
functions are

W) = @) exp (Ae™),

b0 = @ e 06")
¥a(t) = (21‘-)‘} ai — apar — oalag — ag)e“ - (af _ ag)em

exp (Ae'),
[(e1 — ad)(ao — @2)(2a} — af — awan)]?

where ap = Jo(20N), a1y = —1J1(20N), oz = —J 2(20\). It is then a simple matter,
first to express ¥o , ¥1, ¥» in terms of ¢(t), (t)(1 — €'*), o(t)(1 — €*)’, and then

. 0, 1 1 2 2 2
to determine a$”; af’, af ’; and af ) al?, a®. For example, the best two-term
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approximation for g(u) in terms of yo(u), ¥1(u) is

9(w) ~ Yo(u) f_ 9(Wo(w) du + Ya(u) f_ g (u) du,
and the integrals f ’ g(u)¥i(w) du are combinations of terms of the form

@0 [ ge™ o) du;

these in turn are Fourier coefficients of g(u)e(u) and so are expressible, by the
Parseval formula, as products of the Fourier coefficients of g(u) (namely, f(n))
and of ¢(u) (namely, 8(n)). We omit the algebraic work; the results are given in
formulas (9), (10), (11).

10. Proofs: continuous case. In the continuous case of our approximation

problem we assume that | f(z) |* is integrable on (— «, ©) and look for coeffi-

cients at" that will minimize

T N 2
D= flx) — kz: ™ A*6(x) | da,
- =0

where

6@ = @0~ [ pe ™ du,

A*6() = (2m) [

e(w)e ™ (1 — ™) du.

Let f(x) be the Fourier transform of g(u); we can regard 6(x) as the Fourier
transform of ¢(u), ¢(u) being defined as zero outside (—, 7). Then by Parseval’s
theorem for Fourier transforms we have

T N . 2
21D = f lg(®) [* dt + f g0 — () 2 af™ (1 — | dt.
| ¢|>= — k=0

Clearly, then, D cannot be made arbitrarily small unless g(f) = 0 almost every-
where outside (—m, x); and if this condition is satisfied, D reduces to the same
form which it had in the discrete case—see (19). Thus the problem of mean-square
approximation in the continuous case reduces, if it can be solved at all, to the
corresponding problem in the discrete case.

11. Representation by a series. We consider the representation of a given
f(z) by the B-series with the classical coefficients (5), but with mean-square
convergence of the series. Here we assume that f(z) = 0, f(z) = 0 for z =
—1, =2, --+, and D>+ [f(2)]* < o, ask whether we can have

0

(26) lim > | fx) — LZ=()) ar A¥6(z) i =0,

n—r0 r=—o0
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where here the a; do not depend on n (but are not, in principle, required to have
the form (5)). From our previous discussion this is equivalent to
T n 2
im | |g() — o) 2 a(l — &M*| dt =0,
k=0

n—00 V—

and this implies that
lim | an | f lo() 2|1 = & [ dt = 0.

From this it follows easily that

00

E an(l - 6“)”

n=0

converges for | ¢ | < =, or in other words that

0

HE =2 a1 — 2)"

n=0
converges on | z| = 1 except perhaps for z = —1, and hence converges in
|1 — 2| < 2. By analytic continuation it is easy to identify H(z) with F(2)®(z),
where for |z | < 1,

F) = iof(n)z", 3(z) = i o) = &4,

n=0
Since 1/®(z) has no singular points, F(2) is analyticin | 1 — z | < 2 and hence in
particular in 0 < z < 3;since F(2) is a power series with nonnegative coefficients,
it has a singular point at the positive real point on its circle of convergence
[30, p. 214}, and so it must be analytic at least in | z | < 3. This gives the restric-
tion lim SUpn-w | f(n) [''" = 3. Nevertheless, as we know, f(z) is represented
in mean-square by a sequence of sums of terms ai™ A*6(x) even if we assume
only that = | f(n) | converges.
In the continuous case, if f(z) = 0 and we have

flz) — ; ar A6 (x) ’ dx = 0,

27 lim
we must have g(z) = 0 almost everywhere outside (—=, 7) and then, as we saw
previously, (26) holds also. Now since f(x) = 0, g(¢) has derivatives of all orders
if it has derivatives of all orders at ¢t = 0 [29, p. 90] and it is easily seen from
this that g(¢) is analytic for all real ¢ if it is analytic at ¢ = 0. Now on the one
hand, unless f(x) = 0, g(t) cannot be analytic for all real ¢ if (as we are supposing)
g(t) vanishes outside (—, 7). On the other hand, H(e'") = g(£)/o(t) for real
values of ¢ close to 0 and so, if ¢ is regarded as a complex variable, for complex
values of ¢ near 0. Since 1/¢(¢) is analytic everywhere, g(¢) is analytic at ¢ = 0.
From this contradiction we infer that a nonnegative f(z) can never be represented
in the form (27), although it may perfectly well be represented by
n 2
lim fz) — 220 aiPA¥o(z) | dz = 0.

L]
n—0 VY—oo
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