EXTREMAL PROPERTIES OF EXTREME VALUE DISTRIBUTIONS

By SIgEITI MoricuTI
University of North Carolina

Summary. The upper and lower bounds for the expectation, the coefficient of
variation, and the variance of the largest member of a sample from a symmetric
population are discussed. The upper bound for the expectation (Table 1, Fig. 1),
the lower bound for the C.V. (Table 2, Fig. 4) and the lower bound for the vari-
ance (Fig. 7) are actually achieved for the corresponding particular population
distributions (Figs. 2, 3, 5, 6, equation (5.1)). The rest of the bounds are not
actually achieved but approached as the limits, for example, for the three-point
distribution (Section 3) by letting p tend to zero.

1. Introduction. The sampling distribution of the largest or the smallest
member of a sample has been studied by several authors; Tippett [1] and de
Finetti [2] considered a sample from a normal population, Olds [3] from a rec-
tangular population. The case of a very large sample was treated by Dodd [4],
Fisher and Tippett [5], and Gumbel |6], each for a certain class of population
distributions.

Here we consider the upper and lower bounds for the expectation, the coeffi-
cient of variation, and the variance of the extreme member of a sample from a
symmetrically distributed population with a finite variance. To be specific, we
will discuss only the largest member and take the mean of the population equal
to zero. These conventions do not imply any essential restriction.

2. Notations and formulas. Let the cumulative distribution function (cdf)
of the population be denoted by F(z); then the cdf of the largest member z, of
a sample of size n is given by {F(z)}". Hence the expectation of the largest
member can be expressed by

(2.1) E(z,) = [ﬂ n{F(z)}"" dF (z).

Now we consider the inverse function z(F) of F(x), with an obvious additional
definition at points of discontinuity, if any, of F(z). Thus (2.1) can also be writ-
ten as

. 1
2.2) Ez) = fo 2(F)nF™* dF.
Because of symmetry, (F) = —2(1 — F) holds almost everywhere, whence
L .
28) Ele) = ﬂ 2(Fyn{F"™ — (1 — F)™} dF.
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Similarly, we get as the variance
1

@9 V@) = [ @@Vl + 0~ D™ dF ~ (B@))
The population variance is of coufse given by

1
25) & =2 {a(P)dF.

H

3. Bounds for the expectation of the largest member. In Schwarz’s inequality
b 2 b b

6o ([ rwew ar) s [ gy [ ey,

putting @ = §,b = 1, f(F) = «(F), g(F) = n{F"" — (1 — F)"™'}, we get a
formula which means, in view of (2.3) and (2.5), that

v R n—1,2 i
(32) Be) s sn ([ (- 0= prpar)
equality being satisfied if and only if f(F) = const.-g(F), that is,
3.3) z(F) = const.- {F*' — (1 — F)"'}.

Therefore the expectation of the largest member has the right-hand side of
(3.2) as an upper bound, which is actually achieved for a particular type of
population distribution given by (3.3).

The integral in (3.2) can easily be evaluated as follows:

f: (F™' — (1 — P)"™)* dF

34) = fo P (L — B — 25— FYY dF

DO =

1

i 1 1
_Q[zn—1+2n—1_2B("’")]‘2n—

1 - B(n) n))

where the Beta function of equal integral arguments can also be expressed as

1
(3.5) B(n, n) = m
Thus the upper bound for E(z,) is given by
' n 1\
<L ——m———— —_

The numerical value of the coefficient is calculated for various sample sizes and
compared with the values of E(x,)/¢ for normal and rectangular populations
4in Table 1 and Fig. 1. It is to be noted that the value for a normal population
is remarkably close to the upper bound if » =< 7. The cumulative distribution
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curve and frequency curve of the extremal distribution (3.3) is illustrated in
Figs. 2 and 3 for several values of sample size n.

