ON A STOCHASTIC APPROXIMATION METHOD
By K. L. Cuuna!

Cornell University and Syracuse University

1. Summary. Asymptotic properties are established for the Robbins-Monro
[1] procedure of stochastically solving the equation M(z) = a. Two disjoint
cases are treated in detail. The first may be called the “bounded” case, in which
the assumptions we make are similar to those in the second case of Robbins and
Monro. The second may be called the “quasi-linear” case which restricts M (x)
to lie between two straight lines with finite and nonvanishing slopes but postulates
only the boundedness of the moments of Y (z) — M (x) (see Sec. 2 for notations).
In both cases it is shown how to choose the sequence {a,} in order to establish
the correct order of magnitude of the moments of z, — 8. Asymptotic normality
of a¥(z, — 0) is proved in both cases under a further assumption. The case of a
linear M (x) is discussed to point up other possibilities. The statistical signifi-
cance of our results is sketched.

2. Introduction. Let M (x) be a fixed but unknown function and « a given
(known) constant such that

(1) M(z) =

has a unique (unknown) root x = 6. Suppose that to each valuc x corresponds
arandom variable ¥ = Y (z) with distribution function Pr[¥ (z) = y] = H(y | 2),
such that

M@ = [ yan |

is the mathematical expectation of ¥ for the given z.
The Robbins-Monro procedure is defined as follows. Let {a,}, n = 1, be a
fixed sequence of positive constants such that

2 2 Uy = 2 ak < =».
n=1 n=1

We define a nonstationary Markov chain {z,} by taking z; to be an arbitrary
constant and setting recursively

(1%

Tngr = Tn + o — Yn), n 1,

where ¥, is a random variable whose distribution function, for given z,, - - - ,
oy Y1yt s Yna,is H(y | 2,). The moments of z, — 6 will be denoted as follows:

b = El(w, — )1 bY = b,
BY = El|z, — 0.
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Under certain assumptions regarding the nature of the functions M(-) and
H(-|-), to be specified in a moment, Robbins and Monro showed that b, — 0,
namely that z, tends to 6 in mean of order 2, for every sequence {a,} satisfying
(1), thus providing a stochastic solution of the equation (1).

Robbins and Monro made two overall® assumptions: namely that
(A) M(z) S a according as = S 9 (our Assumption (0) in Sec. 4); and
(B) the random variables Y (z) are uniformly (in z) bounded with probability

one (our Assumption (III) in Sec. 4).

Furthermore they needed either one of the following two sets of conditions:
(i) infoeo | M) — | =8> 0;

(iila) M (z) is nondecreasing and M’ (6) > 0.

Wolfowitz [2] weakened the overall assumptions by keeping (A) but assuming
only that M (x) is bounded and that Y (z) has a bounded (in z) variance. Further-
more he needed either the condition (i) above or
(iib) M(x) is strictly increasing in a neighborhood of x = 6 and is bounded

away from « outside every such neighborhood.

Under these assumptions he proved that z, tends to ¢ in probability. Later
several authors proved that x, tends to 8 with probability one, under conditions
yet unknown to us. We are not concerned with this question here. Very recently
L. Schmetterer [7] gave some upper bounds for b, , under assumptions which
are essentially those of our second case; see footnote 5.

In this paper we shall study the finer properties of the process {x,}, especially
with regard to the moments of xz, — 6 and the limiting (nondegenerate) dis-
tribution of z, — #, suitably normalized. We shall not deal with the case (i),
but shall treat two different cases.

Our first case (Sec. 4) requires a set of conditions which is similar® to that in
the second case of Robbins and Monro. In addition to their overall assumption
we assume that
(ii) M’(8) > 0 and M(z) is bounded away from o outside every neighborhood

of z = #; (assumptions (I) and (II) in Sec. 4).

With these assumptions and a suitable choice of {a.} we can obtain upper
bounds for the absolute moments 8’ = E[| z, — 6|"] (Theorem 1). An impor-
tant consequence, much used thereafter, is given in Theorem 2. In order to
obtain lower bounds for 8¢’ (Theorem 3) we need the new assumption ((IV)
in Sec. 4) that the variance of Y (z) is bounded below uniformly in z. It is inter-
esting to note that our choice of a, is a, = 1/n'"¢, with an e which has to be
greater than some positive constant depending on M (-) and H(- | -), but fortu-
nately always compatible with ¢ < %. The upper and lower bounds for 8% are
at first not of the same order of magnitude, but they lead to Theorem 4 which
in turn sharpens the bounds to their correct order (Theorem 5).

The question arises what happens if an intransigent statistician refuses to use
our prescribed (range of) e and insists on using the simpler a, = ¢/n, as suggested

2 This adjective need not be taken literally.
3 In fact, Theorems 1 and 2 below are proved under weaker conditions than theirs.
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by Robbins and Monro. Qur answer is that our method still leads to some esti-
mate, in fact that 85 has an order between 1/n and 1/ (log n)® if ¢ is chosen
sufficiently large (where ¢’ depends on ¢ and tends to infinity with it), but we
do not know even if it has a definite asymptotic order.

Returning to the moments, it seems vain hope to obtain a precise asymptotic
formula for them without further hypotheses. We shall content ourselves with
the “obvious” by strengthening our last assumption to requiring that ¥ (z) has
a constant variance independent* of x. With this added force (Assumption (V) in
Sec. 4) our method works smoothly and we finish with an asymptotically normal
distribution for a}*(z, — 6) (Theorem 6).

