TWO-SAMPLE PROCEDURES IN SIMULTANEOUS ESTIMATION!
By W. C. Heavy, Jr.?
University of Illinois

1. Summary. In this paper, two-sample procedures of the type originated by
Stein [4] are developed for a number of problems in simultaneous estimation.
The results include the construction of simultaneous confidence intervals of
prescribed length or lengths and confidence coefficient 1 — « for (1) all normal-
ized linear functions of means, (2) all differences between means, and (3) the
means of k& independent normal populations with common unknown variance.
Simultaneous confidence intervals of length I and confidence coefficients known
to be not less than 1 — « are constructed for all normalized linear functions of
the means of a general multivariate normal population. The single sample ana-
logues of these problems have been discussed by Tukey [5], Scheffé [6] and Bose
and Roy [7]. Also, a confidence region having prescribed diameter (or volume)
and confidence coefficient 1 — « is constructed for the mean vector in the general
multivariate normal case.

The procedures depend only on known and tabulated distributions. Illustrative
applications from the analysis of variance are described.

2. Introduction. In 1940, Dantzig [2] showed that for the Student problem

Hypothesis: u = uo
.1)
Alternative: u 5 u,

where u is the unknown mean of a normal distribution with unknown variance
o, there exists no test having power independent of ¢ based on a sample of fixed
size. More generally, it is shown in [3], Sec. 5.2, that if 6 is a location parameter
and an unknown scale parameter is present, there exist neither confidence inter-
vals of prescribed length and confidence coefficient nor point estimates with
bounded expected squared error for 6. The important general problem has thus
been posed: how to conduct experiments in order to obtain a predetermined
degree of accuracy in the presence of unknown scale parameters.

In 1945, Stein [4] provided an ingenious solution by sampling in two stages
for the case of the Student hypothesis (2.1), and, in fact, for a general linear
hypothesis. In his procedure the size of the sample at the second stage depends
on the results of the first. He also provided, in the same vein, a two-sample
technique obtaining a confidence interval for u having predetermined length and
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688 W. C. HEALY, JR.

confidence coefficient. By this is meant a rule for constructing an interval (which
is a function of the observations) with the two properties that

(a) the length of the interval is equal to [;
(b) the probability that the interval contains the true value of u is exactly

1 —a,

where [ and 1 — « have been specified in advance. Recently, Seelbinder [10] has
published tables of the expected total sample size for Stein’s procedure.

Problems of simultaneous estimation and simultaneous tests of hypotheses
constitute a dilemma to practicing statisticians. A common example was long
provided in the application of the analysis of variance when the F-test had re-
jected the hypothesis of homogeneity of means. The natural desire of the experi-
menter to make further inferences about the means, such as deciding between
which groups of means differences existed, was thwarted by existing statistical
theory before 1950. Analysis of variance theory made no provision for such
successive inferences, and the experimenter who proceeded anyway accepted the
hazard of an unknown significance level for his final conclusions.

Work by Tukey [5], Scheffé [6], Bose and Roy [7], Dunnett [13], and others
since 1950 has produced valid techniques for making such simultaneous or suc-
cessive comparisons, and, importantly, including comparisons suggested by the
data themselves. In a number of problems involving normal distributions, and
including the F-test dilemma above, the techniques are easy to apply. This
contributes to their practical importance.

In this paper, the Stein two-sample idea for obtaining predetermined accuracy
is applied to some of the simultaneous confidence interval problems considered
in [5], [6], and [7]. Three basic problems which are appropriate to a variety of
applications are treated first, with examples. They involve &k independent normal
populations with unknown means and unknown common variance.

Suppose that a (joint) confidence coefficient 1 — « is prescribed. Then,
Problem I is to construct a system of confidence intervals of prescribed lengths
L,l, -, for the k means. Problem II is to construct a system of confidence
intervals each of prescribed length I for the k(k — 1)/2 differences between the
means. Problem IIT is to construct a system of confidence intervals, one for each
possible normalized linear function of the k& means; each interval is to have
length I, where [ is specified in advance. These systems of intervals are each to
have joint confidence coefficient 1 — a. For a number of applied situations the
comparisons of interest are reducible to those of Problems I, II, or III.

In addition, Problems IV and V involving the means of a k-variate normal
population with unknown covariance matrix are treated. Problem IV is to con-
struct a system of confidence intervals, one for each possible linear function of the
k means. The length and confidence coefficient specifications are as in Problem
III. Problem V is to construct a confidence region for the & means, having a
prescribed maximum diameter and confidence coefficient. Problems IV and V
are thought to be the first multivariate-normal two-sample procedures.
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Mention might here be made of the application of the Stein idea to the problem
of ranking means of normal populations, made by Bechhofer, Dunnett and
Sobel [1].

In Section 3 are stated the distribution results employed for solution of these
problems. In Section 4 the univariate problems and solutions are given; in Section
5, three analyses of variance situations are shown, for illustrative purposes, to
correspond to Problems I, II, and III, and hence are solved. In Section 6 the
multivariate problems and solutions are described, and the solutions are justified.