It is obvious that the expectation of the largest member has the lower bound
zero. However it may be of some interest to see that this lower bound can be
approached as closely as one desires. One of the simplest ways is to consider the
three-point distribution, such as the values a, 0 and —a occurring with proba-

TABLE 1
Ezxpectation of the largest member in the unit of o, E(x.)/c
Smplosisen |  Upperbouwnd | Ferpomal | Forrotengulr

2 5774 .5642 .5774
3 .8660 .8463 ° .8660
4 1.0420 1.0294 1.0392
5 1.1701 1.1630 1.1547
6 1.2767 1.2672 1.2372
7 1.3721 1.3522 1.2990
8 1.4604 1.4236 1.3472
9 1.5434 1.4850 1.3856
10 1.6222 1.5388 1.4171
11 1.6974 1.5864 1.4434
12 1.7693 1.6292 1.4656
13 1.8385 1.6680 1.4846
14 1.9052 1.7034 1.5011
15 1.9696 1.7359 1.5155
16 2.0320 1.7660 1.5283
17 2.0926 1.7939 1.5396
18 2.1514 1.8200 1.5497
19 2.2087 1.8450 1.5588
20 2.2645 1.8673 1.5671

* From [9], p. 165.

bilities p, 1 — 2p, and p, respectively. If we make p approach zero for a fixed
sample size n, the ratio E(x,)/s also approaches zero, because in this case

(3.7 E(z,) = nap + O(p"),
(3.8) o = 2a°p.

4. Bounds for the coefficient of variation of the largest member of a sample.
Putting in (3.1) a = 3,b = 1, and
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f(F) = a(F)v/n{F*™ + (1 — P)™'},

“1) _ VAP = (1= B
10 = T ey

we get a formula which means, in view of (2.3) and (2.4), that

V(x,) > 1

“2 B 2 1,

of s L ! i ) X ) 1 L ) ! ) 1 11 L N ]
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1T 18 19 20
—= 7 Sample size

Fic. 1. Expectation of the largest member

where

_ ln{Fn—l — (l _ F)n—l}z
(43) M, = A e O

The equality in (4.2) is satisfied if and only if f = const.-g, i.e.
Fm—l _ (1 _ F)n—l
Fr14+ (1 — F)n—1‘

Therefore the coefficient of variation of the largest member has v/(1/M,) — 1
. as a lower bound which is actually achieved for a particular type of population

" distribution given by (4.4).

(4.4) z(F) = const. -
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Fra. 3. Extremal distribution (pdf) for E(x.)
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The integral (4.3) can be evaluated by an elementary method of quadrature.
To show the results for small values of n,

M, = % — 0.33333,
3
My =3 -3 = 0681,
23 32r
= 3 - 2 oster,
M, = _5_35_,_35_4\@,, ~ %+ — 090695,

M, = _g + 0.6m{(0.704 + 0.84/0.8)
‘A5 — 24/5 + 2(0.704 — 0.84/08)V'5 + 24/5}

= 0.95300.
TABLE 2
Coefficient of variation of the largest member
Sample size n Lower bound 53;;{:{;23}, FO’I') ;;‘l’]ﬁ:%igolﬂar
2 1.4142 1.4634 1.4142
3 .7438 .8838 7746
4 .4737 .6812 .5443
5 .3203 .5752 .4226
6 .2221 .5089 .3464
* Cf. [7].

As the sample size n increases, the evaluation of M, by quadrature becomes
more and more laborious. Numerical integration would be preferable for larger
values of n. In this case, however, we can derive (see Appendix 1 for the deriva-
tion) an asymptotic formula of M, for large n

Fl1+0()]

(4.5) M,=1-2Z2

which happens to be a fairly close approximation even for as small a value of
n as six, where this formula gives 0.95091. Using these results, we compare the
lower bound with the value of the C.V. of the largest member for a normal
population and a rectangular population, as in Table 2 and Fig. 4.

It is interesting to observe that the C.V. of the largest member of a sample
from a two-point population, such as values 1 and —1 each occurring with
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probability 1/2, behaves asymptotically similarly to the lower bound except
for a numerical factor 4/7/2. In fact, we can easily derive in this case the fol-
lowing formulas

1 1 1

(4.6) E@,) =1 Vs = — —

= on—2 -2’

20

S =
8% O
T

o
2 ® 2

— W /E(x,)
8

Q@
-

05,2 3 4 & 6 7 8 9 10

—_—_n
F1c. 4. Coefficient of variation of the largest member

VVE,) V-1, 1
(4-7) E(x,.) - on—1 _ ] ~ in—1

This similarity in the asymptotic behavior may be taken to be the reflection
of the similarity in the population distribution, which is seen in comparing Figs,
5 and 6 with the corresponding graphs for the two-point distribution.