We now turn to our second case (Sec. 5) which is disjoint from the first one.
Here assumption (B) is replaced by the weaker one that
(C) Y(xz) — M(x) has bounded (in z) moments up to order p, where p is an

even integer.

Assumption (A) is kept but (ii) is replaced by
(iii) M'(6) > 0; M(z) is bounded in any finite interval; and

0< lim M@ o MO

|z]=0e X |z|— T

< o0,

Admittedly this last condition is pretty strong and our only excuse is that of
inability, and an invitation to weaken it by a better method. Our choice® of
{a.} isnow a, = ¢/nwithc > 1/2K, where K = inf,.[M(z) — «)/(z — 6] > 0.
With the assumptions (C) and (iii) we can prove that 8§’ is at most of the order
n""for 0 < r < p (Theorem 7). If p = 6in (C) we can prove that 83 is exactly
of the order n™™*for2 < r < P (Theorem 8). If we can take p = o in (C) and
further if Y(z) has a constant variance independent of z, then just as in the
first case’ we can prove asymptotic normality of a¥(z, — 6) (Theorem 9).

The method we use in discussing both cases is elementary and depends on
some simple analytical lemmas which we collect in Section 3.

In Section 6 we discuss by a different method the case where M (-) is a linear
function. Under the assumption that ¥Y(x) — M(z) has a fixed distribution
function independent of x, the problem is reduced to a classical problem in proba-
bility theory. Various easy conclusions are then drawn which show that z, — @
may have an asymptotic distribution which is stable but not normal, or it may
have no asymptotic distribution whatsoever. The main interest of these ob-
servations is to serve as a foil to our previous results.

In Section 7 we discuss briefly the statistical implications of our results.

4 The following weaker assumption suffices. The variance E[(Y (z) — M (x))?] as a function
of z is continuous and nonvanishing at z = 0. Since by (III) it is bounded in z and by
Theorem 1 below z, — ¢ in probability it follows that E[(y, — M (z.))2] = o? as n — « 80
that (4.15) implies that e, — o2 and this is all we need. This weaker assumption is culled
from an unpublished MS. by J. L. Hodges, Jr. and E. L. Lehmann.

¢ Schmetterer [7] gave upper bounds for b, for @, = n~%, 0 < ¢ < }; @, = n~! (in this
case the order of magnitude of the upper bound depends on K); and a, = en~! with
¢ > (2K)~1. The last case is covered by Theorem 7 below.
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The formulas in each of the 7 sections are numbered separately. A formula
in the same section is referred to simply by its number; a formula in a previous
section is referred to by prefixing the section number, for example, (4.6) is
formula (6) in Section 4.

3. Lemmas. In this section we state and prove our principal mathematical
tools. They seem to be new and can be further elaborated, but we state only
what will be needed. The ¢’s are numerical constants.

Lemma 1. Suppose that {b,}, n = 1, is a sequence of real numbers such that
forn = ng,

c C1
(1) buis < (1 - ﬁ> b+ 2
where ¢ > p > 0, ¢, > 0. Then
a1 1 1
@) b"éc—pﬁ+0<ﬁ+’1+;¢>~

Proor. There is no loss of generality if we take no = 1. We have

1 _(p_eyLl_ e (L_ 1 )_c—»p 1
(n + 1)p (1 n) np nptl <np (n -+ 1)p> - nrtl +0 <np+2> ¢

Hence for some ¢; > 0,

C Cy 1 C 1 C2

Similarly but more roughly, for some ¢; > 0,

Ca 1 (4 1
= 63[ 5\~ ") "+'i:"
n? (n + 1)7 n/) n?

Using these inequalities in (1) and rearranging terms, we obtain

__a 1 Cs <(1=2¢ - cl_i__cs‘__]
b= 2 e e 5 (75 [ e )
Let the quantity on the left side be denoted by b, . If for some 7 > ¢ we have
b, < 0, then this is true for all subsequent 7, namely

o< a L, &
n=c__pnl) nIH‘l.

-Otherwise for every n > n; > ¢ we have

n—1
"<y — _c_) = i)
0 < by < b, g (1 ~)=0()-

In either casc (2) is true.
LEMMA 2. Suppose that {b.}, n > 1, is a sequence of real numbers such that for
n mng,

c ¢
bn-{-l g <] - 1_1,> l)n —I— nP'H
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wherec > p > 0,¢; > 0. Then
C 1 1 1
> il 4.
bn —c — pnp+0(np+l +nc>
Proov. The proof is entirely similar to that of Lemma 1. The point is that (3)
may be changed into

a5 cl_.l:. 1 ....<1_3>~1_]
ntl = ¢ —plL(n + 1)r n) ne |’

LemMA 3. Suppose that {b,}, n = 1, is a sequence of real numbers such that
forn = no,

(4) b = (1 °>b+
n+1=k —773‘ n -

where 0 < s < 1,8 <t,ec>0,¢> 0. Then
lim n'™*b, 2

Proor. We may take ny = 1. We have

_ 1_£> 1 ¢
(n + l)t—s ns/ nt—s = nl'

2 o= (-2

Using this inequality in (4), we obtain

I S . _a
bn+l C(’n + ]_)t—s = <1 nﬂ> <bn cn‘*") .

If for some n > ¢/* we have b, = ¢;/cn'™, then this is true for all subsequent n.

