ON THE DISTRIBUTION OF THE EXPECTED VALUES
OF THE ORDER STATISTICS!
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Summary. Let X;, X,, ---, X, be independent with a common distribu-
tion function F(z) which has a finite mean, and let Z,y £ Z,s £ -+ £ Zun
be the ordered values X, , - - - , X, . The distribution of the n values EZ,, , -- -,

EZ.,. on the real line is studied for large n. In particular, it is shown that asn — oo,
the corresponding distribution function converges to F(z) and any moment of
that distribution converges to the corresponding moment of F(x) if the latter
exists. The distribution of the values Ef(Z,.) for certain functions f(z) is also
considered.

1. Introduction and statement of results. Let X;, X,, -+, X., --- be
mutually independent random variables with a common (cumulative) distribu-
tion function F(z). Let Zm £ Z,2 < -+ £ Z,, be the ordered values X;, X;,
<+« , X, . It will be assumed that

1) [: 12| dF(@) < «,

which implies that the expected values EZ,, , EZ,, , - - - , EZ,, exist. (Throughout
this paper the statement that an expected value exists will imply that it is finite.)
The distribution which assigns equal weights to the n values EZ,;, --+ , EZ,,
will be referred to as the distribution of the EZ.,,, , and its distribution function
will be denoted by F.(x). The primary object of this paper is to show that this
distribution approximates the distribution represented by F(z) when n is large.
More precisely, the following will be proved.

TueoreM 1. Suppose that (1) is satisfied and let g(x) be a real-valued, continuous
Sfunction such that

@ lg9(=@) | £ h(z),

where the function h(x) is convex and

3) f h(z) dF(z) < .
Then
@) lim > 3 6(82.) = [ o) dF@)
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The assumption that k(z) is convex is understood in the sense that for any two
real numbers z, y

h(az + (1 — a)y) S ah(z) + (1 — a)h(y) ifO0<a < 1.

With g(z) = cos tx and sin ¢z, Theorem 1 implies that the characteristic func-
tion of the distribution of the EZ,,, converges to that of X;asn — o, and hence
F.(z) — F(z) for all points of continuity of F(x). With g(z) = z*,% > 0, we ob-
tain that the moment of order % of the distribution of the EZ,. converges to the
corresponding moment of F(z) if the latter exists.

If f(x) is a function such that Ef(X ) exists, we can, more generally, consider
the distribution of Ef(Z.), - -+ , Ef(Z.,). If f(z) is a strictly monotone function,
Theorem 1 can be applied in an obvious way. The general case will not be con-
sidered, but the following special result will be obtained as a simple consequence
of Theorem 1.

THEOREM 2. Let f(x) be convex, g(x) convex and nondecreasing (for x = A if
fly) = A for all y), and suppose that

j:: z dF(z), j_ﬂn f(zx) dF (z) and /_w g(f(x)) dF(z)

exitst. Then

lim 2::1 9(Ef(Z,) = f: g(f(2)) dF (z).

n—eo M -

Theorem 2 and the indicated modification of Theorem 1 apply, in particular,
to the case where f(z) and g(z) are powers of z.

The behavior of the distributions of the EZ,,, and the Ef(Z,,) is of interest
in connection with certain rank order tests. It has been shown by Hoeffding
[4] and Terry [6] that rank order tests for testing a hypothesis of randomness
which are most powerful against certain alternatives are based on statistics of
the form ¢(R) = Z?_l a;Ef(Z.z;), where R = (R,, --- , R,) is the vector of
the ranks of the observations and f(z) is a given function. If all permutations of
the ranks are equally probable, the moments of ¢(R) are functions of the power
sums Y5y [Ef(Z,,)]. Theorems 1 and 2 give asymptotic expressions for these
power sums. Tests of this type were already considered by Fisher and Yates
[2] whose tables XX and XXI give the values of EZ,; and the (approximate)
values of 2%y (EZ,;)* for n < 50 when F(z) is normal with mean 0 and vari-
ance 1. Dwass [1] and Terry [6] use results implied by Theorems 1 and 2 to
study the asymptotic distributions of statistics of the form ¢(R).

2. Preliminaries. The distribution function of Z,» will be denoted by F,.(z).
Since Z,» = = if and only if at least m of the values X;, --- , X, are <z, we
have

Fun@) = 3 (’]‘) P& — PP

J=m

(5)

n! F@ M1 n—m
==(m— 1)!(n—m)!fo e =0T
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The following three facts, which are known or easily verified, will be used in

the sequel.
I. If Ef(X,) exists, so does Ef(Z,) for all n, m.
1L >ony Bf(Zam) = nEf(X,). _

III. (Cf. Jensen [5].) If h(x) is convex and U is a random variable such that
EU and Eh(U) exist, we have h(EU) < Eh(U).

Repeated use will be made of the following Lemma 1, which is an immediate
consequence of an extension by Fréchet and Shohat [3] of a theorem of Helly.

