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A LOWER BOUND FOR THE AVERAGE SAMPLE NUMBER
OF A SEQUENTIAL TEST!

By WassiLy HoEFFDING

Unaversity of North Carolina

Summary. A lower bound is derived for the expected number of observations
required by an arbitrary sequential test which satisfies conventional conditions
regarding the probabilities of erroneous decisions.

1. Statement of results. Let X;, X:, -- - be a sequence of independent ran-
dom variables with a common frequency function f(z, 6) (either a probability
density or the elementary probability law of a discrete distribution), where the
parameter 6 is confined to a set Q. Let S be an arbitrary (possibly randomized)
sequential test for deciding between two alternatives Ho and H; which fulfills
the following requirement. Given two disjoint subsets wy and w; of € and two

numbers «, 8 between 0 and 1, S satisfies the inequalities

W Py(S accepts Hy) < if 0 € wp
’

Py(S accepts Hy) < 8 if 0ew,

where Py¢(E) denotes the probability of the event £ when the common fre-
quency function of the X, is f(zx, 6).
It will also be assumed that

(2) Po(8S accepts Hy) + Po(S accepts Hy) = 1 for all 6 € Q.

Let n be the number of observations required to terminate the test S (by ac-
cepting H, or H,). It will be shown that if conditions (1) and (2) are satisfied and

3) a+pB =1,

we have

@ Bon) 2 ——% )[2‘21) — AT+ (- “)cﬁfl(_;]( ;
o (108 gy ) + 1 = 05 106 i)

for every c, 6, and 6; such that

(5) 0<e<l1l, foew, Oew.

Here X denotes a random variable with the same distribution as the X;, and
Ey(U) is the expected value of U (a function of X, X;, X2, --+ ) when the
common frequency function is f(z, 6).

The expected values in the denominator in (4) always exist and arenonnega-
tive, possibly + « (as can be seen by applying the inequality logz = 1 — 2™
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if x > 0). The numerator in (4) is nonnegative and vanishes if and only
fa+8=1.
The best inequality that can be obtained from (4) is evidently

—log [o°(1 — B)'° + (1 — &)

(©) Bo(n) 2 ol ce(8) + (1 — 0)es (6) ’
where
@) ’ e;(6) = oi?f; Ep <10g ;( (XX”ZI)) >’ 1=0,1.

If 6 € w1, then ¢;(8) = 0, and the ratio in (6) can be written as

—ey(6) ™" log [(1 -8 <1 i ﬁ>c + 8 <%>C]llc.

The expression following log is an increasing function of ¢. (For a proof see, e.g.,
Uspensky [1], particularly p. 267.) Letting ¢ — 0, we obtain

1 —
Blog —2—+ (1 —g)log 12
)] Eo(n) = (0 if0ew.
If 6 € wo , inequality (6) reduces in a similar way to
a log T3 2 4+ (1-a)log -«
) Eo(n) 2 — 8 B 0 €.

61(0)

Inequalities (8) and (9) were obtained by Wald ([2], Section 4.7) under the
assumption that the sets w, and w; consist of one point each and the signs of
equality hold in (1).

The sign of equality can hold in (6) only in certain special cases. If « + 8 = 1,
conditions (1) can be satisfied without taking any observations, and hence
Ey(n) can attain the lower bound 0. In (8) and (9) equality can be attained by a
sequential probability ratio test for certain special distributions f(z, 6) and
suitable values 8 (cf. Wald [2]). In general the greatest lower bound for Ey(n)
is likely to be a complicated expression. The bounds derived here, although in
general not the best ones, have the advantage of being simple.

The greatest lower bound of Es(n) can not exceed the least sample size
N = N(a, B) of the best nonsequential test which satisfies (1). The following
example may serve to compare the bound in (6) with N(a, 8). Let

1
f(z,0) = IR =02 =8}, = {028).

9

Then
e(8) = 0 ifo < —5 e =(@+8/2 ife> —s,
a(d) = (0 —8)°/2if 60 <5, e6) =0 if 6 = a.
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Suppose that « = 8, and let § = 0. Then the supremum in (6) is attained for
¢ = %, and we obtain Ey(n) = —loglda(l — @)]/8° = M, say. (It can be shown
that M is the maximum with respect to 6 of the bound in (6).)

The best nonsequential test which satisfies (1) with « = 8 accepts H, or H;
according as )1 X is negative or positive, where

N = y, ———1;_; f“ e‘(zz)ﬂdx =«
82’ '\/21' N .
(We assume for simplicity that A%/’ is an integer.) Hence
M/N = —logl4a(l — a)]/N%,

a function of o only which varies between £ (for « — 0) and 2/7 (for & — 3).

2. Proof of inequality (4). The proof of (4)'wi11 be based on the inequality

(X, 6) L(0) — L(0)
(10) Ey(n)E, (logf(X 0,)> L lo gL(0)+ [1 — L@®]lo gl L)’
9,0 ¢Q,
where
(11) L(6) = Py(S accepts H,).

Inequality (10) is due to Wald (2] and is true for every test S which satisfies
(2). In Wald’s proof the test S is assumed to be nonrandomized (in particular,
a first observation is always taken, so that n = 1), but it is easy to extend the
proof to randomized tests.

To prove (4), put in (10) 6/ = 6, and multiply both sides with ¢; then put
¢’ = 6, and multiply both sides with 1 — ¢. Addition of the corresponding sides
of the two resulting inequalities gives

s o (s 15:0) 0 05 (e S50

> L) log L(®) + [1 — L(®)] log [1 — L(®)] — rL(®6) — s[1 — L(6)]
= H(L(0)),

(12)

say, where
¢ log L(6) + (1 — ¢) log L(#6y),
clog [l — L(8)] + (1 — ¢) log [1 — L(8)].

The minimum of the function H (u)is attained at u = u, , where uy = ¢'/(¢'+ ¢'),
and we find

(13) H(u) = H(uw) = —log K(1 — L(60), L(6y)),
where
(14) K,y =20-y»""+ Q- 2%

r

8



130 M. R. SAMPFORD

The function K(z, y) is an increasing function of z and an increasing function
of y, provided £ 4+ y < 1. Conditions (1) and (2) imply that 1 — L(6) S «,
L(6,) =< B. Hence if « + 8 < 1, we have

Inequality (4) now follows from relations (12) to (15).
Concerning the conditions for equality, it suffices to observe that in (10) the
sign of equality holds if and only if there exist constants C, and C; such that

. f (XJ ) 0) = (. A .
Po{,l.]l:f(X,-, 7 = C; | S accepts H;} = 1, i=0,1,
where the usual notation for conditional probabilities is used. This can be veri-
fied from Wald’s proof. The conditions for equality in (12), (13), (15) are obvious.
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SOME INEQUALITIES ON MILL’S RATIO AND RELATED
FUNCTIONS

By M. R. SAMPFORD
Unaversity of Oxford

1. Introduction. Mill’s ratio is defined as
(1) R, = / e du.

Gordon [1] and Birnbaum [2] have given, respectively, upper and lower limits
for R, as

2) V4 + 22 — 2z} < R < 1/z, z> 0.

Murty [3] has shown how limits to R, of any required degree of accuracy can
be derived for £ > 0 by the use of successive convergents of Laplace’s expres-
sion for the normal integral as a continued fraction. No limits have, as yet, been
published for z < 0.

If the functions »(z) and A(zr) are defined by »(z) = 1/R,, AMz) = V' (z) =
v(v — z), the inequalities

3) 0<A<1,
4) N=yr—o@v—2)—1} >0
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