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statistic for W (ef. [5], p. 232, §5). Let f be an unbiased estimate of the function
¢ on ©. For each u ¢ W, the conditional expectation, Ey(f | -), of f with respect
to t is defined. Since conditional expectations are fully determined by conditional
probabilities (although, in general, not as usual integrals. Cf. [4], pp. 48, 49;
also [5], p. 230) it follows from the sufficiency of ¢ that there exists a functioa
E(f| ), on T, with Es(f| ) = E(f| 7) a.e. (v) for each 0 ¢® - E*(f]| -) is again
an unbiased estimate of g, and we have

COROLLARY 2. Let t be a sufficient statistic for the family W = {us, 0 ¢0};
and f, an unbiased estimate of g. For s = 1, and each 0 ¢ 9,

[1BG1) — 0@ P duas [ 15 = 9@ duo.

Equality holds
(i) for s = 1, if and only if sgn [f — g(0)] is essentially (us) a function of ¢t;
(ii) for 8 > 1, if and only if f is essentially (pe) a function of t.
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NOTE ON CONSISTENT ESTIMATES OF THE LINEAR STRUCTURAL
RELATION BETWEEN TWO VARIABLES!

By Erizasetr L. Scort
University of California, Berkeley

1. Intreduction. The purpose of this note is to present another case in which
the structural linear relation between two observable random variables may be
consistently estimated. Of the recent papers on this subject I wish to mention the
paper by Wald [1], which contains a history of the work done on the problem,
and the more recent paper by Housner and Brennan [2]. Also relevant is the
important result due to Reiersgl [3], [4].

2. Statement of problem. Assume that the two observable random variables
z and y have the structure
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{x=.§+u
¥ = a4+ Bt + v,

where a and 8 are unknown parameters to be estimated, and ¢, u and v are
completely independent random variables. The latter two variables, inter-
preted as the random errors of measurement, are assumed to vary normally
about zero with unknown variances o} and o3 , respectively.

An increasing number n of completely independent pairs of simultaneous
values of z and y are to be observed

(2) (xiayi)’ T = 112’ I (2

so that each pair (z;, y:) corresponds to a value £; of the unobservable random
variable ¢ which is independent of the value £; of ¢ corresponding to any other
pair (zj, yj;), ¢ # J.

It is well known that if the distribution of # is normal then the parameters
a, B3, o1 and o3 are unidentifiable. Reiersgl proved [4] that these parameters are
identifiable in all other cases. Wald and Housner and Brennan found consistent
estimates of these parameters assuming that, although the particular values of
£ are not known exactly, a certain amount of knowledge concerning the values
of ¢ is available. The present note gives a method for obtaining a consistent
estimate of 8, which is the key to the problem of estimating the four parameters,
for the case where it is known that a specified central moment of the distribution
of ¢ exists and differs from that of the normal distribution.

Since work on this subject continues, the present brief note deals particularly
with the simplest case, when one of the odd central moments of ¢ exists and
differs from the “normal’’ value, zero. It will be observed that the hypotheses
made here are of entirely different character from those adopted by other writers.
The present note postulates knowledge concerning a moment of the distribution
of ¢, whereas the papers quoted postulate some knowledge of the particular
values assumed by ¢. The method adopted was suggested by a remark made by
Neyman [5] in 1936.

3. Preliminary theorems. Let

(1

n

2y
=1

S (=
S|

(3) x. = X, Y. =

=1

and let b be an arbitrary real number.
TuroreMm 1: If us, the third central moment of &, exists then the arithmelic

mean
@ Fus® = L 3y — g — b — 2)F

converges in probability to

5) B — b)Pus.
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Proor: Simple algebra gives

Fas® = 6 — L 3 G- e

+86 - L3~ e — v — bl — )
(6) -
+36 - ) 1 2 (6 — E)os — 0. — bl — WP

+ 23 I — 0. — bl — wF.
n =
It is obvious that further expansion will express F,,(b) in terms of averages of
the type

@) LY grutl,

n =1

with p + ¢ + r < 3. Since all the terms over which each average is taken are
completely independent, follow the same law and possess finite expectations, the
familiar theorem of Khintchine assures that, as n is increased, each average (7)
tends in probability to its expectation. Using Slutsky’s theorem (see Cramér [6],
p. 255), we conclude that F,(b) tends in probability to the limit obtained by
replacing each average in the expansion (6) by its expectation and then letting
n — «. The computations are easy and give

® 11_13010 pFu.l(b) = (ﬂ - b)alls-

Q.E.D.

Let {X,} denote a sequence of observable random variables (multivariate or
not) such that the distribution function of X, depends on the parameters
0; witha; < 6; <b;,7=1,2, ---, s. Furthermore, let A denote a real variable
and {¢.(X.,\)} a sequence of functions of the arguments X, and A defined for
all possible values of X, and for all values of A within the limits a; S A < b; .