Hence we have

C1

t

v

Otherwise for every n > ny > ¢'/° we have
c c e c 1
m o | B (- 2) - 0 (2)
cns cny m=ny m n?

for every ¢ > 0. The lemma follows in either case.
Lemma 4. Suppose that {b,}, n = 1, s a sequence of real numbers such that for
n = N,

4
(5) b 5 (1= #) by + &
n n
where 0 < s < 1,8 <t e, =c¢c>0,¢ > 0. Then
J— /
fim n'~*b, < <.
n—0 C
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Proor. We have, if ¢” is any number > ¢/,

¢ _c 1 cn) 1 c” 1 _ AN
R Lo e e I e et

for all n > no(c”). Using this inequality in (5), we obtain

c” 1 Cn ¢’ 1
- _ - < — y— — - .
s =5 e (1= 2) (- T5)

The rest follows as in the proof of Lemma 3.

4. First case. In this section we treat a case which is essentially the second,
“more interesting,” case of Robbins and Monro. The various assumptions needed
will be listed below. Not all of them are used in every theorem we shall prove.

In the following, Ko, K;, --- are positive constants which depend only on
the nature of the functions M(-) and H(-|-), and K7, Ky, --- are positive
constants which depend moreover on the choice of {a,}. If these constants happen
to depend also on some new parameter & (say), this dependence will be indicated
by the usual parentheses. They are numbered in order of appearance. We use
also the customary O and o notations, as we have already done in Section 3,
it being understood that the constants involved may depend on M(-), H(- | ),
and {a,}. The initial value z, of the process is supposed to be a fixed constant or
at least a random variable which is bounded by a fixed constant with proba-
bility one.

AssumpTioN (0). M(-) is a Borel measurable function; M(8) = «, and
(x — 0)(M(x) — a) > 0 for all z = 6. This assumption will be used through-
out the paper and will not always be explicitly mentioned.

AssumprioN (I). We have M’(6) > 0, namely, as x — 6 — 0,

M@)=a+ a@—0+o(z— 0] 0< o < .
AssumprioN (II). For every § > 0 we have

|z—0]>8
AssumprioN (III). For all  we have
Pr(|Y(@) — a| = Ky = 1.
AssumprioN (IV). For all z, we have
El(Y(x) — M@)]) = K, > 0.
In this section we set forn = 1
1) an = 1/n*™, 0<e<i,

where € is to be chosen later.
We record some simple consequences of the assumptions and the choice
of {a,}.
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First, it follows from (III) that
(I11a) | M(x) — a| £ K,

and that all moments of Y (x) are bounded by constants K which depend on the
order of the moment but not on z.
The Robbins-Monro procedure yields

n—1
To = 2 + kzlak(a — Y.

From (IIT) we have with probability one

n—1 1 K
©) anm 8] S | 0] + K 5 L < Ko
=1 ke €

From (I) it follows that to every ¥, 0 < v < 1, there corresponds a § = d(vy)
such that

| M(z,) — a| 2 you |20 — 0| if [z, — 0] < 6.
From (II) and (2), it follows that the conditional probability is one that
| M(z,) — | = [Ko(0)e/Ksnf)| 2, — 0] if |z, — 8] > 6.

Namely, the inequality for | M(z,) — «| holds almost everywhere on the set
| z, — 0| > 8. Together we have with probability one

(3) |M(xn) d Oll g K4en_‘|x,, — 0 |

This constant K, is of extreme importance in the analysis below. Of course,
as given in (3), it does not depend on n. However, for n — « we can determine
its asymptotic value as follows. For a given vy, 0 < v < 1, let do(y) be the su-
premum of all § such that

| M(x) — a| 2 yu |z — 6] for|z — 6| = o

Then for n = no(y, §’, z1 — 6) the K, in (3) may be taken to be Ko(d(v))/K; — &'
where 8’ > 0 is arbitrarily small. If lim,.¢(y) = 8 , the K, in (3) may be taken
asymptotically as n — o to be Ko(8)/K; .

Finally, we note that from (I) and (IIIa) it follows that

4) | M@#) —a| = Ks|z—0].

TrEOREM 1. Suppose that the assumptions (I), (II) and (III) are satisfied.
If a, = n~ "9, with 1/2(1 + Ki) < € < %, then for each real r > 0, we have

(5) BY < Ky(r)n™ 10020
Proor. We write as in [1]
d. = E[(x, — 0)(M(xn) - a)], €n = E[(yn - a)zl'

The proof is divided into three stages: (i) » = 2, (ii) all even integer r, (iii) all
real r. It is obvious that (iii) follows from (ii) by Lyapunov’s (or Holder’s)
inequality.
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(1) The following equation is given in [1]:
(6) bus1 = by — 20,d, + ena%.

By (38), we have, using (0), d, = Ksen ‘b, . By (III), we have ¢, < K. Using
these in (6), we obtain

2Kel K 2K, e K7

ne nl—-e

where we have put, once for all, 0 < A =1 — 2¢ < 1. If ¢ > 1/2(1 + Ky),
then 2K,e > X. Applying Lemma 1 to (7) with ¢ = 2Ky4e, ¢; = K7, p = A, we
obtain

b S st w 0(ﬁ2%;+7-§—+—1>.
Thus (5) is proved for r = 2.
(ii) We use induction on even r. Suppose then that r is even and that
(5 bis) by < Ko(t)n P02 2<t=<r-—2.
Recalling that ,.1 — 0 = z, — 6 4+ a.(¢ — y.), we have, as a generalization

of (6), for all integer r = 1,

0= 8] [ o= 0 = aly = @) dHG 2|

® T
= 02 = ran B, — 07 (M) — )] + 2 (= 1)* (:) 7

where

9) Jo = J.(r) = arEl(x, — 0) (s — @)'].

