ON AN APPLICATION OF KRONECKER PRODUCT OF
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1. Summary. By a statistical design (or simply, a design) we mean an arrange-
ment of a certain number of “treatments’ in a certain number of ‘“blocks” in
such a way that some prescribed combinatorial conditions are fulfilled. With
every design is associated a unique matrix called the incidence matrix of the de-
sign (definitions, etc., in subsequent sections). In many instances, e.g., [7], [8],
[10], [12], [16], information regarding certain kinds of designs such as BIB,
PBIB designs is obtained from properties of the matrix NN’ or of its determi-
nant |NN’| where N is the incidence matrix of the design under consideration.
On the other hand in a few cases, such as [4], [5], [11], [14], [15], the incidence
matrix N itself has been used to investigate properties of designs. This paper
gives a method of using incidence matrices of known designs to obtain new
designs.

In Section 2 we have defined the Kronecker product of matrices. This defini-
tion and some properties of the Kronecker product of matrices are given in [1].
Section 3 is devoted to a general discussion of an application of the concept of
the Kronecker product of matrices to define the Kronecker product of designs.
This section also contains two theorems which illustrate the use of the method
of obtaining Kronecker products of designs. Definitions of some well-known de-
signs are given in Section 4, which also contains a number of results giving ex-
plicit forms of certain Kronecker products. Finally some illustrations of a few
results of Section 4 are given in Section 5.

2. The Kronecker product of matrices. Let
(2.1) A = (a;j), B = (by), I,, O puxen

be respectively an m x n matrix, a p x ¢ matrix, the identity matrix of order u,
the null or zero matrix of order m x n, all defined over the set of non-negative
integers. The Kronecker product of matrices A and B is defined as follows.

DerintTION 2.1. The Kronecker product A X B of matrices A and B of
(2.1) is defined by

ay B a2 B PP Qin B
(22) A X B = an B aw B --- ay B ’
@B 0B -+ 0Gn. B
where a;;B (i = 1,2, --- ,m;j = 1,2, --- , n) is itself a p x ¢ matrix.
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We shall always use an ““ X’ in the product of matrices to denote the Kronecker
product. The ordinary product of matrices A and B (when it exists) will be de-
noted by A-B or AB.

It is clear from Definition 2.1 that the Kronecker product always exists and
that A X B is an mp x ng matrix defined over the set of non-negative integers.
Also it is obvious that the Kronecker product of two matrices reduces to the
ordinary product if and only if one of the matrices is a scalar.

The result contained in the following theorem will be used later in Section 3.

TaeoREM 2.1. For any matrices A and B as in (2.1) we must have

(2.3) AXB=P-(BXA)Q

where the matrices P and Q are obtained from the identity matrices I, and Ing
respectively by permuting rows and columns.

It should be noted that P and @ are nonsingular matrices whose elements con-
sist only of 0’s and 1’s, and that the matrices P and Q are the same for any A
and B as defined in (2.1).

A proof of Theorem 2.1 can be constructed from that of a similar result proved
by Murnaghan [1], who gives various other properties of the Kronecker product.

3. The Kronecker product of designs. Let D,, p = 1, 2, be a design in which
v, treatments are arranged in b, blocks. Let N, , the incidence matrix of the
design D, , be defined by

(3.1) N, = (%), oy =1,2, 0,0, o =1,2, -4 ,b,,

{?) is the number of times the i,th treatment of D, occurs in the j,th block

where n;,;,

of D, . Clearly nf:,), is a non-negative integer so that N, is defined over the set of
non-negative integers. Since a design uniquely determines its incidence matrix
and vice versa, we may denote both a design and its incidence matrix by the
same symbol. Also the treatments and blocks of a design correspond respectively
to the rows and columns of the incidence matrix of the design.

Let Ny and N, be the designs defined by (3.1). Then

(32) le = N1 XN2
uniquely determines a design and so does
3.3) Nu = N; X N;.

Theorem 2.1 at once leads to the following theorem.

TueoreM 3.1. If N; and N, are designs defined by (3.1), then the designs N,
and N2 defined respectively by (3.2) and (3.3) are structurally the same, t.e., one
of them can be obtained from the other by simply renaming the treatments and re-
numbering the blocks.

This theorem enables us to designate the designs Ny and N by a common
symbol N, the incidence matrix of N being taken to be N; X N. or N2 X Ny,
whichever is convenient.

Since the incidence matrix of the design N obtained above is the Kronecker
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product of the incidence matrices of the designs N; and N, , we may say that the
design N is the Kronecker product of the designs N; and N, .

We now examine a few matrices and the corresponding designs.

3(a). Let N, be a row n-vector

(34) Ny=(11---1)

there being n 1’s on the right-hand side. The design N, clearly consists of n
blocks each of size one, each block being treated by the same single treatment.
3(b). Let N, be a column m-vector

(3-5) N2 = . R

there being m 1’s on the right-hand side. The design N is a single replication of
m treatments in one block of size m.
If No be any design, then with N, as in (3.4), we have

N® = Ny X No = (No Ny -+ Ny),

there being n Ny’s on the right-hand side. This means that the design N is
nothing but n replications of the design N, as a whole. Again if N, be any de-
sign, then with N, as in (3.5), we have

N(2) — NO X N2’

where clearfy N® defines a design which is obtained from N, by replacing each
treatment of Ny by a group of m treatments. Also the rows of N® consist only
of m repetitions of each row of Ny .

