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On simplification, this also reduces to Y a:;; = ) a.;/n, the same as obtained from
the condition B = 0. Thus an important conclusion is reached that whenever
the matrix A = (ay;) is such that its elements satisfy the relation Y _a:; = > a:j/n
both the coefficients A and B of the differential equation (4) vanish simultane-
ously, thus leading to no solution of the problem.

Since cases IT and III are excluded by our assumption Za,-,- = Zai,-/n, the
problem leads uniquely to the solution obtained in (9). Obviously when the
matrix A = (a;;) is either positive definite or negative definite, the relation
D as # 2.as;/n is always satisfied. Thus the equality >ai = 2 a:j/n may hold
only for some indefinite matrices.

CoROLLARY. Let Xy, X, -+ , X, be identically distributed independent random
variables with a finite second moment. If the ratio of the linear functions of random
variables given by (. Xy + -+ + @ X,)/ (X1 + -+ + X,) vs distributed inde-
pendently of the sum X, + Xo + --- + X, then each X will follow a gamma dis-
tribution.

Proor. From the statement above, it follows that the conditional expectation
of (X1 + -+ + a.X.)/(Xy + -+ + X,)* for the fixed sum X; + --- + X,
is equal to its unconditional expectation. Here the elements of the matrix 4 are
given by a;; = a.a; for¢,j = 1,2, --- , n and they always satisfy the Schwartz’s
inequality > _a’ > (3-a:)?/n, excluding the trivial case >_a% = (2"a:)*/n which is
possible when and only when all a;’s are equal, thus reducing the ratio of the
linear functions to a constant. Hence the relation Zaﬁ 4 Za,-,-/n is always
satisfied and the proof follows at once.
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MATCHING IN PAIRED COMPARISONS

By J. L. HopgEs, Jr. AND E. L. LEEMANN?

University of California, Berkeley

1. One of the simplest designs for testing the effect of a treatment is the
method of paired comparisons: 2n subjects are divided into n pairs, and within
each pair the treatment is assigned at random to one of the two subjects while
the other is used as a control. This method has the reputation of being most
effective if the subjects within each pair are as closely matched as possible.
We shall show below that while this is true in the situations occurring most
commonly in practice, it is not correct universally.
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We are interested in the power of the one-sided sign test for testing the hy-
pothesis H of no effect against the simple alternative K that the treatment has
a specified positive effect.

Consider now a possible pair of subjects and assume the usual model: the
score of A, B is composed of a true value a, b, an error term U, V and, in case
the treatment is applied and is effective, a treatment effect {. Then if X and
Y are the scores of A and B, respectively, wehaveunderH: X = a4+ U, Y =
b 4 V, while under K the quantity ¢ is added to the score of the treated subject.
We assume that U and V are identically and independently distributed ac-
cording to a continuous distribution F, and denote by @ the distribution of
V — U. Then if the treatment is applied to A or B, with probability % each,
the probability that the score of the treated subject exceeds that of the un-
treated one is 3 under H, and

3GE + A) + Gt — 2)]

under K, where A = b — a. Without loss of generality, A may be taken as non-
negative.

If A and B are perfectly matched, then A = 0 and the probability that the
treated subject has the greater score becomes G(t). Perfect matching can there-
fore be guaranteed to give the highest power against all alternatives if and only
if
(6] 3G 4+ A) + Gt — A)] = G@) for all ¢t = 0, all A.

This condition clearly implies that G(u) is concave for v = 0: that the converse
is also true is at once obvious for A < . Fort < A < 2¢, note that the values
of G involved in (1) are unaltered if in the interval [t — A, A — {] the function
G is replaced by its chord. The resulting curve is concave to the right of ¢ — A
and (1) follows. Finally, for A > 2¢, we note that (1) is equivalent to

@) @A +1) — G(a — ) S GO) — G(—1) forallt = 0, A = 0.

This time replace G by its chord in the interval [—t, t], to establish (1).

Matters simplify if we assume that G has a density g. Then the convexity of
G is equivalent to the requirement that the symmetrical function g(u) be a
decreasing for v = 0, and hence unimodal (with mode 0). In summary, a neces-
sary and sufficient condition for perfect matching to give always the greatest
power is that the density g be unimodal.

It is clear that there are distributions F of the error U for which this condition
holds. The normal case is an example, since then @ is again a normal distribution.
However, it is alsa easy to give examples for which the condition is not satis-
fied. Let F be uniformly distributed over the union of the intervals (0, 1) and
(4, 5). Then g(u) = 0 for 1 < |u| < 3 and is positive for 3 < |u| < 5. In this
extreme example the gain in power may be considerable. We have G(1) =
F3) = 34 and G(5) = 1. With ¢ = 3 the probability that the treated subject
exceeds the untreated one is 34 when A = 0 and 7§ when A = 2. If we use 10
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pairs and consider the treatment as significant when the response of the treated
subject is higher in eight or more pairs, the significance level is .055. The power
against a treatment-effect { = 3 is then only .526 when identical subjects are
paired but rises to .880 when the subjects in each pair have a response differ-
ence A = 2. Thus, for certain error distributions and sizes of treatment effects,
it is possible to improve the power of the test substantially by purposely mis-
matching.” .

It appears that to use the possibility of improving the power (when it exists),
one must know the distribution G. But if G were known, one could obtain a
more powerful test based on the differences themselves, instead of just on the
signs of differences. This is the very common difficulty, that the choice of an
optimum design depends on knowledge which a priori was assumed unavailable.
However, while values of nuisance parameters, form of distributions, etc.,
frequently are not sufficiently well known for the validity of the test to depend
on this knowledge, one does have some idea about them, which may be utilized
in the design of the experiment. The statistical procedure then will be valid,
whether one’s ideas are correct or not. Only the sensitivity of the experiment
will be affected by the accuracy of these ideas.