By (III) we have | J,| < Ko '“"2b". Hence by the induction hypothesis
(5 bis) we have | J, | < Kgn “*™"” Therefore we have

L ()] s
By (3), we have since r is even (using Assumption (0))
El(wn — 6)7 (M () = )] = Ken™ b3
Using these inequalities in (8), we obtain
(10) bt £ (1 — rKee/n)bY + K W72,

Ou1 choice of ¢ makes rKse > rA/2. Applying Lemma 1 to (10) with ¢ = rKje,
= K, p = r\/2, we obtain

() 2K10 1 <~1 1 —>
br 7«[2(1 _|... K4)e — 1] A2 +0 nrKie + e )
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This completes the induction, thus proving (5) for all even integers r.
TraEOREM 2. Under the same hypotheses as in Theorem 1, we have, for every
§>0,r=0andg > 0,

f | 2w — 0 dPr = O(n?).
|zp—01>8

Proor. By (2) and Chebychev’s inequality, we have for every positive
integer s,

/{ o o= 0] dPr < Kian™ Pr (|n— 0] > 8) < Kiun™ 82 /8% = 0™,
20>

It remains only to choose s so that s\ — re > q.
TreoreEM 3. Suppose Assumptions (I), (III) and (IV) are satisfied. If

an = 1" with 0 < e < &, then for each integer r = 2, we have

(11) li_m n(l—-e)r/2ﬂ;r) ._2_ K12.

n=—>00

Proor. By Lyapunov’s inequality we need only prove (11) for r = 2. By
(4), we have d, = Ksb,. By (IV), we have e, = K, . Using these in (6), we
obtain

bays = (1 — 2Ken™ b, + K@,
Applying Lemma 3 with s = 1 — ¢, = 2 — 2¢, ¢ = 2K;, ¢; = K, , we obtain
lim 7' b, = Ky/2Ks.

n—o

ReMARK. If in Theorem 3 we choose a, = ¢/n with a sufficiently large ¢, we
obtain b, = Ky3(c)/n. We do not need this result in this section; but see Section 5.

TueoreM 4. Suppose thal the Assumptions (I) to (IV) are satisfied. If a,, = n~ "9
with 1/2(1 + K,) < € < %, we have

lim (dn/ba) = an = M'(6).

Proor. Given any small > 0, there exists a § = §(y) such that
| M) —a—a(x — 0) | S 9|z — 0| for|z — 0| = 8.

Hence

[ = 0@ ~ o dPr
|n—01<8

= a f (xn — 6)* dPr + o f (zn — 6)*dPr
|zp—0[>8 | .

z,—0|<&

= albn - alf (xn - 0)2 dPr + ﬂ”bn
|z, —01>8
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where | n” | = | 1’| £ #. On the other hand, by (IIIa) and Theorem 2
f (@ — 0)(M(zs) — @) dPr < K, f [&n — 6| dPr = O(n)
|2a—0]>8 |2a—0>3

for every ¢ > 0. It follows from Theorem 3 that
[ = O = @) dPr = o(bw),
|2n—0]>8

Combining these results, we obtain d, = aib, + %”"b. -+ o(b,). This proves
Theorem 4 since 7 is arbitrarily small.
TaEOREM 5. Under the same assumptions as in Theorem 4, we have

(12) K3/2a; £ lim n' b, £ lim n'™*b, £ Kv/20,.

n—>00 n—+0
Moreover for every integer r = 2,

(13) 0 < Ku() =< lim 2787 < fim 27780 < Ku(r) < .

Proor. By Theorem 4, for any small § > 0, if n > no(6) we have
(01 — )by = dn = (1 + 6)bn .
Recalling that we have K, < e, < Ky, we have for n > ny(6) on the one hand,
bapr = (1 — 2(e1 — Db, + Kyn™®%;
and on the other hand
barr Z (1 — 2(ex + 8)n " )b, + Ko 7%,

Lemmas 3 and 4 yield
K3/2(cy + 8) < lim n'™*b, £ Iim 2/ *b, < Ky/2(a; — ).

This proves (12) since § is arbitrary. The left half of (13) follows now from
Lyapunov’s inequality. The proof of the right half of (13) is entirely similar to
part (i) of the proof of Theorem 1, modified according to the proof of Theorem
3. We find that, if 7 is even and if limp., 22 %90 < Kyyfor2 <t < r — 2,
then for all n > n,(5, €) we have

bt S (1 — rlen — O TN + Ko 0700

where K;; does not depend on e. This explains the reason why the constants
Kyu(r) and Ki5(r) do not depend on e. Naturally, they are equivalent to

K;s(r)n"(l—e)rm < ﬁ(,? < Kig(r)n'(l")"/z

since in this form e enters through the absorbed error terms.
It is possible to give explicit bounds for the constants Ku(r) and Kys(r) by
proceeding inductively. However, it seems more interesting to study a case
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in which there is an asymptotic formula for b, , in other words, wheére the limits
in (13) may be replaced by a unique limit. For this purpose we shall make a
further assumption which strengthens (IV).

AssumprioN (V). For all 2z

E(Y(x) — M@) ] = >0

where ¢” is a constant which does not depend on z. This assumption states that
all the distributions H(y | ) have the same (positive) variance. Even the much
stronger assumption, that there is a fixed distribution Hy(y) such that H(y | ) =
Hy(y — M(z)), seems reasonable in many applications.