These two results can be combined into the following theorem.

TaEOREM 3.2. If Ny be any design and if N1 and N, be as defined in (3.4) and
(3.5) respectively, then the designs N = Ny X Noand N® = Ny X N, are
respectively

(i) n replications of the design Ng as a whole, and

(ii) the design obtained from N, by replacing each of its treatments by a group of m
treatments so that the rows of N® consist only of m repetitions of each row of Ny .

The following corollaries to Theorem 3.2 are trivial.

CoroLLARY 3.2.1. A randomized block design, N3, with m treatments and n
blocks, each block being a complete replication, vs the Kronecker product

(36) N3=N1XN2

of the designs N1 and N, defined in (3.4) and (3.5) respectively.

'CorOLLARY 3.2.2. If N, be any design and N be the randomized block design
defined in (3.6), then N3 X N, defines a design which contains n replications of the
design derived from N, by replacing each of its treatments by a group of m treatments.
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3(c). The design corresponding to I, , the identity matrix of order u, contains
u treatments and u blocks each of size one, and the sth block contains a single
plot to which the ith treatment is applied, 7 = 1,2, --- , u.

The following corollary to Theorem 3.2 is also trivial.

CoroLLARY 3.2.3. With N, as defined in (3.5), we have

N=IuXN2,

which defines a design N useful for confounding with blocks the effects of certain
treatment combinations of a factorial design when u and m have suitable values.

It may be noted that if N be any design, then the Kronecker product I, X Ny
is always a disconnected design, and therefore no further illustrations involving
I, will be given.

4. Special cases of Kronecker products of designs. We first define a few de-
signs.

4(a). Design N, is already defined in (3.5).

4(b). A balanced incomplete block (BIB) design Ng;s with parameters v*,
b*, r*, k* N\* is defined to be the one in which the »* treatments are arranged in
the b* blocks of size k* each, such that

(i) the treatments in any block are all distinet,
(ii) each treatment is replicated r* times, and

(iii) every pair of treatments occurs together in A\* blocks (cf. [12]).

4(c). A partially balanced incomplete block (PBIB) design N $2rs with s
associate classes and with parameters

v, b7 T, k, ni, >‘i5 p}k’ ’L.,j,k=1,2,"',8,
is defined as follows.

(i) There are v treatments arranged in b blocks each of size k such that each
treatment is replicated r times and the treatments in any block are all distinct.

(i1) There can be established a relation of association between any two treat-
ments, satisfying the following conditions.

() Two treatments are either 1st, 2nd, - - - , or sth associates.

(8) Each treatment has n; ith associates, ¢ = 1, 2, ---, s.

(v) Given any two treatments which are sth associates, the number of treat-
ments which are common to the jth associates of the first and the kth associates
of the second is pj; and is independent of the pair of treatments with which we
start.

(iii) Two treatments which are 7th associates occur together in exactly A;
blocks, 7 = 1,2, --- , s (cf. [8]).

PBIB designs with two associate classes have been extensively investigated
by Bose and Shimamoto [9].

When the parameters A;, Ay, -+, A, of a PBIB design are not all different,
the s associate classes of the PBIB design may not be all distinct. The following
lemma, which is a modification of a remark by Rao [3], gives a criterion to de-
termine whether the PBIB design has s or fewer distinct associate classes when
its parameters A;, Az, - - - , A, are not all different.
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LemMa 4.1. Let a PBIB design N¥31p with s associate classes and with parame-
lers

T . e .
v, b: T, ky ni, >‘f: Pik 1’]:]9:172:"'78’

be such that M1, A2, - -+, A, are not all different so that at least two of them are
equal. Without loss of generality we can assume that \y = \; . In this case the num-
ber of associate classes of the design N'ep1s can be reduced from s to s — 1 by com-
bining its first two assoctate classes if and only if

2 -1 2 P
u%-l puw Z pu3 uz—l p}u ruwz=l puw Z pus e uz_l pia
2

1 1 1 2 2 2
(4.1) wZ-l Dsw P33 D3s = .,,E.l Psw P33 Dz
2 1 1 1 g 2 2 2
21 pcw Des3 A Pu J El Psw Psa R pu

. w= L w= .

Further if (4.1) holds, then the parameters of the reduced PBIB design with s — 1
assoctate classes are

v o=, b =0, r =, K =k,

n=n4ne, Mg =mg,ccc, My =7,
M=M=DX, A=N, ,ha=NX\,
r : t 2 t t ]
E puw uzl pu3 Z pus
2 t t t
(p 1) - 21 D3w D3z - Dss
yz We=, ’
2 t t
Zl Pw P:s Pss
42) - - .-
“;1 o E ALY
(p;: 21 Pﬁ D33 P3s

2
z+1 z+1 z+1
Z Dsw Ps3 *0 Dss

wheret = lor2;z =2,3,---,s - 1;94,2=1,2, .-+, 8 — 1.
It follows that repeated applications of Lemma 4.1 to any PBIB design will
ultimately give a PBIB design whose associated classes are all distinct.
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The following results give the Kronecker products of various pairs of designs
chosen from 4(a), 4(b), and 4(c).

