ON THE PROBLEM OF CONSTRUCTION OF ORTHOGONAL ARRAYS!

By EsTHER SEIDEN
University of Chicago

1. Summary. A method of constructing orthogonal arrays of an arbitrary
strength ¢ is formulated. This method is a modification of the method based on
differences, formulated by R. C. Bose [1] for the purpose of constructing
orthogonal arrays of strength 2. It is shown further that each of the multi-
factorial designs of R. L. Plackett and J. P. Burman [2], in which each factor
takes on two levels, provide a scheme for constructing orthogonal arrays of
strength 3, consisting of the maximum possible number of rows.

An orthogonal array (36, 13, 3, 2) is constructed. The method used for its
construction cannot lead to a number of constraints greater than 13. It is known
however [3] that 16 is an upper bound for the number of constraints in this
case; the problem as to whether this bound can actually be attained remains
unsolved.

2. Introduction. The theory of orthogonal arrays was developed by R. C,
Bose and K. A. Bush [3].? Following their definition a k¥ X N matrix 4 with
entries from a set = of s = 2 elements, is called an orthogonal array of size
N, k constraints, s levels, strength ¢;'if each ¢ X N submatrix of A contains all
possible ¢ X 1 column vectors with the same frequency A. Such an array is
denoted by the symbol (N, k, s, t), and the number A is called the index of the
array. Clearly N = \s'.

Hotelling [4] considered orthogonal arrays of strength two and two levels
from the point of application of factorial designs to chemistry. His work was
continued by Mood [5]. Plackett and Burman [2] studied orthogonal arrays, in
their terminology multifactorial designs, from the point of view of an applica-
tion in physical and industrial research. Their work provided a complete solu-
tion to the problem suggested by Hotelling. Some of the designs constructed by
Plackett and Burman were analysed by Kempthorne [6], and Brownlee and
Loraine [7]. They pointed out that in the cases considered the main effects are
confounded with the first order interactions; hence the designs are inadequate
when the assumption that there is no interaction between the factors is un-
realistic. These remarks can be extended to all the designs constructed by
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Plackett and Burman, in the sense that in each of them the main effects are
confounded with at least some of the degrees of freedom belonging to the first
order interactions. However this deficiency can be removed by constructing
certain designs of strength greater than or equal to 3. All the designs of Plackett
and Burman in which s is equal to 2, yield such extensions. Moreover, one
more factor can be accommodated in these extended designs.

3. Construction of arrays of strength 3 from arrays of strength 2.

TaeEoREM 1. Let S be an ordered set of s elements ey, €1, * -+ , es—1. For any
integer t consider the s* different ordered t-tuples of the elements of S. They can be
divided into s sets, each consisting of s t-tuples and closed under cyclic permuta-
tions of the elements of S. Denote these sets by Si, ¢ = 1,2, -+, s, Suppose
that it is possible to find a scheme of r rows with elements belonging to S

aun M2 *°* 0O1p
Co (n = A"
Gr1 Gy2 = Oy
such that in every t-rowed submatriz the number of elements belonging to each S;
s the same, say, equal to \; then one can use this scheme in order to construct an

orthogonal array (\s', r, s, t). If in addition this scheme consists of an array of
strength t — 1, then one can construct an orthogonal array (\s', r + 1, s, t).

Proo¥. The sets S;(z = 1, - -+, s'") may be, for example, defined as follows.
Consider the s distinet (¢ — 1)-tuples of the elements of S and let the first
t-tuple of each S; be the vector (e, e, , €, * -, €s,_,) Where e is an arbitrarily

chosen element of S and the remaining elements of the vector form one of the
s"7'(t — 1)-tuples made to correspond to the set S;. The additional s — 1 ¢-
tuples of each of the sets S; are obtained from the first by cyclic permutation
of the elements of S.

An array (\s’, r, s, t) can now be constructed. Let its first As"™ columns be
identical with the scheme satisfying the conditions of the theorem. Then the
array is completed by adjoining to these columns all the transformations of the
scheme consisting of cyclic permutations of the elements of S.

If the scheme consists of an array of strength ¢ — 1, then an additional row
can be added of which, for example, the first A\s’™" elements are equal to the
first element of S, the next As" to the second element of S, and so on until
all the elements of S are exhausted.