" There is no finite upper bound for the coefficient of variation of the largest
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member. It can be proved, for instance, by observing the behavior in the case
of the three-point distribution mentioned in the previous section when p ap-
proaches zero for fixed ». In fact, in this case, it is easy to show that

V(z,) = na’p + 0(p°),

48 VTV _ 1 e
B~ g + 0(+/p) :
l.o _____________________ ——
i _ F‘)t-l— [ ‘_F!‘n—-l
F™'+(-F)y™"
S
~ r -b
Lo | )
T oS5+ C
| Twopoint M\s\a’ﬁm’ !
- ; "
|
b = :
i i
- ] :
= !
' i |
o .-"0 b A PR 0 P YO S TR ‘.0 ——

— x
F1a. 5. Extremal distribution (cdf) for C.V.(z,)

6. Bounds for the variance of the largest member.! As we shall prove, V(z,)
has a lower bound A.c®, which is actually achieved for a particular type of popu-
lation distribution given, when F is not 0 or 1, by

n{F" — (1 — )"
P+ (1 — F)=1} — 2\,

where )\, is the only root of the equation®

nZ{Fn—Z _ (1 _ F)n-—l}2
Fn—1 _l__ (1 — F)n—l} — N

in the interval 0 < \ < n/2"%

(5.1) £ = const. -

dF =1

(5.2) M.\ = f; T

1 A heuristic derivation of the formulas (5.1) and (5.2) is given in Appendix 2.
2 The notation is such that M,(0) equals M, as previously defined.
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First, in order to prove that there exists one and only one root of (5.2) in
the stated interval, it is sufficient to show that

(5.3) M. 0) <1, M,n/2"" > 1,

and to note that M,(\) is a monotone increasing continuous function of A in
the interval. Since

1
(5.4) f* n{F™ 4 (1 = F)"} dF = 1,
200
3 | |
= |
é- i
~3
N
ol |
N=2~
[ I3
0 1 2 PN YO T | 1 1 1 1 1 .’n‘.:-'/o PO
-0 0 x |0

F1a. 6. Extremal distribution (pdf) for C.V.(z.)

we have, for any A in the interval,

1— M.\
AT+ A= DY = 2a{
[ + 1 =P —wF - (1= P
(5.5) = f} n{Fr1 4 (1 — F)»1} — 2\ ar

_ fl 4P F*(1 — F)" — 2m{F" 4+ (1 — F)"} iF
U n{F1 4 (1 — F)~} — 2A )

. On the other hand, it is obvious that F*™ + (1 — F)"™' assumes a minimum
value 1/2"7% and F*™(1 — F)"' a maximum value 1/2°* at F = 1/2. There-
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fore, in the interval’ 1/2 < F < 1, the denominator of the integrand is always
positive, the numerator being always positive for A = 0 and always negative
for A\ = n/2". Hence we get (5.3). The above mentioned nature of M,.()) is
also obvious (cf. the definition (5.?) and the above statement about the de-
nominator).

Next, again in the Schwarz’s inequality, let us put @ = 1/2, b = 1 and
(5.6) fF) = a(®)R{F™™ + (1 — F)"7} — 2\0,

Fn—l _ (1 — F)’n—l}

5.7 = :
0 o0 = G = Py = o
Then we obtain a formula which means, in view of (2.3), (2.4), (2.5) and Ma(\s) =
1, that

(5.8) V(zs) Z Ao,

equality being satisfied if and only if f = const.-g, i.e. (5.1) holds. Thus the
statement at the beginning of this section has been proved.

The numerical evaluation of A\, requires a little more effort than the evalua-
tion of M, in the previous section, as the former requlres solution of a trans-
cendental equation after an integration. For instance,' for n = 3, \; can be
obtained by solving

L1 2

tan =
4 4’
/‘/l—g)\ 3/‘/1—§)\

as \; = .394. For n = 4, we have to solve

1 - 2)\ / 88 — 5\
3 —=2x 2)\ T 1004 + )2

to get Ay = .209. Moreover, when n = 7, the quadrature itself is tedious. For
large n, however, an asymptotic formula is again available as shown in Appendix
3. It is closely related to (4.5), and takes the form

oo = 2[1+0(2))

Again it is fairly close even if n is small.

The general picture is seen in Fig. 7, in which the lower bound of v/V(z,)/c
is shown together with the value for normal [7], rectangular, and two-point
distributions.

As for the upper bound, it is easy to see, from (2.4) and (2.5), that

(5.10) Viz.) <n /* 1:46(14’)2d17' = ind’,

s The suspicion about the singularity which might occur in the case of A = n/2*2 at F =}
is dissolved if we note that the numerator also has a zero of the second order at F = }.
+4For n = 2, (5.1) reduces to a rectangular distribution, for which no more calculation

is necessary.