THEOREM 2: If the sequence of functions {¢,(X, ,\)} has the following properties:

(i) whatever be the true values 6y , 60 y Tt 0, of the parameters 0; within the
Uimils a; < 0; < b, i =1,2, --- , s, as n is increased, the sequence {n(Xn, \)}
tends in probability to a function f(\, 01) of arguments \ and 601 only.

(ii) whatever be 6 > 0, there exist in (a1 , by) two numbers N\, and \; , each differing
from 61 by less than 5 and such that the product f(\; , 01) fO\z , 01) 18 negative,

(iii) for every n and every possible value x, of X, , the function ¢,(x, , \) s con-
tinuous with respect to \ for a; < N < by,

then whatever be € > 0 and n > 0 thereexists a number N.,, suchthat forn > N,
the probability that the equation ¢,(X. , \) = O has a root between 0; — € and
0{ + € exceeds 1 — 1.

Proor: Let ¢ > 0 and y > 0 be two arbitrarily small numbers. Let A\, and
A2 be two numbers such that \; € (a; , by) and | 87 — ;| < ¢, % = 1,2, and such
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that f(A; , 61) < 0 < f(\s , 61). Select N. , s0 large that forn > N.,, the probability
of having simultaneously

® |$a(Xa, N) — fi, 80 | < 3|70, 0) | fori =1,2

differs from unity by less than 1. It is clear that if the inequalities (9) are satisfied
for any particular value z, of X, , then

(10) On(Tn , A1) < 0 < @l ) A2)

and the continuity of ¢.(z. , A) for A € (a; , b)) implies that there exists a number
A(z.) between \; and Az such that ¢.(2. , A(,)) = 0. Obviously | 6; — A(z.) | < e
Thus, whatever be ¢, 7 > 0, there exists a number N, such that the probability
that ¢,(X, , A) has a root in the interval (8; — €, 01 + ¢) exceeds 1 — 7 pro-
vided n > N.,, . This proves Theorem 2. \

Theorem 2 is treated as a convenient lemma on which to base the proof of the
existence of a consistent estimate of the parameter 8 in (1). It is obvious, how-
ever, that this Theorem has an independent interest of its own.

4. Consistent estimates of the structural parameter 8. Referring to the general
set-up of the problem of estimating the structural parameter g in (1) and using
the notation (2) and (3), we prove the following theorems.

THaEOREM 3: If the third central moment u; of ¢ exists and differs from zero, then
the equation

) Fas® = L3t — v — @ — 2)P = 0

has a root b which is a consistent estimate of B.

Proor: According to Theorem 1, whatever be b and 8, the stochastic limit of
F,1(b) is (8 — b)*us and changes its sign as b passes through the value 8. Theorem
2 implies then that whatever be ¢, 3 > 0, there exists a number N.,, such that
for n > N, the probability that at least one of the roots of (11) will lie within
B — eand B + eis greater than 1 — 7. This proves the theorem.

. Generally, let p,, denote the m™ central moment of £.

THEOREM 4: If the distribution of ¢ has moments up to and including order 2m + 1
and if at least one of the first m odd central moments us1 differs from zero, k =
1,2, --- , m, then the equation

(12) Fn,m(b) = ;; g‘l [y‘ -y — b(x‘_ — x.)]2m+l =0

has a root b which is a consistent estimate of B.
Proor: The proof of Theorem 4 exactly follows the lines of that of Theorem 3.
Using (1), (2) and (3), we write

2m+1
Fan®) = 25 Cima(8 — b

(13) .
{ﬁ g (& — £)v; — v, — blu; — u_)]2m+1—k} .



288 ELIZABETH L. SCOTT

It is easily seen that, as n — «, F, .(b) tends in probability to the limit

(14) Fun® =2 (B — %6 - b),
where (8 — b) is a linear combination of even powers of (3 — b) with at least
one coefficient different from zero. It follows that the stochastic limit of I, .(b)
changes its sign as b passes through 8 and the proof is completed by reference to
Theorem 2. ]

Note that the stochastic limit of the first derivative of I, ..(b), evaluated at
b = B, is zero, which is unfortunate. Furthermore, the order of contact of I, .(b)
at b = B increases with the order of the first odd central moment of £ which
differs from zero. Therefore, the precision of estimating 8 may be expected to be
better when the low odd central moments are not zero. Without narrowing the
generality of the case considered, it is difficult to make an evaulation of the pre-
cision of the estimates obtained. Thus, for example, the familiar method of
evaluating the asymptotic variance requires the knowledge of higher moments of
¢ than those considered here. For similar reasons, it is thus far impossible to
speak of the relative efficiency of the estimates found. For this purpose it would
be necessary to determine first the measure of the precision of the best estimate
whose consistency persists independently of the distribution of ¢ provided only
that at least one odd central moment differs from zero.

Once the consistent estimate b of 8 is obtained, there is no particular difficulty
in obtaining consistent estimates of the other parameters.

J. Neyman has pointed out [7] that Theorem 2 may be used as the basis for
a very elementary proof of the consistency of maximum likelihood estimates.
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