TuroreM 4.1. (a) The Kronecker product N = Ny X N$31s of the design N,
of (3.5) and a PBIB design N%is with s associate classes and with parameters

v, b: r, k: ni, Xi; p;k) ’[,j,k=1,2,"‘,8,
1s a PBIB design with at most s + 1 associate classes.
(b) The design N defined above has s 4 1 distinct associate classes if the design
N$31s has s distinct associate classes and \; < r for all s = 1,2, --- , s.

(¢) In any case the parameters of the design N can be expressed in terms of those
of the designs N and N531g by the equations:

v = my, b = b, ro=r k' = mk,
n: = mn;, n;+1 =m — 1, )\: = )\,‘, A:+1 =T,
5 m(pji) (m — 1)(5;)
(py;) = -
(m — 1) (5:) 0
(43) - -
m(niaik) 0:)(1
(pu:+l) =

lea m — 2

wheret,j, bk =1,2, - 8;y,2=1,2, -+ ;84 1,88 =0if a & Band 6,5 =
lifa=Bforalla, =12 ---.

(d) Lemma 4.1 can be applied to the cases in which the conditions in (b) above
are not fulfilled.

The essence of Theorem 4.1 appears in a paper by Zelen [17].

CoroLLARY 4.1.1. The Kronecker product N = Ny X Ngis of the design N,
of (3.5) and a BIB design Nyis with parameters v*, b*, r*, k* \* is a singular GD
(group divisible) design with parameters

v = mo¥, b = b¥ o= r¥ k' = mk*,
(44)
" =m, Al =r% A=\

It should be noted that singular GD designs can be obtained only by using
Corollary 4.1.1 as was shown by Bose and Connor [8].

THEOREM 4.2. (a) The Kronecker product N = N{31s X N$31s of two PBIB
designs N (s and N2 is with s and t associate classes respectively and with respec-
tive sets of parameters

m' = v¥ n

(4.5) 1)1,bl,71,k1,n1;1,)\1i1,p§}1k1; o ,jl,kl = 1,2’ s,
4.6) Vg, b2,7'2,kz,ﬂziz,)\ziz,p%,k, s l2,2, ke =1,2,--- ¢,
1s a PBIB design with at most t -+ s -+ is associate classes.
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(b) The design N defined above has t + s + ts distinct associate classes if
(i) the s associate classes of N¥31s and the t associate classes of Nt are
all distinct,
(i) Miy < 71, Ny, < 12, and
(i) riMei, # ro\gg forall ey = 1,2, -+ ;sand i, = 1,2, -+, &.
(¢) In any case the parameters of the design N can be expressed in terms of those
of N$31s and N§31s by the equations:

v =0, b = bi-bs, r =1, E = ki-ks,
":‘z = Mg, , n§+,-l = Ny, nf+il+m = Ngip Ny
Ny =T haiy s, N = T Miy o Mipbize = Aaig*Auiy
[ (P2}aka) Oixe Ouxst ]
() = Oux: Oexe (8i2i2) X (M1;,8.k,)
Osex: (i2i2) X (1jy8i0,) | (D23pks) X (m1,88,)
[ o One (s X (i) |
@7 (p™™) = Oux: (pi}) Ouxcs:
(125,85585) X (8,4, Osixs (M27,854) X (PThyay)
| O:x: (8i2i2) X (85,5,) (padars) X (8:11) ]
@) = (Bigia) X (85,40 Oisxs (8:272) X (pite)
(pidks) X (8y5,) (8j212) X (piliiy) (pator) X (Pilr)

where'il,jl,lcl = 1, 2,"',8;’iz,j2,k2= 1, 2,"',t;
' v,z2=1,2 .-+t + s+ ts;

8 =0ifa*Banddss = 1ifa=Bforalla,f=1,2 ---.

(d) Lemma 4.1 can be applied to the cases in which the conditions in (b) above
are not fulfilled.

Proor. Let us consider the Kronecker product of the design N53:s and N52:1s
in the form N = N5 X N$31s . Since N§31s and Ni3:ps are PBIB designs
with parameters (4.5) and (4.6) respectively, it follows that theirincidence matrices
N{$31p and N¥31p are of orders v; x b; and vz x b, , respectively. Also the elements
of these matrices consist only of 0’s and 1’s, there being r; 1’s in every row and
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k; I’s in every column of N5 and 7, I’s in every row and k, 1’s in every column
of N¥3:1s. In obta,lmng N from anm a.nd N$31s we replace every 1 in N&as
by the matrix N$¥31s and every 0 in N$3:5 by the null matrix O,,xs, . From this it
follows that the incidence matrix of N is a v;-v; x b;-bs matrix whose elements
consist only of 0’s and 1’s, there being r;-7; 1’s in every row and k;-k. 1’s in
every column of N. This means that the parameters o', b’, ', k' of N given by

(48) v = Vi+V2, b, = bl'bz, r = T1°T2, ’C' = k1°k2

have their usual significance for the design N.