EXTREME VALUE DISTRIBUTIONS

533

for F* 4+ (1 — F)" ' is a monotone increasing function taking the value unity
at the end F = 1 of the interval. The value n/2 of the ratio V(z,)/o* can be

3f

los =

—_—

F1a. 7. Standard deviation of the largest member

approached as closely as desired, for example, for the three-point distribution

(Section 3) by letting p be sufficiently small. (See (3.8) and (4.8).)

6. Final remarks and acknowledgement. We considered the upper and lower
bounds for the expectation, the coefficient of variation, and the variance of the
largest member of a sample from a symmetric population. The upper bound for
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the expectation and the lower bound for the C.V. or the variance are actually
achieved for particular distributions, which we may call “extremal distribu-
tions”. These distributions as well as the values of the corresponding bounds
were first obtained, as illustrated i in Appendix 2, by applying the techniques of
the Calculus of Variations. The same methods can be applied also to the dis-
tribution of the range® of the sample and some other useful statistics.

The writer is indebted to Professor Harold Hotelling for his suggestions which
induced him to undertake this study and for his kind guidance and encourage-
ment in the course of study.

APPENDICES

1. Asymptotic formula for M,. Putting A = 0 in (5.5), we get

f‘ P — F)™
y F1 4+ (1 = )

With the change of variable ¢ = 2F — 1, this integral becomes

n(l _ t?)n—l
2"—1 b T+ 0 + (1 — )t

When n increases indefinitely,

aA4+"" =" [1 +0 Gz)]
1-p'= e‘"‘[l + 0(%)];

1+0<7%>°

1
|-, = L [

271—2 o ent _l_ e—-nt

1-M,= dF.

1-M, dt.

therefore,

(1 — tZ) n—1

Thus,

()]
1 (' me"dt ]

=2"_-2 a1+ o)
Lo ()]
- (e =3)1+0G))

5 Thanks are due to Professor Olds at Carnegie Institute of Technology for calling the
author’s attention to R. L. Plackett’s paper [8] which derived essentially the same result as
e . . .
given in Section 3 of the present paper by a somewhat different approach.

1
n

(tan™e™)

r)'n2
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But
tan™le® =T + o <1>
5 .

n

T 1

2. Derivation of (6.1) and (5.2). In order to minimize (2.4) under the condition
that (2.5) is kept constant, we put the first variation of

Therefore,

This is (4.5).

1 1
f} (B n(F"™ + (I — F)™Y dF — {E(=)|* — 2\ ]; () dF
equal to zero, of course taking account of (2.3). Thus we obtain as the charac-
teristic equation
z(Fn{F" + (1 — )"} — E@)n{F"™" — (1 — )"} — 2zx(F) = 0,
which can easily be solved as

_ E@n{F" = (1 — )"}
T a{Ft 4 (1 — )1 — 2\

But this solution is eligible only if it satisfies (2.3), that is only if

_ 1 n2{Fm-l _ (1 — F)”"l}z
E(z,) = E(xn)L n{F*1 4 (1 — F)»1} — 2\ dF.

As E(z,) cannot be zero except in the trivial case (F) = 0, A must be a solution
of (5.2). If there exists a solution A\, as is actually the case, then

n{Fm—l _ (1 _ F,)n—l}
P+ (1 — F)™1] — 2\,

is eligible as a solution of the characteristic equation.

z(F)

z = const. -

3. Asymptotic formula for &, . M,(\) can be transformed as follows.

_ PR = B - 20— B
M.\ = _/; n{F*1 4+ (1 — F)~1} — 2\ aF

f: [n{F"" + @A =FP"" 428 — (1l — )™

{2xn — 2n(l — F)*'}? ]dF
n{Ft 4+ (1 — F)»1} — 2\

+

4 1o(on — 2n(1 — P)*Y?
14+r- 2 + g n{frt 4 (1 — F)~1) — 26 ar.
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Therefore, A\, must satisfy the equation

_4 1 {2n =201 = )M
M= f; n{FT (1 — F)»1} — 2\, dr.

As the integral is positive, we get«\, < 4/2". This inequality certifies that the
last term of the denominator in the last integral, or in (5.5), can be neglected
as of order 1/n times that of the first term. Therefore

- [ e o ()]
= (1 - M) [1 + 0(%)]
=5[1+o()) |
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