ADMISSIBILITY OF TESTS 473

1 1
PEE TR EECIEE
2’ 2 Za

Using the approximation of ordinate over abscissa for the cumulative normal
for extreme abscissa we find that z is the abscissa of a cumulative normal which
is approximately equal to the power of the {-test for alternative é. In a similar
manner the normal approximation to the binomial yields z = 64/7 + 1 for the
sign test. A fixed value of N and « determines r, «, 2, and we may solve for ».
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THE ADMISSIBILITY OF CERTAIN INVARIANT STATISTICAL
TESTS INVOLVING A TRANSLATION PARAMETER
‘ By E. L. LeamMannt anp C. M. StEIN
University of California, Berkeley, and University of Chicago

1. Introduction. The notion of invariance (or symmetry) has such strong
intuitive appeal that many current statistical procedures have the invariance
property and are in fact the best invariant procedures although they were pro-
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posed long before a general discussion of invariance was available. Hotelling [1],
[2] and Pitman [3], [4] emphasized the invariant nature of certain tests and esti-
mates. A general definition of the notion for the problem of testing hypotheses
was given by Hunt and Stein who showed that in this case under severe restric-
tions on the group of transformations an optimum invariant test is most stringent
or more generally minimax with respect to an invariant loss function (see [5]).
This result has been extended to more general decision problems and more
general groups by Peisakoff [6]. However, these results do not prove admissibility
of the procedures in question unless the group of transformations is compact.

The problem of admissibility in the case of point estimation of a location
parameter was treated in the normal case by Blyth [7] and by Hodges and
Lehmann [8] and for a general class of location parameter-problems by Black-
well [9]. In the latter paper the surprising fact was brought to light that even
in the location parameter problem the best invariant estimate may, under cer-
tain circumstances, be inadmissible.

In the present note we prove under conditions which are presumably unneces-
sarily restrictive the admissibility of the most powerful invariant test for testing
one location parameter family against another. As an example, consider the
problem in which Z,, - -, Z, are normally distributed with unknown mean ¢
and variance ¢°. If we wish to test H: ¢ < 0 against the alternatives K: ¢ > 0,
it was already pointed oGt in ([5], p. 15) that Student’s t-test is admissible for
this problem. This result is quite elementary and rests on the fact that unbiased-
ness in this case implies that the probability of rejection equals the level of signifi-
cance for all points ({, o) with ¢ = 0. However, this argument breaks down if we
introduce an indifference zone and restrict our class of alternatives to K’: /o = §

where § is some specified positive number. '

" Consider now the general problem in which one observes a random point
(X, Y) where X ranges over an arbitrary set, Y over the real line. There are two
hypotheses H; according to which the distribution of (X, Y — #) is Fi(= 1, 2)
where 7 is unspecified. The problem discussed above is an example of this, if we
take H; to be {/o = 8, X = > Z:/V D 7%, Y = log 3. Z} and n = log 0. As
another example let (Z, — 9, Zy — 9, --- , Z, — 9) have distribution F; under
H,; . Then we can take for X the set of differences X = (Z, — Z,., - -+ , Zny — Z»)
and for Y the mean Z or the observation Z, , or any of a number of other sta-
tistics. ’ ‘

2. The principal theorem. Let X be a set (which for all practical purposes
may be taken to be a Euclidean space), G a o-algebra of subsets of & (say, the
ordinary Borel sets if X is Euclidean), ® the real line, ® the set of all ordinary
Borel subsets of ®, \;, A\» probability measures on @ and for each z, let F,,, F,,
be probability measures on ® such that for each B ¢ ®, real k, and ¢ = 1, 2
{z|Fi(B) £ k} ¢ @. We suppose that the distribution of the random point
(X, Y) ranging over X % is, for some real n, withZ = 1 or 2