We shall now 1dent1fy the various associate classes of a treatment of N. Let
the first row of Ni2ars correspond to the treatment © of Niars , that of Nis
to the treatment ©' of N4z , and that of N to the treatment 6 of N. We shall
identify the various associate classes of fin N.

The row corresponding to© in N¥3:p contains r; 1’s, all other elements in the
row being 0. In obtaining N each of these r; 1’sis repla,ced by the matrix N$31s
and each of the 0’s is replaced by the null matrix O,,xs, . Hence the first v, rows
of N contain exactly r, replications of the design N (s as a whole and nothing
else. Consider one of these r; replications. Its ﬁrst row, which corresponds to a
section of 6 in N, also corresponds to ©’ in N$3:s . Consider the 4,th a.ssocxa,tes,
i =1,2, -+, ¢ of 6 in N$3;s which occur in the replication of N$3:s under
considera,tion These are ng;, in number and each of them occurs together with
6’ in Ay, blocks of the replication of N' (1s . When we take into account all the
1 replications of N me in the first v, rows of N, we find that each of the n;, ¢;th
associates of 0’ in N¥31s , considered as treatments of N, will occur together with
6 in 71-Agi, blocks of N. We take these 7, treatments of N to be the 7;th asso-
ciates of 9 in N. This identifies the first ¢ associate classes of 6 in N and we see
that the parameters n:,, A;, of N given by

(4.9) n:-2 = MNgs,, )\"2 = rl>\2€2 , 1:2 = ]_’ 2’ ceey t’

have their usual significance for the design N.

Now consider the 7;th associates, 7, = 1, 2, ,s, of ©in N¥3ip . These are
n1;, in number, and each of them occurs together Wlth Oin )\1,1 blocks of Ni21s .
Consider one of the ny; #:th associates of 6. The row in N$1p corresponding to
this 7;th associate also contains r; 1’s and all other elements in the row are 0’s.
In obtaining N each of these r, 1’s is replaced by the matrix N rsIn and each
of the 0’s is replaced by the null matrix O,,xs,. Hence the row in N§31s corre-
sponding to the 7th associate of 9 under consideration gives rise to only n
replications in N of the design N is asa whole and nothing else. Out of these
1 rephcatlons of N¥ais only Ay, can be paired off with similar replications of
N{3:s in N arising out of the row corresponding to ©, because © occurs together
with any of its i;th associates in Ay;, blocks of N§2:s . Consider one of these A,
pairs of replications of N¢3:s . The first row in each component replication of
N$3:p in this pair is identical with that corresponding to ©’. One of these first
rows is a section of that corresponding to # in N; we define the treatment in N
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corresponding to the other first row to be a (t + 71)th associate of 8 in N. Since
©’ is replicated r, times in N¢ars , it follows that in the pair of replications of
N$31s considered above 6 and the other treatment, which is defined to be a
(t + 71)th associate of 6 in N, occur together in 7, blocks of N. Taking into ac-
count the Ay, pairs of rephcatlons of N$31s brought to notice earlier, it follows
that 6 and its (¢ 4 4;)th associate in N occur together in r.-A;;, blocks of N. Also
remembering that the number of the 7;th associates of © in N{3:p is n1;, we see
that the number of the (f 4 ;)th associates of 6 in N is also ny;, . This identifies s
more associate classes of 6 in N and we see that the parameters n;.; , Aiy; of
N given by

’ ’ .
(4.10) Negiy = N1y Negig = T2-Miyy =12 -5

have their usual significance for the design N.

Consider again for a moment the above pair of replications of N4 . Consider
in particular that component N$3:s in this pair which contains the (¢ + 7,)th
associate of 9 in N. The first row of this N$2:s corresponds to ©’. Consider the
is;th associates of ©’ in this N¥3:s . These, considered as treatments of N, are
defined to be (¢ 4 @1 4+ :5)th associates of 6 in N. In the replication of N$2:g
under consideration they are my;, in number and each of them occurs together
w1th 6 in Ay, blocks of N. Remembering that there are A;;, such replications of
N$31s corresponding to each of the Ny, t4th associates of © in N&ais it follows
that there are ny;,n2;, (¢ 4 %1 + 428)th associates of 6 in N and each of them
occurs together with 6 in Ay, - Az, blocks of N. This identifies ¢s further associate
classes of 6 in N, and the parameters n:+.~,+.~,. , Atirie Of N given by

’ ’
(4.11) Nt iy tigs = N1iyN2iy Nt digtins = Alip-hei

are seen to have their usual significance for the design N.

Now, since O 1,-1 M, = v1 — 1 and D _t,0y 7ai, = va — 1 (cf. [2]), the number
of treatments of N accounted for in the above identification of the various asso-
ciate classes of 6 in N is

Z nz;, + Z nlzl + Z Z nlq n212 {1 + Z nlq}{l + Z nzig} haad 1

19=1 11=1 t1=1 1=l ty=1 t9=1
=y, — 1,

which together with 8 exhausts all the v,-v. treatments of N.

It may also be observed that if 1 < 7; < sand 1 = 4, < ¢, then any integer
m such that t + s < m = ¢t 4+ s 4 ¢s can be uniquely written in the form m =
t + 4 + dos, that is, if m = ¢ 4+ 4 + s and if m = ¢ + ¢ 4 42+, then we
must have ¢, = 71, and 4, = 5. This fact ensures the uniqueness of the enumera-
tion of the associate classes of 6 in N, as described above.