TaEOREM 6. Suppose that the Assumptions (I), (II), (I1I) and (V) are satis-
fied. If an = 0~ with 1/2(1 + Ku) < € < 4, then we have for every integer r = 1

0 ifr=2s—1
(0*/2a))°(2s — 1)(2s — 3) ... 31  ifr = 2s.

Consequently the random variable n'"~2"*(z, — 6) tends in distribution to the normal
distribution with mean 0 and variance (¢%)/(2as).
Proor. (i) r = 1. We have

(14) bt = E[(@n — 0) — 0,y — )] = b — a,BM(z,) — a].
By (I), there exists a § = §(a;/2) such that

n—

. (1=e)r/2 7 (1)
lim »" 9" b, ={

/;z o< (M(xn) - Cl) dPT = (a1 + 77') (x" — 0) dPr

|2n—01<3

= (a1 + ﬂ’)bg) — (on + ") (xn — 6) dPr

|2n—08]>8
where | 7' | £ a;/2. Hence by Theorem 2, for every ¢ > 0 we have
[y M@ = @) dPr = (@ + 2 + 0,
zp—0]<8

On the other hand we have by Theorem 2,

f (M) — ) dPr| S Ky Pr (|7 — 0] > 8) = 0(n?).
|25—0]>
Together we have
EM(z,) — o] 2 a(n)by® + 0™
where a(n) = a1 — (a1/2) sgn b\ = ay/2. Using this inequality in (14), we obtain
b £ (1 — am)n™ L + Kan™

Applying Lemma 4 with s = 1 — ¢, ¢ = ¢, ¢, = a(n),c = ar/2, ¢ = Kz we
obtain b$? = O(n™?) for every p > 0.
(i) »r = 2. We have, by (V)

(15) en = El(yn — M(@n))’ + (M(z,) — )] = & + El(M(z,) — ).
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By (4), E[(M(z,) — «)*] £ Kb, . Hence given any & > 0, there exists no = 7(5)
such that if n > no,
o —8=<e <o +34.
Moreover by Theorem 4, this 7, may be also chosen so that if n > ne
(al - 6)”7: é dn é (al + 6)bn .
Using these in (6), we obtain
" 2(ay + 6) — & 2(oy — o+ 6
( ni—e >b + T S b = (1 - 71_—1— bn + —- Tpiee

Applying Lemmas 3 and 4 we obtain

o — 8 — o+ 8
< n S ———.
2(a1 + 5) }1_{27’& bn - 1}—1_1.'2714 b - 2(0(1 band 5)

Since 6 is arbitrary it follows that lim,.. 7' b, = ¢°/2a; .
(ii1) Induction. Let » be an integer >2. It follows from (I) that, for every
n > 0, there is a § = 8(y) such that

Elwa — 0" (M(zs) — )] = (e +7") (xn — 0" dPr + 0(n™)

|zn—0| <0
= (an + 700 + 0™

where | o' | £ g and ¢ > 0 is arbitrary, by Theorem 2. Moreover, by (V), (4)
and Theorem 5

El(@. — ) (s — @)'] = El{o" + (M(z.) — a)*}(wa —0)"]
— 0'2b$"r—2) + O(ﬂ(nr)) — 0’2b(nr_2) + O(n—(l_‘)m).
Hence by (9), .
J2 — o_zb;r—z)/n~2(1—e) + O(n—(2+r/2)(1—e))
andif3 <t=r

]Jtl — O(n—-t(l—e) Fnr—t)) — O(n—(r+l)(1—c)/2) — O(n—(r+3)(1——e)/2).
Substituting these estimates into (8), we obtain
(16) B = (1 = rles+ W+ () I 000,

. . . . — — —2
Now assume as our induction hypothesis that lim,.. n" 2" 9% = B,_

It follows that if n > ne(n),
bl = (1 = (e + 20”0 + @ (" + n")Bpagn™ P07
l + O(R—(i—e)(r+3)/2)

where | ' | = K and | 9” | < . A fast application of Lemmas 3 and 4 yields
B, = lim n® 79" = < >a B,_o/ras = (r — 1) ¢"B,_s/2a .

n-—>00
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From (i) and (ii) above we have B; = 0 and B, = ¢°/2a; , hence it follows now
by induction that for each integer r = 1

0 ifr=2s—1,
(6*/201)°(2s — 1)(2s — 3)--- -3-1 if r = 2s.

This proves the first part of Theorem 6, the second part is a well known con-
sequence. We may remark, for the benefit of future textbook writers, that here
is another instance in which the method of moments seems to apply more easily
than the more modern method of characteristic functions. (see however Sec. 6).
This method of moments is not mentioned in several books on probability and
statistics.

B, =

6. Second case. In this section we treat the second case described in Section
2. Assumptions (0), (I) to (V) are as stated in Section 4. Others are
AssumprioN (VI). The function M (z) is bounded in any finite interval of z,
and we have
0< |l_iLn M@)/z £ lim M(z)/z < .

ZT= Jo| o
Assumprion (VII). For a certain even integer p = 2 we have
E[(Y(z) — M(2))"] £ Kun < o.
We note that (I), (II) and (VI) imply that
1) Klz—0|=2|M@x)—a|<Kp|z— 0]

The constant K > 0 will figure prominently in what follows and so we omit its
subscript. We also introduce a new constant for the upper bound on the variance
of Y(z):

) E[(Y(z) — M(x))"] £ K < .

