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1. Summary. A multidimensional analogue of the von Mises statistic is con-
sidered for the case of sampling from a multidimensional uniform distribution.
The limiting distribution of the statistic is shown to be that of a weighted sum of
independent chi-square random variables with one degree of freedom. The
weights are the eigenvalues of a positive definite symmetric function.

A modified statistic of the von Mises type useful in setting up a two sample
test is shown to have the same limiting distribution under the null hypothesis
(both samples come from the same population with a continuous distribution
function) as that of the one-dimensional von Mises statistic. We call the statis-
tics mentioned above von Mises statistics because they are modifications of the
w? criterion considered by von Mises [5].

The paper makes use of elements of the theory of stochastic processes.

2. Introduction. Let X, = (X;1, -+, Xu), 2 = 1, - -+, n, be a sample from
a k-dimensional uniform distribution; that is, z;;,¢ =1, --- ,n,j =1, --- , k,
are independent and uniformly distributed on [0, 1]. Let

lMifz < t
M #(@) = io if 2 > t.
The sample distribution function is
(2) Sa(8) = Salt, -+, t) = % i; ,Iill: é1;(Xi5),
where t = (4, -, ). Consider the process
3) Y@ = Vn(Saltr, -+, ) — t -+ t), 0=t, -, =1

Clearly EY,(f) = 0. The covariance of the process is
E(Y.@Q)Y.@) = r(,7)
: n k n k
lE[Z{ 6;(Xij) — ty - tk}z{ ¢} (X)) — b1 - - t:i}]
n =1 | j=1 z 1

= J=

£ 2 (o0 - - a{TT o — )

1
n i=1

4)
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k
=]l min (&,85) — ts -+ tatl - tr.

J=1
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618 M. ROSENBLATT
Note that the covariance function r,(Z, ¥’) is independent of » and symmetric in
f and 7.

Consider the function r,(f, ) = r(f, #) as the kernel in the following eigen-
value problem '

[ 76 00@) a = 2000,

where the integral is over all components of #: The kernel is positive definite
(being a covariance function) and hence all its eigenvalues are positive. There
are a denumerable number of eigenvalues. Denote the eigenvalues by M, Nz, <+«
and the corresponding orthonormal eigenfunctions by

¢1(Z) ’ ¢‘2(z) ’

It is understood that each eigenvalue is repeated with the multiplicity of the
linearly independent eigenfunctions corresponding to it. Now

%) "G,7) = 3N 6@a@)

with uniform convergence according to Mercer’s theorem. The general theorem
of Karhunen on representation of stochastic processes [3] then implies that

6) Vo) = 2 VN 6DV
=
in the mean square, where

EY,i=0, EY.Yu=05.

3. The limiting distribution. As n — o, the joint distribution of Y,(®&), ---,
Y.(¢») approaches the joint distribution of Y (%), - -+, Y (i), where Y(?) is a
normal process with mean zero and covariance r(, ¥). Obviously the process

) YD = 3 VA 6OV,

where the Y; are independent normal random variables with mean zero and
variance one.

TueoreM 1. The von Mises statistic corresponding to a sample of n from a k-
dimensional uniform distribution is

' 1 )
®) [ v ai= v,
0 j=1

and the limiting distribution of (8) as n — oo is that of

8

© | Y@ di = Y

j=

=
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Proor. Now

.

where the random variables
k
Z@) = II 6 (Xij) —t- - b
j=
are independent and identically distributed. Then

= Z\/—ij,

k=1

where
_ .
2 = = [ 2Os@ d
The random vectors
(Zray -y Ziw), k=1,---,n,
are independent and identically distributed. Moreover
EZ:; = 0,
EZyiZy = 65.

The multidimensional central limit theorem then implies that the random
variables Y,;,7 = 1, ---, N, are asymptotically normal, independent random
variables with mean zero and variance one as n— . Y2, --- , Yayasn — o
are asymptotically independent chi-square random variables with one degree
of freedom and mean one. Note that

1 0
(10) f r@, 1) dt = 2N
0 J=1
Given any e > 0, let N(e) be such that

o0

Z A< &

N(e)+1
Let
N (e)
2
Uy = Z Aj Ynf)
=1
Z 2
Vy= 2 NYi.
N(e)+1

Uy asymptotically has the same distribution as
N(e)

EIIMY?-;
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that is, for sufficiently large n
N(e)
P{Uy <z} — P{Z Y s x}
1

The choice of N(e¢) and Tchebycﬁeff’s inequality imply

< e

P{[Y*(E)dzgx+e} {N;‘f)x,yz } < e
’Pgng}—P{folY?v(z)dZ§x+ } <e

Hence

< 3e

lp{f Vi) df < 2 e}—P{folyz(Z)dz‘gx+e}

1
for sufficiently large n. The distribution function of f Y’@?) dit is continuous.