This proves that the design N has at most ¢ + s -+ ¢s associate classes.

We now calculate the parameters p;z, =, 4,2 = 1,2, --+,¢t 4+ s 4+ ts, of
the design N.
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Consider the treatment 6 of N which corresponds to the first row of N. Let
¢ be an 7;th associate of 6 in N, 4, = 1, 2, ---, t. Then clearly the row in N
corresponding to ¢ is contained in the first v, rows of N and these v, rows of N
contain among themselves exactly r; replications of N {318 asa whole and nothing
else. The first row in any one of these replications of Nt31s , which is a section of
that corresponding to 6 in N, corresponds to the treatment 6’ of N$31s . This
replication of N () s also contains a row which is a section of the row correspond-
ing to ¢ in N, and this row of N¥31p corresponds to the treatment & of Nt3rs .
Clearly 6’ and ® are 4,th associates of each other in Ni315 . Now there are pj},,
treatments of Nars which are in common with the j;th associates of 6’ and the
koth associates of ® in N¥ars , for jo, ks = 1, 2, -+ -, t. It is clear that exactly
these p§§2k2 treatments in the replication of ¥ (s under consideration, considered
as treatments of N, are those which are in common with the j,th associates of 6
and the kith associates of ¢ in N. Hence

(412) pl,;liz = pé?zh ) 2 )j2 ’ ky = 1,2, -,

Also observe that the first v, rows of N contain all the first ¢ associate classes of
9, and also of ¢, and only these. Hence we must have

(413) p;;i=0) 7:2)j2= 1,2,"‘,t;u=t+1,t+2,"',t+S+ts.

Next consider the (i 4+ 7i)th associates of § in N. They are the treatments of
N corresponding to those rows in N which correspond to 8’ in the replications
of Niars arising from each of the jith associates of © in N $ars . Similarly the
(t + ki)th associates of ¢ in N are the treatments of N which correspond to those
rows in N which correspond to ®’ in the replications of Nidis arising from each
of the kith associates of © in N¥ars . Since the treatments ©’ and &’ are distinct

we must have
(4.14) Pi¥irn = 0, Jiski=1,2--- s

Again the (¢ + ki + k»-s)th associates of ¢ in N are the k.;th associates of
&' in the replications of N{3:p arising out of the kith associates of © in N¢'ars .
To calculate the value of pi3%,,s4k4+4,s We have to count the number of treat-
ments of N which are in common with the n;;, (¢ + j1)th associates of 6 and the
N, Mk, (& 4 k1 4 kes)th associates of ¢ in N. It is clear, from the way in
which these associate classes are defined, that

123 . .

Deis trbgthgs = 0 if g1 & Ky,
17 . .

Pe¥iyerithes = 0 i 12 7 ks,
rig —

Ditiyt+irt+igs = Nijy -

It may be easily seen that the above relations can be written in the form
r4 .
pt+21'1,t+k1+k28 = aiz’cz'nlh'ahkn Ji, ky =1, 2; 8 ky = 1, 2) SRR

and since the indices j; , k; have to run over their entire ranges before the index
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k. can change its value, we can write the above equation in the matrix form
(4.15) (p:‘?jl.‘+k1+kzs) = (8igky) X (m1j,058,).
Finally let us consider the (¢ + ji + j2-s)th associates of 6 in N and the
(t + k1 + ko-s)th

associates of ¢ in N. The number of treatments of N in common with these two
associate classes is Pi33, 4iy-s, ¢4k 4425 - From the definitions of these two associate
classes we find that

12 . .
Di i tins bbby kgs = 0 i 1 # Ky,
Tig _ i9
Pe+ii+ias t+irtkes = N151D250ks -
These relations are easily seen to be equivalent to writing
’ig _ 19 . _ L. _
Di+j1+728. btk +hes = pzizkz'nlilailkl y J1, kl = 17 2: oty 8302, k2 = 1: 2, Tty t:

and since here also the indices j1 , k; have to run over their entire ranges before
the indices j» , k2 can change their values, it follows that we can write the above
equations in the matrix form

(416) (pt,izjl+izs'¢+k1+k28) = (p;.%zkz) X (nljlajlkl)‘

Combining the calculation in (4.12) to (4.16) and remembering that p,;* =
Pt il =1,2 -+ t;y,z2=1,2,--- ¢t + s+ ts, we get the first of the three
matrices in (4.7).

Similar calculations will give the other two matrices in (4.7).

Thus the argument so far together with the results in (4.8) to (4.16) prove
the statements (a) and (c) of Theorem 4.2.