TrEOREM 2. If § is 2, then any orthogonal array of strength 2 forms a scheme,
satisfying the conditions of Theorem 1, for the construction of an array of strength 3.

Proor. Denote the elements of the array by 0 and 1, and the index of the
array of strength 2 by . Let

01
S1=01, S2=
01

t—1

S3

= O O
S = ot
]

o = O
— O =
&
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S O M
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The theorem will be proved if we show that every three-rowed matrix of the scheme
contains A elements belonging to each S;,7 = 1, 2, 3, 4. Let z;%(, j, k = 0, 1)
denote the number of columns of any three-rowed matrix which contains ¢ in
the first row, j in the second row and k in the third row. Then clearly

Zi Tije = Ej Tije = Zk Tijk = A,

from which it is easy to deduce the theorem. For example, 2o + oo = Zowo +
Z110 OF Tooo = T . AlSO, Ty + 21 = A s0 that xee + o = A.

We will illustrate Theorems 1 and 2 by the following example. Consider the
orthogonal array (12, 11, 2, 2) constructed by Plackett and Burman [2].

011011100010
010111000101
001110001011
011100010110
011000101101
010001011011
000010110111
000101101110
001011011100
010110111000
001101110001

It is seen that this orthogonal array of strength 2 satisfies the conditions of
Theorem 2. Now we construct the orthogonal array (24, 12, 3, 2) by adjoining
to this scheme its transformation obtained by interchanging zero and one. The
12th row will consist of 12 zeros and 12 ones.

(= NoNoNeNeNeNo NN Ne Nl
CO R OOOHIMHKMHOIM M
OHOHHOOOMMEKOQOM
OH HOMFROOOMMEMO
COHHFHFOHOOO MM
O O FHMHOFHF OO0 I -
OHHOFRHFHOFROOOM
OHHHEHOHRMFHOFROOO
OCO M MR OMFHMFOHROO
SO O it et Ot i O = O
C OO O it ek ek O ek ek O
O OOOHMIMKOMMKROO
e e i R N
o QO M= OO =OO
HOFHFOMMMEMEOOO MO
H OO OMIMMOOO -
e O O OMMEHFOOO
HFHOMHHOOHFHOMKMMOO
H OO OOMOMM MO
HOOOHHOOHOM M
- O OO OO MO =
HHHOOO~ROOMHOM
- OQOOO- OO ~=O
HOMFEMMOOOROO M

The described method of constructing orthogonal arrays of strength 3 renders,
. in case s equals 2, the maximum possible number of rows. This follows from
Theorem 2A proved by Bose and Bush (3] which reads: “For any orthogonal
array (As’, k, s, 3) of strength 3, the number of constraints k satisfies the in-
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equality £ = [(\& — 1)/(s — 1)] + 1.” For s = 2 the inequality reduces to
k= 4\

4. An array of strength 2. An orthogonal array (36, 13, 3, 2) will be con-
structed. The construction is based on the method of differences formulated by
Bose [1] and Bose and Bush [3]. If will be more convenient to use here the first
formulation. It reads as follows: Let M be a module consisting of ¢ elements.
Suppose it is possible to find a scheme of 7 4+ 1 rows

Qo1y QAo2y *°° 45 Qopn

Qi1y Q124 *°° 4y Q1n

Qrry Qr2y °°° 5 Qrp .
such that (1) each row contains As elements belonging to M; (2) among the
differences of corresponding elements of any two rows, each element of M oc-
curs exactly \ times, then we can use the scheme to construct an orthogonal
array (\s’, r + 2, s, 2). The following 12 X 12 scheme satisfying the conditions
of the theorem, was found by trial and error:

ONNOHOOHRKEKOOO
=HOONONONDODODOO
OQOHOONHHNOOH~ROO
OCOHHMHOO~RONNOO
NMNNONFHEFFHFOONMDNFHO
O M NNNDNEFEDNMENMEOO
NN~ NONNOO~O
NONOONNFRNFHFROD
HHEEHEDNDNNOOHNMHENO
NN MMENMEHOOMENDO
H OMHOMFMFENNEFENDDNO
N HOHRHOHMEMEMRONO

Twelve rows of the (36, 13, 3, 2) array are obtained by adjoining to this scheme
its two transformations consisting of cyclic permutations of the elements zero,
one and two. The 13th row will be added by putting, for example, four zeros,
four ones, and four twos under each of the schemes in the same order.