In the next section we shall show that ¢ is unimodal whenever F has a uni-
modal density, and this is the case in most applications. However, bimodal er-
ror distributions do occur, particularly when there is the possibility of ‘“gross
error.” In such cases mismatching may increase the power, of the test.

2. The purpose of this section is to prove that the difference of two independent
observations on a unimodal random variable has also a unimodal distribution.
We note that the same is not true of the sum, as has been pointed out by Chung
[1], who gives a counter example. It is also easy to see that our condition is
not a necessary one by considering

P(X=1) = Kand P(X =0) = P(X = 2) = 2.

DeriniTioN. We say that a random variable X is unimodal with mode m
(a) in the discrete case, if the possible values of X are equally spaced numbers
m, m £ A, m £ 24, --- , and
o PX=m—2A) S PX=m—A) =PX =m)
Z2PX=m+A)zPX=m+24)2z -,
(b) or, in the continuous case, if X has a density function f which is increasing
for z < m and decreasing for x > m.

We shall need the following inequality.
Taeorem 1. Let (a1, as, -+, an) be a sequence of real numbers satisfying

3) 0EmsE " S0nZ 0= - 268 =0

2 It should, however, be pointed out that the corresponding possibility does not exist if
one is interested in a point estimate of the treatment effect.
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for some 1 £ m = n. Let S 0ayx + Qe + -+ + Guoran for

k =0, 1, .- yn — 1. Then Sy = Si=Z -0 = 8o
Proor. Fix k = 0 and prove Sy = Sy forn = k + 2. Forn = k + 2 our
proposition becomes

010k 41 + Golrys = Qs ,

which is easily verified: @101 = @10z42 unless az1 < Grys , in which case a; <

a2 and @Gx0k42 = @i0k42. We induct on n. Let there be given any se-
quence (a1, -+ , a,) satisfying (3), with n > &k 4+ 2. We may assume m >
1 + k, since otherwise we have easily

Sk - Sk+1 = al(al+k - a‘2+k) + e + an—k—l(an—l - an) + Apn—ikQn = 0.
Since we also have
Sk — Sk = @1k + (@2 — a1)tar + + -+ (Gack — Cni1)lsn ,

the theorem is obvious if m = n — k. We therefore now assume 1 + &k < m <
n — k.

Let us consider the sequence (a1, -+ - , @m—1, @ms1, * -+ , an) obtained from the
given.sequence by dropping a. , and let S’ denote the sums of products for the
new sequence. Note that the new sequence also satisfies (3). We have

Sk = (@1014% + -+ + Gmo1-4OGm-1) + (@mtlmis + =+ + Cn1Gmik)
+ (@nt1@mirtx + + 00+ Guian)
= Sk + (@miOmir + +++ + On10mik) — (@meiOm + -+ + OmOmik)-
Sl,c+1 = Ses1+ (@meie—1@myr + + -+ + Om—10mtkt1) = (@mrtoe1@m + ** + +CnOmprt).
When these are differenced we have, transferring the term am_s_10m ,

Sk = Setr = (8 — Sk41) + [@motba@mis + *++ + Cno1@mirss)

= (@ntom1@m + CndOmi1 + **+ + Gm1@mir)]

+ [@mst@m + -+ + CnOmir)

= (@mt@mir + ** + GnOmirir)]
= (Si = Sis2) + [ans(@m— Gmir) + * + Gn(Omik — Gmiin)]

= {@mi1(@m — @mi1) + o+ + Gm1(Gmit — Gmirt)]
= (8 — Set1) + [@not — Gmobet)(@m — Gmta)

+ o0 2(0m — Gn-1)(@mik = Gmksa)]e

By the induction hypothesis, S; — Si41 is nonnegative; by the unimodality
gssumption the term in square brackets is a sum of products of nonnegative
terms. We conclude Si = Si41 .
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We can now establish the desired result.

TueoreM 2. If X and Y are independent observations on the same unimodal
random variable, then X — Y 1s unimodal.

We prove the theorem in three parts.

Part 1. If X has as possible values only finitely many integers, the theorem is
an immediate consequence of the preceding one. The a’s are taken to be the
probabilities of the successive possible values of X. Since P(X — ¥V = k) = S
for k a positive integer, and since X — Y has a distribution symmetric about 0,
the theorem follows.

Parr II. Let the possible values of X now be numbers of the form rA, where
A > 0 and r is any integer. For simplicity we may assume 0 to be a mode. For
every positive integer s, define

X if |[X]| £, v Yit|Y|=s
~oif |X| > s, Cloif|Y] > .

That X, — Y. has a unimodal distribution is an immediate consequence of

Part I. But since P(X; — V. # X — V) > 0ass— «, weseethat X — Y

must also have a unimodal distribution.
Parr III. Now suppose X has a density f, with mode at m. For each positive

integer s, define

!
8

X = [X = m)V/s]/Vs,

where [u] denotes the greatest integer less than u. The cumulative distribution Gy
of X, — Y. cannot ever differ from G by more than a quantity which tends to
0 as s — . However, G: is unimodal, by Part II. If G were not unimodal, we
could find e > 0, A > 0, and w — A > O such that G(u — A) + G(u + A) +
e < 2G(u), which would yield a contradiction.
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NOTE ON A THEOREM OF LIONEL WEISS!

By Lucien LECam
University of California, Berkeley

1. Introduction. In a recent paper [1] it was pointed out by Lionel Weiss that
the class of sequential probability ratio tests is complete in a very strong sense.
The purpose of the present note is to show how this result can be derived from a
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