Also from the way in which we have defined the various associate classes in N,
“we find that if the s associate classes of N ¢ 5 and the ¢ associate classes of N$21s
are all distinct, then the first ¢ associate classes of N are all distinct, the next s
associate classes of N are all distinct, and the last ts associate classes of N are
all distinct. Further suppose that A, = r; for some 71, 1 < ¢; < s. Then from
(4.9) and (4.11) we find that N;, = N jij4is , 11 fixed; 4 = 1,2, -+, ¢; hence it
may be possible to combine some of the corresponding associate classes. Simi-
larly if Ay, = 73 for some %, 1 < 4; < ¢, then from (4.10) and (4.11) we find
that \iyi = At iypigs 5 T2 fixed; 4 = 1, 2, -+- | s; hence it may be possible to
combine some of the corresponding associate classes. But if Ay;; < ryand Ny, <
raforalls, = 1,2, ---,sand 4 = 1,2, -+, ¢, no such situation can arise and
then the first ¢ associate classes and the next s associate classes are distinct from
the last ts associate classes of N. Finally if r1-Agi, # rohyy forallsy = 1,2, --- s
and i, = 1,2, -- -, ¢, then the first ¢ associate classes are distinct from the next
s associate classes of N because of (4.9) and (4.10). This means that if the con-
ditions in the statement (b) of Theorem 4.2 are satisfied, then the ¢ 4 s -+ ¢s
associate classes of N are all distinct. This proves the statement (b) of Theorem
4.2,
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Lastly the statement (d) of Theorem 4.2 is simply a provision for the cases
to which the statement (b) of Theorem 4.2 does not apply.

This completes the proof of Theorem 4.2.

Although the following corollary is an obvious special case of Theorem 4.2
we state it separately because we shall require it for further investigation.

CoroLLARY 4.2.1. (a) The Kronecker product N = Nuypis X Nepis of the
two BIB designs N s and N pis defined by the respective sets of parameters

4.17) of, bF, 1T, KT, AL,
(4.18) vy, b3, 3, ki, S
is a PBIB design N with at most three associate classes.
(b) The three associate classes of the design N defined above are all distinct if
L3 * * *
T1 ')\2 #*~ Te ’)\1.
(¢) In any case the parameters of the design N can be expressed in terms of those
of Naypis and N gpis by the equations

o = vt-o, b = bf-by, o=ty k' = kf-k7,
(4.19) ny=vy — 1, ne = vy — 1, ng = (f — )3 — 1),
Moo=, M=l a = aFag
vy — 2 0 0
) =| 0 0 v =1
0 o =1 (f — 1D6EF —2)
0 0 F — 1
@) =| 0 of-2 0
vy — 1 0 W — 2@ — 1)
0 1 iy — 2
o) =| 1 0 o =2

vi—2 f =2 0f —2)( —2)

where y,z = 1, 2, 3.

(d) Lemma 4.1 can be applied to the cases in which the condition in (b) above s
not fulfilled.

We shall now obtain the conditions under which the Kronecker product N
of two BIB designs N gyps and Npis, defined in Corollary 4.2.1.(a), is a
PBIB design with only two distinct associate classes.

Since \f < rf and A < rj, it is clear that the first necessary condition is that
r*AF = 52}, In this case applying Lemma 4.1 to the first two matrices in (4.19)
we find that the second necessary condition is that »f = v5. It is clear from
Lemma 4.1 that these conditions are also sufficient for the design (4.19) to have
only two distinct associate classes.
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If the conditions v{ = v3 and rf-A3 = r3 AT are satisfied, then from the rela-
tions among the parameters of BIB designs (cf. [11]), we must have kY = k;.
Conversely, if we assume that v = v5 and &} = kI, then we can deduce that
rf-AY = 75 -AY. This means that the conditions
(4.20) =0, ki =k
are equivalent to the conditions
(4.21) of =0, TN =0T,

and hence either (4.20) or (4.21) are necessary and sufficient conditions for the
design (4.19) to have only two distinct associate classes. Under (4.20) or (4.21)
we can further deduce that

(4.22) 2 =2=

These results are stated in the following corollary.

CoroLLARY 4.2.2. The necessary and suffictent conditions for the Kronecker
product N = Ny X N pis of the BIB designs N qys1s and N @y p1s with respec-
tive sets of parameters

of, bY, et BEY,
v, by, 3, ks, NS
to have only two distinct associate classes are
o =¥ =0, say, kf=£ki=Fk  say.

If these conditions are satisfied then we have by /b = ry/rf = Ns/Af = u, say,
where w 18 a positive fraction, and in this case the parameters of N are expressed in
terms of those of N qyse and N @ers by the equations

o= b o= (b}, o= u-(rt), E =1

’

n=2w—1), = (@-—17% A =puriN, A =p QD

(/1)_<v—2 p— 1 > (,2_< 2 2(v—-2)>
Pue) = v—1 @—1D0@—2) ’ Pue) = 2(v — 2) (0—2)2.

The following definition of a cyclic design is given by Bose and Shimamoto

(4.23)

[9].
Consider a PBIB design N $ars with two associate classes and with parameters
v, b, r, k, ng, A pfk , 1,7, k = 1, 2. Let its treatments be designated by the
integers 1, 2, - - -, v. The design N¥arp is said to be a C (cyclic) design if the first
associates of the treatment 7 of N&ars regarded as a PBIB design are the treat-
ments

1+ dy, i+dy, o+ ,74+ d;, modu
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where the d’s satisfy the conditions:
(i) the d’s are all different and 0 < d; < vforj =1,2, -+, n;
(it) among the ni(n; — 1) differences d; — dy, j, 7' = 1,2, -, ni ;75 = 75

reduced mod v each of the numbersd, , d», - - -, d., occurs « times whereas each
of the numberse, , e;, - - -, e,, occurs B times where di ds, -+, d, , €1, €, -+,
en, are all the different v — 1 numbers 1, 2, ---, v — 1.