W Po(X, 1) eC) = [ @ [aruly - ».
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A test for the hypothesi¢ H, that it is Py, (with n unspecified) is a function ¢ on
% X ® to [0, 1], @® measurable. The test ¢ is said to be better than ¢, if for

all 9
) Elnﬂ”(X: Y) £ Eneo(X, Y)
Ene(X,Y) Z Enen(X, Y),

strictly better if (2) holds with strict inequality for some 9. ¢, is admissible if
there exists no ¢ strictly better than ¢, .
THEOREM 1. If By | Y |, En | Y| < ©,0< ¢ < 1,

M {x dh, (z) = c} =0,

d\ 4+ N)
@0 is the test defined by

. dXs
14f %2
Y ot ™
_d)g
d( -+ o)
and ¢ is better than ¢y, then ¢ — ¢y = 0 a.e. (\ + A;)p where u is ordinary

Lebesgue measure on the real line.
CoroLLArY. If in addition all F;, are absolutely continuous with respect to u,

then o is admassible.

The corollary is an immediate consequence of Theorem 1.

Proor oF THEOREM 1. Putting X = A + Xg, f(x) = dho/d(\ + N) (2) we
can rewrite the condition (2) that ¢ be better than ¢,

[ =) d@ [ - Wy i -
J(z)<e

(x‘) 2c

0if (z) <,

()
~ [ = @) @ [~ D y) dFuly — 1) < 0

fyzc

~ [ 1@ a@ [~ @) dFuly —
®) r@<e
+ . 1@ D@ [ (0~ o)) dPuly = ) 5 0.
Multiplying (4) by ¢ and (5) by 1 — ¢ and adding we obtain

[ e = @) D@ [~ ey dFuly — )
f(@)<e

+[ 1= a@ [ (- ) dFuly —
f@ze

©)
<[ 0= d@ [ - ey dFul - )
/

() <¢c

+ [ ot = 1) @) [ o0 — D@, 1) dPuly — n).

f(z)z ¢
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In order to derive the conclusion of Theorem 1 from (6) we shall need the

LemMa. If X, @, ®, ® are as before, p a probability measure on @, hi, hs G-
measurable functions on X to [0, 1] with hy — he > 0 a.e. (p), ¥ an G®-measurable
function on X X ® to [0, 1], and fof each z, Hy, , Hs, probability measures on &
such that

) for each Be ®real kand i = 1,2, {x|Hi(B) Sk} £ @
® [ @ @ [y dH.w < .

f hy(x) dp(x) f ¥(z,y) dHy.(y — n)
9) .
= f ha(x) dp(x) f Y(z,y) dHw(y — n)  for all real n

then ¢ = 0 a.e. (pu).
Proor or LEMmA. We can rewrite (9)

(10) [ 1@) dola) [#le,y + 1) dHe) < [ o) do(@) [Wlo, v + n) dHuly).

Now
[ an [ vy +w at) - [ 9w an
~ faw [ [T v~ [ s an]
. s [ [ vema+ [ e [ vena
s [ 1yl )
and
[ ar [ way + o attt) = [ v
~ [ [T ven i [ e ]
o 2 [ e [ v dn - [ [ vem
2 - [ Iyl dHuty).



ADMISSIBILITY OF TESTS 477

Integrating (10) with respect to n from —n to n and using the final forms of
(11), (12) we obtain

[ — e dot@) [ 94z, n) dn

(13)

< [ 1@ ao@) [ 1y] dtu@) + [ @) dot@) [ |y | aHay).
Consequently,
(14) [ @) — hoa)) dota) [ wiw, ) dn <

and for every § > 0 there exists n such that
(1) [ @) - ma) dote) [ vl dn <
Inlzn

If instead of using the final forms of (11) and (12) for all z, we use them only in
the range hy(z) — ha(z) < eand use the next to final forms when hy(x) — ha(z) 2 €
we obtain instead of (13).