The existence of such a constant is of course implied by (VII);in fact Kpy < K%7.
In this section we set n = 1

a, = ¢/n 0<c< =

where ¢ is to be chosen later. In contrast to Section 4, the initial value x; may
now be any random variable, bounded or not. The analysis in this section is
quite similar to and somewhat simpler than that in Section 4, and we shall be
more brief.

TaeoreM 7. Suppose that Assumptions (I), (II), (VI) and (VIII) are satis-
fied.® If a, = ¢/n with ¢ > 1/2K, then for every positive r < p we have

@) lim n"*8;” £ B, <

n—»00

6 If we assume that M ( - ) is continuous everywhere then these four assumptions may be
replaced by (1) and (VII).
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where
B, = [r/2"(r/2) | [(Kuc’/(2Kc — 1)]™*

for an even integer r.

ReEMARK. To minimize the above bound for B, we should choose ¢ = 1/K,
giving B, < [r1/27%(r/2)!|[Ks/K*"*. However, since K is unknown it is better
not to fix c.

Proor. By (1) we have d, = Kb, . On the other hand, by (1) and (2),

en = El(yn — M(2.))") + E[(M(z) — @)"] < Ko + Kooy .
Using these in (4.6) we have
bapr = (1 — 2Kc/n + Kad®/n®)b, + Kud'/n®
< (1 — 2Kc — n)/n)b, + Kuc'/n®
forn > no(n, ¢), where n > 0is arbitrarily small. Let ¢ > 1/2K. Applying Lemma

1 we obtain
Kxc® 1 1 1 >
be S o — =1 1a+0<;z+n——m—n :

Since ¢ may be chosen arbitrarily close to 1/2K, and 4 arbitrarily small, (3) is
true for r = 2 with B, = Kuc’/(2Kc — 1).
Now let r be even and assume that
liT‘n 'nt/ZBs,t) é B, <
t—00

for2 <t < r — 2. Consider the J,,2 < ¢ < r — 2, defined in (4.9). We have,
by (1) and (2),

Jo = Bl wa — 0| TE{(ys — M(za))" + (M(2n) — @)’ | 24}

§ 02’n*2{K23by—2) + ngbﬁzr)}'
Similarly, if 3 < t < r — 2, we have, using (@ + b)* < 2'(a‘ + b),

| Jo| £ 2% [KuBl™ + Kibl'] = 0@~ *%).
On the other hand, we have by (1),

El(z, — 0 (M (z,) — )] = Kby .

Using these in (4.8) we have
b S (1 — rKe/n + O(™)b + (;) Kuc'B,_an™ """V 4 0(n™ ")
Applying Lemma 1 we obtain

lim 2% < r(r — 1)Ky ¢*B,_o/(2rKc — 7).

n—»00
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Thus (3) is inductively true with
Br é [(7' -_ 1)K2302/(2KC - 1)]Br—2 .

This yields the stated bounds for B, and proves (3) for every even r < p. The
rest of the theorem follows from Lyapunov’s inequality.

TaeoreM 8. Suppose that the Assumptions (I), (II), (IV), and (VI) are satis-
fied; and (VII) is satisfied with a certain p = 6. If a, = ¢/n with ¢ > 1/2K then
we have

2
ch

n—ow 2&10 -1

REMARK. Note that oy = K so that 2aic — 1 > 0.

Proor. Asin the proof of Theorem 4, given any n > 0, there exists a § = 3(n)
such that

lim nb, = > 0.

[ (0 = M) = @) dPr = @+ 1w — 1 [ (o — 0)* dPr
len—01 <3 |zp—0]>8
where | 9” | £ 9. By Theorem 7 we have
@ [ =0t dPr s 50 b= 0,
|2y—0]>8
Furthermore, by (1) and (4) we have
f (zn — M (zn) — a) dPr £ Kzzf (zn — 6)* dPr = O(n~""?).
12n=—0 1> 12a—01>8
Combining these results we obtain
(5) dn = (al + n,/)bn + O(n—plz).
By (IV) we have e, = K, . U.ing these in (4.6) we have, since p > 6,
batr Z [1 = 2(ex + m)c/nlba + Koc'n™[1 4 0(1)].
Applying Lemma 2 we conclude that
‘ K,c
lim >
= nbe = 2(es +n)c — 1
Since 7 is arbitrary Theorem 8 is proved.

CoRrOLLARY. We have lim,_(d,/b,) = ‘a;.

Proof of this follows from (5) and the theorem itself.

TruEOREM 9. Suppose that the Assumptions (I), (II), (V) and (VI) are satis-
fied; (VIII) s satisfied for every p with Koy = Ku(p). If a, = ¢/n with ¢ > 1/2K,
then we have for every integer r = 1 '

0 = {0 ifr=2s—1

6) limn
[6" ¢’/ (2as ¢ — 1)]°(2s — 1)(2s — 3) ... -3-1 ifr = 2s.

n=—>0c
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Consequently the random variable n**(z, — 6) tends in distribution to the
normal distribution with mean 0 and variance o°c’/(2a:¢c — 1).

Proor. The proof of Theorem 9 is similar to that of Theorem 6, except that
certain estimates are obtained in a slightly different way. We need only note
the following points.

For every » 2 0,6 > 0, ¢ > 0 we have

) f | an — 0 dPr < 5~ f | &0 — 8 dPr = O(n™).
[EN AP |2, —01>8

This follows from Theorem 7.
For every integer r = 0 and ¢ > 0, we have

El(@, — )7 (M (z,) — o))

= (g +n) (x,,—ﬁ)’dPr-{—O[fl lxn—olrdl’r]

|za—0|<0 z,—0>8

= (a1 4 b + 0™
where 5 = 5(8) and lims.o 7(8) = 0. This follows from (1) and (7). Furthermore
we have
El(, — 6)*(M(x,) — a)'] £ K87 = O(n™"").
This follows from (1) and Theorem 7.
Using the Corollary to Theorem 8 we obtain
r

by = (1 — rasc(l + o(1))/nlby) +(2)a2c“’b;’““’>[1 + (1)~ Y

(cf. (4.16)), from which the theorem follows.