Clearly it is necessary that
(4.24) na + meB = ny(ng — 1).

The parameters piv, 7,7, k = 1, 2, of N¥ars are in this case given by

. o n —a—1
(pix) = ,
m—a—1 n—m+tat+l

2 8 n — B
(pjk)=< >
m—8 m—m+pg+1

If we take @« = v — 2 and 8 = 2, then we find that the necessary conditions
(4.21) and (4.25) are satistied by the corresponding parameters in (4.23). Let
the treatments of the design N of (4.23) be designated by integers 1, 2, --- | v'.
Then, according to the method of identification of the various associate classes
in N described in the proof of Theorem 4.2, the first associates of the treatment
1in N are treatments 2,3, ---,0,v + 1,20 4+ 1, --- , o> — v + 1. The corre-
sponding d’s are clearly 1,2, ---,v — 1,0, 20, - - -, v — v. If we form the

20 — (20 — 3)

differences d; — d;, 7,7 = 1,2, -+, 2( — 1);j 5% j'; of these 2(v — 1) d’s,
it is obvious that d; = 1 will occur in these differences exactly » — 1 times
whereas if the design N of (4.23) were a cyclic design, d; = 1 must occur only
a = v — 2 times. Hence we find that the design N of (4.23) cannot be a cyclic
design even though its parameters satisfy the necessary conditions (4.24) and
(4.25).

b. Construction of certain PRIB designs. From the results of Section 4 we
find that two Kronecker products which give PBIB designs with two associate
classes are

(1) N2 X Ngs (Corollary 4.1.1),

(i1) Naoypis X N@eis where Naypms and Nggs are two BIB designs for
which »¥ = o3 and kY = kY (Corollary 4.2.2).

Bose, Shrikhande, and Bhattacharya [13] have obtained certain singular GD
designs by applying Corollary 4.1.1, which is the only way of getting them.
The following example illustrates Corollary 4.2.2.

ExampLE 5.1. Let us take N )p1s to be the BIB design defined by the param-
eters

(5.1) . v} = b* = 4 r* = k* = 3, AN =2

(4.25)
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(cf. Cochran and Cox [6]). Let N 2pis be the same as N gyp1s 50 that the value of
p in Corollary 4.2.2 is 1. Then clearly the parameters ¢’, b’, 7/, k' of

N = N(I)BIB X N(?)BIB
are

(5.2) v = b =16, v =k =09

Let the treatments of N be designated by the integers 1, 2, - - - , 16. The proof
of Theorem 4.2 contains a description of the method of identifying the various
associate classes of N. According to this method we get the following identifica-
tions.

Treatment................ ‘ 1 2 6

First associates. ...| 2, 3, 4, 5, 9, 13. 1,3, 4, 6, 10, 14. 2,5,7,8, 10, 14.

6,7,8,10,11,12,14, | 5,7, 8,9, 11, 12, 13, | 1,3,4,9,11, 12,13, 15,
15, 16. 15, 16. 16.

Second associates...

It is clear that the parameters ny , ns , A1, Az of N are given by
(5.3) ng=26 m=9  AN=6 =4

Further the comparisons of the associate classes of treatment 1 with those of
treatments 2 and 6 respectively lead to

54) ( <2 3 " <2 4
5 ka = 3 6>: ka = 4 4>

where pji, 1,4, k = 1,2, are parameters of N. It may be noted that the design
N is not eyclic even though the necessary conditions (4.24) and (4.25) are satis-
fied by its parameters.

The equations (5.2) to (5.4) give all the parameters of the design N. The blocks
of the design N are shown below.

1,2,3,5,6, 709,10, 11), (1,2,3,5, 6, 17,13, 14, 15),
(1,2,4,5,6,8,9, 10, 12), (1,2, 4,5, 6,8, 13, 14, 16),
(1,3,4,5,7,8,9, 11, 12), (1,3,4,5,7,8, 13, 15, 16),
(2,3,4,6,7,8, 10, 11, 12), (2,3,4,6, 7,8, 14, 15, 16),
1,2, 3,9, 10, 11, 13, 14, 15), (5,6,7,9,10, 11, 13, 14, 15),
(1,2, 4,9, 10, 12, 13, 14, 16), (5, 6, 8,9, 10, 12, 13, 14, 16),
1,3,4,9,11, 12, 13, 15, 16), (5,7,8,09, 11, 12, 13, 15, 16),

2.3 4 10, 11, 12, 14, 15, 16), (6,7, 8, 10, 11, 12, 14, 15, 16).

From the remaining results of Section 4 we find that the following Kronecker
products give PBIB designs with more than two associate classes.
(i) N, >< N$3is (Theorem 4.1),
(ii) N¥dis X N2 (Theorem 4.2),
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X N@pis

(Corollary 4.2.1).