Two questions now naturally arise. The first is whether it is possible, using
the same method of construction, to build a scheme consisting of a number of
rows greater than 12. The second is whether it is possible to use a scheme of
12 rows to construct an orthogonal array consisting of more than 13 rows.
Both questions will be answered in the negative.

The proof is based on an algebraic property of orthogonal arrays pointed
out by Bose and Bush [3].

, Let n;; denote the number of columns that have j coincidences, that is, j
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elements equal, with the 7th column. A necessary condition for an array to be
an orthogonal array (N, k, s, t) is that whatever be the number A such that
0 < h = t, the following equalities hold:

Z’;.,o ’ni,‘q;]; = C;:()\St—h - 1) fori = 1, 2, e, N

In the case considered h takes on the values 0, 1, and 2 and the condition re-
duces to

k
‘En,-j =" =1

j=0

(*) 3 jgjnu = k(s — 1)

k

> iG = Ung = k(k — D= 1) i=12--,N.

Li=0

Consider now the first » + 1 rows of an array constructed with the aid of the
theorem of Bose. It is easy to see that no = s — 1 for all ¢. Clearly these in-
equalities hold also for any subarray extracted out of the first » + 1 rows. This
means that in the case considered ny, = 2 as long as we deal with the first 12
rows of the above constructed array. On the other hand for k = 12, ny < 2
because otherwise the square of the deviation of the value j = 0 from the mean
of the j’s would exceed the total sum of squares of the deviations from the mean.
Hence for k = 12, ny, = 2 for all 7. Furthermore, n,, = 2 implies n;s = 33 and
ni; = 0 for j #£ 0, 4 and all <. This can be shown by applying equalities (*) and
noticing that if £ = 12 and ny = 2, then Q = Z',Ll(j — 4)n;; = 0.

Such an array could not include a scheme consisting of 13 rows, because the
solutions niy = 2, ny = 22, ng = 11 and n;; = 0,75 = 0, 4, 5 do not satisfy the
equations (*) for s = 3, A = 4, k = 13. This answers the first question.

To answer the second question notice that if for k = 12, A = 4, s = 3 the
solution of the equations (*) are no = 2, ny = 33, n;; = 0 for j # 0, 4 and
all 7, then for & = 13 the corresponding solutions are 7;; = 2, ny = 24, ng =
9 and n;; = 0 for j # 1, 4, 5. This means every set of three columns belonging
to the subarray of 12 rows and closed under the cyclic transformations of the
elements of the array has the same element in the 13th row. It is seen that
this condition together with the condition that each element of the array has
to appear twelve times in each row will suffice in order to construct the 13th
row.

Let us see now whether one could add a 14th row to this array. It is enough
to consider the solutions of equations (*) for the unknown values of 7y, ns,
ns provided that n, = 2. This follows from the following reasoning. For 12
rows niyp = 2, ny = 33 and n;; = 0 for j # 0, 4. We may identify the two col-
umns which have no coincidences with the 7th column as ! and I’. For 13 rows
ni;; = 2 and clearly these columns must be [ and I’. Hence by first considering
"rows 1,2, ---, 13 and then rows 1, 2, --- , 12 and 14 it follows that columns
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! and I’ will have the same 2-tuple in rows 13 and 14 that column ¢ has. Hence
ng = 2. For k = 14, np = 2 implies ny = 16, ng = 16, ng = 1, ni; = 0 for
J # 2,4, 5, 6. Consider 7 equal to 1. We may assume that the last two elements
of the first column are equal to zero. Then because n,; = 2, the last two ele-
ments of the 13th and 25th columng will be equal to zero. Since ns = 1 there
exists one more column different from the 1st, 13th and 25th which has the last
two elements equal to zero. Let us denote this column by 7. By our assumption,
N2 = 2; hence two more columns will have to have the last two elements equal
to zero, consequently the assumptions that A\ = 4 and the array is of strength 2
would be incompatible for & = 14.

I wish to express my thanks to R. C. Bose for suggesting this problem and
to L. J. Savage and C. M. Stein for stimulating discussions during the prepara-
tion of this paper. Thanks are also due to the referee whose comments helped
to improve the formulation of the paper.
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