Therefore the limiting distribution of f Y2 () di as m — o« is the same as that

of f Y*(P) di.
1
The distribution function of f Y*(?) dt has been computed in the 1-dimensional
0

case (k = 1). The eigenvalues of (4) are then \; = 1/(z%") j = 1, 2, and
hence the characteristic function of (9) is JT%. [1 — 2it/(x% )] * One can mvert
the characteristic function by a contour integration and obtain the distribution
function of (9) as given by Smirnov [5, 2]. It would be of great interest to find
the eigenvalues of (4) when & > 1.

4. The two sample test. Let Xy; ,j =1, -+ ,n,and Xox , k=1, -+, m, be
samples of n and m respectively from a population with some continuous dis-
tribution function F(x). Let Si(£), Sz(¢) be the corresponding sample distribution
functions. Various people [4] have suggested using

mn © 2 Sl(t) + Sz(t)
aw 60 - 50 4 (S0 £ 50)

as a test statistic for the two sample problem.

TraEOREM 2. Statistic- (11) has the same limiting distribution when n — «,
m/n— N\ > 0 as the one-dimensional von Mises statistic under the assumption
that both samples come from the same continuous population.

Consider computing the statistic for samples F(X1;),j = 1, -+, n, F(Xu),
k=1,.--,m,of nand m respectively from a population with the uniform dis-
tribution. The value of the statistic is the same as that obtained from the orig-
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inal samples {Xy;}, {Xx} and consequently has the same distribution function
as the latter. We need then only consider the statistic

1
mn _ 2 5 (Su() + Sz(t))
(12) [ s &@)d(~_3___
when the samples are from a uniformly distributed population. It is obvious that
1
mn 2
(13) m+n£(&@~sm»m

has the same limiting distribution as the one-dimensional von Mises statistic
when n — o, m/n — N > 0. It would then be sufficient to show that

mn ! 2 Sl(t) + Sz(t)

converges to zero in probability when n — «©, m/n — N > 0. Now

m j;l (Si(t) — S:(t))* d (w - i)

m -+ n )
=JTWE@@-&Ww@w;ﬁ
n ! , mn [ )
= m”; - fo S = 07 (S0 — 0) + ——— fo (S2(t) — ) d(Sy() — ¢)

can be obtained by a series of integrations by parts. The proof is complete if
one can show that both expressions directly above converge to zero in probabil-
ity. By symmetry it is enough to consider one of the expressions.

Let

z(t) = n}(Si(t) — 1),

5
(18) () = m(Su(t) — ).
Now
Eil?,(t) = 0,
(16) .
Ez(7)z,(t) = min (7, t) — ¢, 1 =1,2,

We use the following transformation suggested by Doob [1]

(17) () = (t — 1)Z; (IL_J, i=1,2.
The processes Z,(t), Z»(t) are independent of each other. Moreover, each of them
is an orthogonal process with

EZ,@1) = 0,

(18) . .
: EZt)Z(r) = min (7, 1), 1 =12
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A simple computation making use of (2), (15), (17) yields

[ min (¢, ) min (¢, r)(max (£, r) — min (¢, 7))
1 4 min (¢, 7) a+5a 4+ 7

Zi1)Zi(r) =
(19)

T n—1 n—1 . 2
+1+max(r,t):|+ n tr+2 n (min (¢, 7))

and in particular

1t4 ¢ n—1,
ﬁ1+t+3 — L.

(20) EZi(t) =
Now

4 pl
) — *d(S:(t) — ) = mL_l_n fo z1(t) daa(t)

1) - 2( i)Zz( ! )dt

m+nf (t—-1)3Z1( )dzz< d t)
22) -] i 5 5 ZAO(0)
(23) +- 7 = 5 Z10) dZ4(0).

The random variables (22), (23) are the limits almost everywhere of

1 2
(24) e fo Y Zi(O)Zs(t) dt
and
3 T
m
(25) P fo G + 7 Z1(t) dZs(t),

respectively, as T — . The independence of the orthogonal processes Zi(t),
Z,(t) implies that the second moments of (24), (25) are

m T min (r, ) E(Z:(®) Z3(r))
i b [ e e

and

E(Zi(®)) dt,

m T
(m +n)2f 1 + t)°

respectively.
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Making use of (19), (20) one can see that (24), (25) converge in mean square
as T — « to (22), (23) respectively. But then the second moments of (22), (23)
exist and are given by

m ® [* min (r, ) E(Zi()Z3(r))
(26) n+ n)ﬁfo A )
and
m © 1 4
@7) e fo T )

respectively. The second moments (26), (27) converge to zero as n — «©, m/n —
A > 0 and hence the random variables (22), (23) converge to zero in probability
as n — o, m/n — N > 0. This in turn implies that-(21) converges to zero in
probability. The same argument implies that

. f () — 07 (i) — 0

m-+mnJ

converges to zero in probability. Hence (14) converges to zero in probability as
n — o, m/n— N > 0 and the proof is complete.
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