6. Linear case. In this section we consider the simplest possible 2 (-), namely,
a linear funetion

M) = ux — 6 w#0

where both x4 and 6 are unknown. Without loss of generality we may suppose
x > 0 and set @« = 0. The problem is then to obtain 6/u stochastically. This
case is not covered by either [1] or [2] but is covered by our second case if Y (z)
has finite moments to a certain order. Here we treat it with a different method
under the sole hypothesis that there exists,a distribution function F(x) with mean
0 such that H(y | ) = F(z — M(x)).

Let the characteristic function of F(x) be f(£); then that of H(y | x) is

Cit(#z—a)f(t).
In other words, we have the conditional expectation

(1) E[Ciwn‘ 237,] - e“("""")f(t).
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Let the characteristic function of z, be f.(f), n = 1. Then we have, recalling
that £,41 = ., — a.¥. and using (1),

Fant) = Ble"™] = Bfe"en)]
— E[eitz,.E{e—itanyn | xn}] — E[eitxne—itaﬂ(pzn—ﬂ)f(_ant)]
= E[e“(l—wn)xn]f(—ant)eimna = fu((1 — ﬂan)t)f(_ant)e“%o-
It follows by recursion that
. - N
Ju() = exp I:L{l - H a- .U-ak)}:l
M k=1
kIIlf[_(l - Man) e (1 - #ak-i—l)akt]fl (kI—Il(l — ua;,)t).
If we now choose
2) an = 1/ny,
then we have

5 1
10 —pa) =0 and (1 — pay) -+ (I — pappday = —.
k=1 un

Therefore we have, for every n = 1 and every initial fi(-),
3) Fara(t) = M IF(—t/un))".

Equation (3) determines the distribution of =, , n = 2, completely, at least
in theory. Let & , &, - - - be independent random variables with the same dis-
tribution function F(x) with mean 0. Then the characteristic function of

—&+ -+ )/

is precisely [f(—t/un)]”. Thus the study of (3) is reduced to a classical problem
in probability theory. We need not go into details here but shall content our-
selves with mentioning the following facts.

First, since F(x) has mean 0 it follows from Khintchine’s weak law of large
numbers (see e.g. [3], p. 253; [5], p. 138) that

r{i_lfjof(—t/un)" =0.

Therefore by (3)

lim fa(t) = ™™
and consequently x, tends to 6 in probability. It is curious that in this simple
case the stochastic convergence of the procedure is equivalent to Khintchine’s
theorem.
Next it follows, by a classical result of P. Lévy ([4], p. 254; see also [5], pp.) 163,
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that all possible limit distributions of xz, — @ are stable laws (including
the normal) of exponent a: 1 < a £ 2. More precisely, if there exists a sequence
of positive constants {4,} such that (& + - -+ + £.)/4, tends in distribution’ to
the stable law G(z), then (un/A,)(6 — xz,) does the same. In particular, every
stable law of exponent «, 1 < a < 2, is the limit distribution of z, — 6, for a
suitable choice of F(-).

Finally, it is known (see [5], p. 186) that there exist distribution functions
F(z) such that A,(x, — 6) does not tend in distribution to a limit, whatever
the sequence A, may be.

As a last remark, it is clear from (3) that the proper choice of {a,} must de-
pend to a certain extent on the unknown parameter u. In fact, any other choice
than (2), even a, = ¢/n with ¢ 5 1/u, already greatly complicates the analysis
given above. It is therefore small wonder that in Sections 4 and 5 the choice
of {a,} has to depend on the unknown.

7. Consequences. In this section we sketch briefly some statistical conse-
quences of the results of Section 5. For brevity we state strong assumptions
which may obviously be weakened. We put o = 0 without loss of generality.
Let 3¢ = {H} be a family of functions of the type denoted by H(:|-) in Section 2.
Denote by M x(-), 0x , ox , Kx etc., the M(*), 6, o*, K, ete. (if they exist) corre-
sponding to a given H.

We assume throughout this section that, for each H ¢ 3¢, Assumptions (I),
(V), and (VII) (with subscripts H) are satisfied, and that there are (known)
positive numbers v and 8 such that oux = vy and og < Bforall H & 3¢. (The con-
stancy of ox for fixed H is not necessary; see footnote 4.) We suppose also that
there is an interval I of positive length such that 3¢ contains the family G con-
sisting in every function H for which, for some z ¢ I, H(y — v(z — 2) | z) is, for
all z, the normal distribution function with mean 0 and variance 8. For simplicity
we put x; = 0 throughout this section.

Suppose now that, for a given even integer » = 2, the conclusion to Theorem 9
with ¢ = 1/ holds for that r uniformly over all H in 3C. It may be important
for applications to note that it suffices for our argument below that for every
¢ > 0 there exists an N(e) such that 2/’ (1 — ) is < the right side of (5.6)
for all n > N(e) and all H ¢ 3C. It is clear that usually this would have been
more difficult to satisfy under the assumptions of Section 4 (especially III).