[@) ~ 1) dota) [ vz, )

< @) [ [ 191 ate) + o) [ 1] )]

hy(z)—ha(z) <e

—nty
10+ aote) [ @ { [ attt) [ 6,0

hy(z)—ha(z) 2 €

+ j; “ dH.(y) fn :” ¥z, ) dn}

sn@ {[ ) [y an+ [ ane [ ven o]

The first term on the right-hand side can be made arbitrarily small by taking e
sufficiently small since hy(x) — ho(z) > 0 a.e. (p), 0 < hi(x) < 1 (using (8)).
For, given ¢ > 0, the second half of the last term can be made arbitrarily small
by choosing n = n(e) sufficiently large since by (15)

[ @@ [ W) dn S o
hy(z)—ha(z) 2 e Inlzn
Also

—nty
f dp(x)h(z) f dH 1, (y) [ Y(z, ) dy
hy(z)—ha(z)2 e n/2gy n

;,(17)

<[ ao(a) (@) [ yaiy).
by (z)—-ha(z) 2 ¢ n/2<y
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Again, for fixed e this can be made arbitrarily small by choosing n = n(e) suffi-
ciently large. Finally

n/2 —nty
[ a@ @) [ dBu) [ v, ) dn
h1(z)—ha(z) =€ (] 2 -n

—n/2

<[ do@) (@) [ ¥z, dn,
hy(z)—ha(z) X € 0
which is disposed of in the same way as the second half of the last term. The re-
maining integral with y < 0 is analogous. Then, since the right-hand side of (16)
is arbitrarily small for sufficiently large n, ¢ = 0 a.e. (\; + A2)u. This completes
the preof of the Lemma.

To apply the Lemma to (6) we make the following identifications:

() If f(z) < e,
() = c(1 — f(x))  ha(z) = (1 — o)f(x)

H,, = Fy, Hyy = Fy, .
V=90~
(i) I fx) 2 ¢
h(z) = (1 — o)f(x)  ha(x) = c(1 — f(z))
Hy; = Fo, Hy, = Fy,.
V=@ —¢

In any case p = N\/2. The reader will readily verify that (7), (8), (9) are satisfied
s0 that the theorem follows.

A moment’s reflection shows that the origin of ® for given z is arbitrary so that
the hypotheses Ey | Y | < o could be replaced by: There exists an @-measurable
real-valued function = on % such that Ey | Y — 7(X) | < .

It is seen that the admissibility of the noncentral {-test for testing ¢/o = &
against {/o = §, (central in case o = 0) follows immediately from the theorem
since

Ellog). Zi| < =

and PO, Z;=cV' Y Z}) = 0.

Another example is that of testing for the same random variables ¢ = o
against ¢ = o, . Here we may take X = ) (Z; — 2)2; and Y = Y Z;. Actually
in this case the result can be proved quite easily by other means. Instead of
taking for ¢ the usual least favorable sequence of a priori distributions which in
the limit is invariant, we may, if o9 < o1 take in H the a priori distribution
P(¢ = a) = 1 where aisany constant, and in K a normal distribution with mean a
and variance n(1/¢7 — 1/0%). The Bayes solution is seen to be the F-test which
is therefore admissible. (For details see [10]).
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We can also consider the general linear hypothesis with no unknown means
as nuisance parameters. For brevity we use the terminology of [5]. In the canon-
ical form we have U, --- Uy, V; -+ V, independently normally distributed
with BU; = v;, EV; = 0, E(U; - w)! = EV? = o* where o’, ¥; are unknown
and we want to test the hypothesis that all v; = 0 say, against D v; = yo’. A
sufficient statistic is (U, - -+ Un , 2 V3). The problem is invariant under rotation
of the vector Uy, -+, Un and multiplication of all U;, V; by the same con-
stant c. Since the rotation group G possesses a finite invariant measure, any test
invariant under Gy and admissible among all tests invariant under G, is admissible.
Thus, in proving the usual F-test admissible we may restrict our attention to
tests depending only on ( Ut , 2. V%). Under multiplication by ¢ this goes into
(U, V3. Taking X =D U/ > ViandY = logY_V?%, applying Theorem
1 and the optimum property of the F-test among all.those based only on > U3/
2_V?%, we obtain the admissibility of the usual test: Reject Hoif Y U2 = k> V2.
The same argument applies to the problem of testing H,: va < 10" against
H, :Ev% = y0° withys > 7.
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