The following example illustrates Corollary 4.2.1.
ExampLE 2. Let Naypis and N p1p be the BIB designs defined by the sets of

parameters
(5.5) of =
(5.6) 2]

by =3, =k =2
=5 by =10, 13 =4,
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respectively (cf. Cochran and Cox [6]). Then clearly the parameters v’, b’, ', k'
of N = Ngypis X N@sis are given by

(5.7)

v = 15,

bl

= 30,

r =8,

K = 4.

Let the treatments of N be designated by integers 1, 2, --- | 15. According
to the method of identifying the various associate classes of N described in the
proof of Theorem 4.2, we get the following identifications.

Treatment...........

7

First associates.

Second associates. . ..

Third associates

....... 1 2 6
..... 2,3,4,5. 1,3, 4, 5. 7,8,9, 10.
6, 11. 7, 12. 1, 11.
..... 7,8,9,10,12, | 6,8,9,10, 11, | 2, 3, 4, 5, 12,
13, 14, 15. 13, 14, 15. 13, 14, 15.

6, 8, 9, 10.
2, 12.

1, 3, 4, 5, 11,
13, 14, 15.

Also it is clear that the parameters n1 , ns , n5, A1, As, A; of N are given by

(5.8)

’
n1=4,

’
n2=2,

’
n3=8,

A =4, A

2,

A = 1.

Further, the comparisons of the associate classes of treatment 1 with those of
treatments 2, 6, and 7 respectively lead to

(5.9 (pi) =

I . .
where p;x, 1,7,k

3
0
0

N OO

0
2}, () =
6

1, 2, 3, are parameters of N.

0 0 4
01 0, @)=
4 0 4

01 3
1 01
3 1 3

The equations (5.7) to (5.9) give all the parameters of the design N. The
blocks of the design are as shown below.

(17 2) 6’ 7)’
(2) 4’ 7) 9)’
(1, 2, 11, 12),
(2, 4, 12, 14),
(6,7, 11, 12),
(7,9, 12, 14),

(17 3) 67 8)7

(27 57 77 10)7
(1, 3, 11, 13),
(2,5, 12, 15),
(6, 8, 11, 13),
(7, 10, 12, 15),

(1,4,6,9),
(3’ 4’ 8’ 9)’
(1, 4, 11, 14),
(3,4, 13, 14),
(6,9, 11, 14),
(8,9, 13, 14),

(1, 5, 6, 10),
(3y 5, 8) 10)7
(1, 5, 11, 15),
@3, 5, 13, 15),
(6, 10, 11, 15),
(8, 10, 13, 15),

(2y 3y 7; 8))

(4y 5y 9; 10);
(23,12, 13),
(4’ 5’ 14, 15);
(7, 8, 12, 13),
(9, 10, 14, 15).
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ExampLE 5.3. Consider the PBIB design N with three associate classes and
with parameters:

v =b=p, r=k=p+qg-—1,
(5.10) m=p—1, m=q¢g—1, n=(p—1)(g—1),
M=p, A=gq, A = 2,

p— 2 0 0
() = | 0 0 g—1 ,
0 ¢—1 (p—2(@—-1
0 0 p—1
P =| 0 ¢—2 0 ,
p—1 0 (p-1@g-2
0 1 p— 2
(pie) = 1 0 g—2

Pp—2 ¢—2 (p—2)(¢—2)

where p, ¢ are positive integers = 2 and j, k = 1, 2, 3.

This design taken from Bose and Nair [2] very much resembles the Kronecker
product of two BIB designs. Let us suppose that the above design is the Kro-
necker product of the two BIB designs defined by the sets of parameters

* * * * *
1 = g, 1, 1, kx, A

and

% * * * *
V2 = D, bz, Te, kz, )\2.

From Corollary 4.2.1 it follows that we must have
M=rIN=p, A=mA=g¢ A=A =2
Hence
P = M-l = NINSTITS = 2003 = 2kTkY = 2(p + ¢ — 1),
which leads to
(5.11) (p—2)(g—2)=2.

This means that a necessary condition for the design N of (5.10) to be the
Kronecker product of two BIB designs is (5.11).

Also since p and ¢ are positive integers, we must have from (5.11) either p =
3and ¢ = 4 or p = 4 and ¢ = 3. It is enough to consider one case, say, p = 4,
qg = 3. Wiﬁh these values it is clear that (5.11) is satisfied. The corresponding
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BIB designs are defined by the sets of parameters

o =0 =3, =k =2 =1,
and

vy =by =4, =k =3 N =2

Now applying Corollary 4.2.1 to these two BIB designs it is easily verified
that their Kronecker product has the parameters of design N of (5.10) for which
p = 4 and ¢ = 3. Thus we find that the condition (5.11) is also sufficient for the
design N of (5.10) to be constructible as the Kronecker product of two BIB de-
signs.

It has been remarked by Bose and Nair [2] that the design N of (5.10) with
three associate classes reduces to a PBIB design with two associate classes if
p = 2 or ¢ = 2. Because of Lemma 4.1 we can further add that the design N
with three associate classes reduces to a PBIB design with two associate classes
if p=gq.

The method of taking Kronecker product of designs has been used to prove
the impossibility of a certain class of PBIB designs and to analyse some other
class of designs. It is hoped to publish at a later date some results in this direction.

I wish to express my sincere thanks to Professor M. C. Chakrabarti under
whose guidance this work was carried out.
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