LemMa 1. Let V(z), V.(x),n = 1,2, - - -, be a sequence of functions which are
uniformly bounded and of uniformly bounded variation on any finite interval, such
that im, ., V.(x) = V() for all z, with the possible exception of a countable set.
Let f(x) be a continuous function such that

[@ave  wmi [ j@av.@, n=12--

exist and

lim f@)dV.(z) =0

A—w V|z|>

uniformly with respect to n. Then
lim [~ fz) aVa@) = [ 1) aV@.

3. Proofs. Theorem 1 will be proved with the help of several lemmas.
LEMmMA 2. Given € > 0, there exist two numbers C and a, where 0 < a < 1,
such that for every n = 2

(6) Funl) S CF@)  f  F@) +esm_1s1,

() 1-Ful@ 00 -F@] 05D 1<F@ -«

IIA

Proor. Lets = (m — 1)/(n — 1), v = F(z),

fv [te(l _ t)l—s]n—l dt
H(s,v) = 2

— .
f [t\;(l _ t)l-—S]n—-l dt
o

Then inequalities (6) and (7) can be written as

(8) H(s,v) < Ca™ ifo+e=s

IA
»
IIA
“’—‘

9) 1 — H(s,v) £ Ca™(1 — v) fo0<s=<v—e

For s arbitrarily fixed, 0 < s < 1, the function #(1 — )" increases for
0 < t < s and decreases for s < ¢t < 1. Hence the quantity
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2b = min [s'(1 — )™ — (s — ¢)°(1 — s + ¢,

e<s<1

where s'(1 — s)'™ = 1if s = 0 or 1, is positive. We have for» < s — ¢

[t — 071 dr s 16 - 0 — s + 9T

<[ — &) — 20" .

On the other hand, we can choose a positive number d so that for
every 5,0 < s = 1,

(10)

SA—98)" —rA—-0"=<b if|[t—s|<d.
Then we have
1
f [ta(l - t)l—c]n—-l dt g / [ta(l _ t)l—:]n—-l dt
(11) 0 gt
> dls(1 — &) — b"

From (10) and (11) we haveforv + e £ s < 1

(12) H(s,v) < d[K(s)]™ ™,
where
(13) K(s) = sl — )™ —2b <1—2

Tl - —b - 1-0b"

If weputa = (1 — 2b)/(1 — b) and C = d 'a™, inequality (8) follows from
(12) and (13).

Inequality (9) is obtained from (8) by observing that 1 — H(s,v) =
H( — s, 1 — v). This completes the proof.

The following Lemmas 3 and 4 are immediately obtained from Lemma 2.

LemMa 3. If m/n — ¢ as n — o, then

if Fx)<ec

lim Fun(x) = /
s> 1 if Fl@)> e

LemMa 4. If m/n — c as n — o, where 0 < ¢ < 1, there exist two numbere
N and d > 0 such that forn > N

Fan(z) 5 F(2) if F(z) < d,
1 — Fun(@) £ 1 — F(z) if 1 — F(z) < d.

Let S be the set on the real line which consists of all points of discontinuity of
F(z) and all points z such that F(x — h) < F(z) < F(x 4+ h) for every b > 0.
LEMMA 5. Lety e S,0 < a < 1. If m/n — aF(y — 0) + (1 — a)F(y + 0)
as n — o, then
(14) lim EZpm = ¥.

n-—+0
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Proor. By Lemma 1 it suffices to show that

0 if z<y
n—o if z>y,

and that
(16) lim z dF wm(z) = 0 uniformly with respect to n.

A-w Y|z|>A4

Letc = aF(y — 0) + (1 — a)F(y + 0). Since y ¢ S, the inec, litiesz < y < z
imply F(z) < ¢ < F(z). Hence (15) follows from Lemma 3.

The assumptions y ¢ 8,0 < ¢ < 1 imply that 0 < ¢ < 1. Let d and N
be defined as in Lemma 4. Given ¢ > 0, choose B > 0 so that F(—B) < d,
1 — F(B) < d,

—B 0
€ €
—[w 2dF(z) < 2, fnxdF(x)<§,
and F(z) and F,.(z) are continuous at x = =B. Then
—B —B
(17) '—f x dan(x) = Ban('—B) + f an(x) dz.

Applying Lemma 4, we have that for n > N the right-hand side of (17) does
not exceed

BF(—B) + f_ P ds = — [_BxdF(x).

—B —B
Hence if n > N, — [ & dFun(a) < ¢/2 and, similarly [ zdFun@ < o
This implies (16). The proof is complete.

Let
(18) Gunl@) = 1 3= Fusla).
LemMA 6. If m/n — casn — =, then
F(x if F(z) <c
2 Gaml) = {c( | z; F((x))> c.

Proor. By (5) and (18),

n

1Gan@) = 3 z( )F@)" 1 — F@)I™

=1 k=j

n

-5 k< )F@) L= F@I™ +m > (Z) F@'[L — F@T™,

k=1 k=m+
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whence

(19) Gan(@) = F@)[1 — Foym(z)] + gﬁu.mﬂ(x) if m<n

and G,.(x) = F(x). Lemma 6 now follows from Lemma 3.