An examination of the proof of Theorem 9 shows that the validity of the con-
clusion for a fixed r need not entail Assumption VI for all p. The reader may
scrutinize our proofs to obtain various conditions on 3¢ under which the conclu-
sion stated above holds. Note that it can hold even if the domain of values of

0 for H & 3¢ is unbounded, despite the unboundedness of b{y over 3 in that

7 It can be shown (see [5], p. 175, Translator’s note) that if there exist {A.} and (A%}
such that (¢, + -+ + £, — A7)/A. tends in distribution to a stable law, then we may take

A’y = 0 for all n. This is because f x dF (z) = 0.
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case. For example, if 3C is a family like that of Section 6 (with rth moment finite)
with y = p = 1/c (u is known), then b\y is independent of H (i.e., of 8z) for
n > 1 (see (6.3)). Similar remarks with inequality apply if 3¢ consists in all H
for which Mg is linear with known slope and the rth central moment of H is
bounded over 3¢. For r = 2 and such an 3¢ (that is, W(H, d) = (8x — d)* below),
the result of this section was obtained in the Hodges and Lehmann manusecript
cited in Section 2. Our M x need not, of course, be linear.

Let 8, be the n-observation statistical procedure defined by using the Robbins-
Monro scheme with z; = 0 and a, = 1/yn for n observations ¥, --- , ¥, and
then estimating 8y by .41 . Clearly, as n — o«

(1) 333% Eg | Tays — 05 | = n72B/7)"[(r — 1)(r — 3) ... :3:1][1 + o(1)].

Let H' £ G. Then the random variables u; = z; — (1/y)y:, 2 = 1,2, ---, are
independently and identically distributed Gaussian variables (the correlation
between any two of them is easily computed to be 0) with mean 65 , and variance
B/v. A knowledge of the values taken on by u;, - - - , u, is equivalent to that of
those taken on by ¥, -+, y» (recall that 2, = 0), and 2z, = n™* 2 fmyu; is a
sufficient statistic for the family G. Since I has positive length and

Ew |2 — 0mr |" = n7"(8/3)[(r — D(r — 3)...-31]
= 0™ all H G,

a simple modification of the argument of Wolfowitz [6] (as applied to the fixed
sample-size case) shows that, if 3, is the class of all procedures 7 requiring a total
of n observations (which are taken sequentially by determining ;, --- , z, i
any prescribed manner, not necessarily that of S,), and if §7 is the final estimator
of 0z when the procedure 7 is used (thus, s, = 2,41 when the z; are determined
by the scheme S,), then as n — o,

) Tlrgf 3}1% E(@r — 05)" = 0" @/9)"lr — D — 3) ... -3-1][1 — o(1)].
We conclude from (1) and (2) that for the problem of point estimation of 6
based on n observations which may be taken in any manner, and when the weight
function (the loss when H is the ‘“true” member of 3¢ and we estimate 6z by d)
is W(H, d) = const.-(0g — d)", the procedure S, is asymptotically minimaz in the
sense that

sup Bz W(H, 65,)
H.

. _‘55(:______—____— —
3 ,l.l.r.ri inf sup Ex W(H, 61)
Tegn HeffC

1.

Thus, for large n the procedure S, seems to be very satisfactory.
The above result may easily be strengthened. Assume for simplicity that the
interval I characterizing G is the whole real line. Let 3 now be the class of all
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sequential procedures 7' which terminate (no longer necessarily at a specified n)
with probability one under all H in 3C. As before, let 6 be the estimator of 65
when T is used, and let Ez(N | T') be the expected number of observations before
termination of the experiment when H is the ‘“true’” member of 3¢ and the pro-
cedure T is used. Let ¢ > 0 be the cost of taking a single observation y, , what-
ever be T, n, and z, . Let

4) r(H,T,¢) = cEx(N|T) + ExW(H, 87)

be the risk function of T' when c¢ is the cost of experimentation. Then the results
of [6] (for the sequential case) and an argument like that of the previous para-
graph show that, for the setup of the previous paragraph, there is an integral
valued function »(-) on the positive reals (which is easy to calculate from [6])
such that

inf sup r(H, 7T, c)
(5) lim T3 A0

Alternatively, we may state that if 3% is the subset of 3 for which
Supyg;}c EH(N | T) é n, then

inf sup E, W(H, 8r)

6 li Tegn HeJC o= 1.
®) e sup Eg W (H, 83,)
Hee

The dual property to (6), wherein we minimax Ex(N |T) subject to
supy ExW(H, 67) < w as w — 0, can be stated similarly.

The results of the two previous paragraphs may easily be extended to weight
functions other than W(H, d) = | 6z — d|’. The results of [6] may be applied
whenever W (H, d) is a nondecreasing function of | 6x — d | satisfying appropriate
integrability conditions (see [6]). Thus, one need only verify that 3C satisfies a
condition like that of footnote 2 above with the inequality replaced by

EHW(H, x,,)/EHIW(H, x,,) é 1 — ¢

for some H’ in G, in order to obtain results like (3), (5) and (6) above. Particular
choices of W will give results on interval estimation, etc.

Questions of optimality for the setup of Section 4 remain unanswered at present
because the technique used in Section 7 is not applicable, linear M (-) being dis-
allowed in Section 4 and our knowledge of the case a, = ¢/n being incomplete
there. We need not, of course, detail the remark that the results of Section 4
(like those of Sec. 7) may still be used to obtain asymptotic confidence inter-
vals, ete.

In conclusion, I wish to thank my colleague, Professor J. C. Kiefer, for criticism
of the MS and for contributing largely to Section 7.
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