From (19) and Lemma 4 we easily obtain

LemMma 7. If m/n — c as n — o, where 0 < ¢ < 1, there exist two numbers
N and d > 0 such that forn > N

Guw(x) < 2F(x) if Flx) <d,

% — Gun(x) €1 —-F@) o 1-—F(x) <d.

Lemma 8. If g(x) satisfies the conditions of Theorem 1 and m/n — F(y) as
n — o, where y is a point of continuity of F(x), then

N Y
(20) lim - E Eg(Z,;) = f g(z) dF (z).

n—o N j=1 —a0

Proor. Equation (20) can be written in the form
=] v
21) lim [ @) d6un@ = [ 4@) dF ().
By Lemma 1 it suffices to show that
F(x) if z<
(22) lim Gpn(z) = { . !
- F(y) if z>9

for every « at which F(x) is continuous and that

(23) lim g(x) dGun(x) = 0 uniformly with respect to n.
A-wo Y|z|> 4
For every y which is a point of continuity of F(z) we can choose two numbers
¥1, ¥z in S and two numbers a; , az in (0, 1) such that if we let

¢ = a;F(y; — 0) + (1 — a))F(y: + 0), 1=1,2,

we have ¢; £ F(y) < c: and ¢; — ¢ is arbitrarily small. Now choose m; = m

and m; = m in such a way that m;/n — ¢; and my/n — ¢, as n — o,
Since Gpm,(x) £ Gun(x) £ Gumy(z), (22) now follows from Lemma 6.

To prove (23), we may assume without loss of generality that the function
h(z) of Theorem 1 is nonincreasing for —z sufficiently large and nondecreasing

for z sufficiently large. Then (23) follows from

f. 1o, 908) dGon@)

< [l . h@) dGun(@)

and Lemma 7 in a similar way as in the proof of (16). This completes the proof
of Lemma 8.
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Let

1
Hﬂ(y) = ’;& Z Eany

EZpj<sy

H(y) = /j z dF (z).

LemMmA 9. If y is a point of continuity of F(x), lim,.. Ha.(y) = H(y).
Proor. We can write H,(y) =n"! >.i1 EZ,; , where m = m(y) is deter-
mined by

(24) EZﬂm é y < Ezn,m+l .

This implies m/n — F(y). For otherwise a subsequence {m'/n’} of {m/n}
must converge to a number v # F(y). If v < F(y), we can choose z ¢ S and a
in (0, 1) so that v < ¢ < F(y), where ¢ = aF(x -0 + (1 — a)F(x + 0). To
every (m’,n’) we can choose an integer m” = m’ so that m”/n’ — c. By Lemma
5 this implies * = limp/~w EZu ,m’ 41, hence lim sup EZ,/ m 11 < 2 < y, which
contradicts (24). In a stmilar way the assumption » > F(y) leads to a contra-
diction.

Lemma 9 now follows from Lemma 8 with g(z) =

Lemma 10. If g(x) satisfies the conditions of Theorem 1, we have

lim g(x) dF.(z) =
A~ lxl)A

uniformly with respect to n.
Proor. If A is a point of continuity of F(z),

< f h(z) dF.(x) = - Z WEZ.;),

N j=m

{ f g(x) dF.(v)

where EZ, m1 £ A < EZ,,, . As shown in the proof of Lemma 9, m/n — F(A)

as n — oo. Since h(x) is convex, n~! E,,,,. hEZ,;) En7! Z,,.,,, Eh(Z.;). By

Lemma 8 the right-hand side converges to ] h(z) dF(z). Thus we obtain
A

an upper bound which can be made arbitrarily small and is independent of n.
The remainder of the proof is obvious.
Proor oF TrEOREM 1. Equation (4), Wthh is to be proved, can be written

in the form

(25) tim [~ @ ara@) = [ " @) arw),

n-—w

and this is equivalent to

(26) hm[ M dH,(z) = f_w M dH ().

n—0
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First, suppose that the function (g(z) — ¢(0))/z is continuous everywhere.
Then (26), and hence (25), follows from Lemmas 9 and 10 by using Lemma 1.
In particular, (25) is now proved for g(z) = cos tx and sin tx. By the continuity
theorem for characteristic functions this implies that
@27 lim F,(z) = F(z)
for all points of continuity of F(z). Equation (25) now follows for every g(z)
which satisfies the conditions of Theorem 1 by applying Lemma 1, (27) and
Lemma 10.

Proor oF THEOREM 2. Since f(z) and g(z) are convex, we have f(EZ,;) <
Ef(Z.;) and g(Ef(Z,;)) £ Eg(f(Z.;)). Since g(z) is nondecreasing, g(f(EZ,;)) <
9(Ef(Z.;)). Hence

@) 13 a0(EL.) S 1 Do) < 13 Be(2.)) = [ (1) ar).

The first member of (28) converges to the last member if the function g(z) =
g(f(x)) satisfies the conditions for g(x) in Theorem 1. That these conditions are
satisfied, follows from the fact that g(x) is convex.
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