3. Distribution results.

TuworeM 3.1. (Stein). Let Xa , X2, -+ (¢ = 1,2, - -+, k) be mutually inde-
pendent random variables, X s being distributed N (6;, o). Let ny, na, -+ , s be
fixed nonnegative integers. Let s* be an unbiased estimate of o based on m degrees
of freedom, distributed independently of St X and Xingpa, Ximit2, *0°
(6=1,2 --+,k). Let an, Giz, * -+ , Gin; , @i, and N; be funclions of s* such that
Q) ap = a;for h < n;and (2) N; = max (n;, 1). Define

i
hZ; aan(Xa — 6:)
Y ==

. N2z
2
(Z aih)
h=1

Then, Y1, Yo, -+, Y&, s are mutually independent random variables, Y; being
distributed N (0, o). :

COROLLARY 3.2. Define Wy = maxi<i(|Yi|/s). Then, W1 has the distribution of
the Studentized Mazximum Modulus with (k, m) degrees of freedom.

This distribution is tabulated in [11].

COROLLARY 3.3. Define Wy = max; j<i |Ys — Y|/s. Then, W, has the distribu-
tion of the Studentized Range with (k, m) degrees of freedom.

This distribution is tabulated in [8].

COROLLARY 3.4. Define W3 = kL Y3/ & Then, Ws/k has the F-distribution
with (k, m) degrees of freedom. :

These three corollaries are the distribution results required for the univariate
examples that are to follow. A multivariate analogue of Theorem 3.1 is stated
next.

TaroreM 3.5. Let Xn = Xu, Xan, -+, Xw)y (B = 1,2, -+ ) be mutually
independent random vectors,” the Xu having a multivariate normal distribution with
mean vector ® and, covariance matriz é = (o4;). Let n be a fixed nonnegative integer.
Let S = (S:;) be a matriz of unbiased estimates Si; of the oi; , the S;; having jointly
a Wishart distribution with m degrees of freedom. Suppose the Si; are independent
of both SiaX;and Xngr, Xnga, o . Letar, 02, 00 5 s Gy and N be functions
of S such that (1) a; = aforj < n, and (2) N = max (n, 1). Define

Y = iaj(xj — 0)/(%&?)1/2.

=1

s A prime will be used to denote the transpose of a vector or matrix.
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Then,

m—k-+1
k

has the F-distribution with (k, m — k -+ 1) degrees of freedom.
The proof is similar to the univariate case and will be omitted.

Y'ST'Y

4. Univariate problems and solutions.

4.1. ProBLEM I—EstiMaTion oF MEans. The Problems I, II, and III of this
section deal with the following situation: X, X, -+ ¢ = 1,2, -+, k) are
mutually independent random variables. The distribution of X is N(6:, o), 0;
and ¢* being unknown.

Nonnegative integers n;, ns, - -+, m have somehow been determined, and
Xa,Xa, -, X, = 1,2, .-+, k) have been observed if n; > 0. If n; = 0,
no observations have been taken on the 7th distribution.

Let s* be an unbiased estimate of o based on m degrees of freedom, which is
independent of both D % X, and Xini41, Xing42, -+ - A value of s* has
been observed; it may or may not have been computed from the observations
X iy h é ;.

With this set-up we can now state problems and solutions. First a remark
is in order about the statements of the problems. A confidence coefficient 1 — «
will be prescribed in advance and it can be exactly attained. However, we will
require only that the actual confidence coefficient attained shall be =2 1 — a.
The reason is that the solutions then obtained are uniform improvements on the
solutions obtained by requiring exactly 1 — a confidence coefficient. This same
situation is encountered and discussed in Stein’s original paper [4].

StaTEMENT OF ProBLEM I. Given 0 < 1 — a < land 4, b, -+, &, with
I; > 0, determine joint confidence intervals I,(X) for 6;, 62, - -+, 6 such that

(1) length of I.(X) = I;,

2) Pr{d;cl;(X)foralli =k} =1 — aforall b, b, -, 0, o It is of
interest to note that in the single sample analogue of this problem, given, for
example, in [7], p. 519, the k confidence intervals are obliged to have the same
(random) length, while here the lengths are allowed to differ.

Sorution oF ProBrLEM I. Determine constants ¢; such that

L\ . |
< =\ =1 = = e
Pr{Wl =5 \/CJ l—a 1 =12, , ky
when Wi has the distribution of the Studentized Maximum Modulus with (k, m)
degrees of freedom. Determine integers N; by
(4.1.1) N; = max{n;, [/ ¢] + 1},

where [ ] means “greatest integer less than.”
Observe Xi,n,-+1 y X,‘.nﬁ.g y "0, Xi,Ni (’L = 1, 2, ceey, k) if N; > n;, and esti-
mate 6; by the interval
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ls

412 P
(412) N h‘y:; X3 -
4.2 ProBLEM II—EsTIMATION OF DIFFERENCES.
StaTEMENT OF ProBLEM II. Here we will take ny = mp = -++ = np = n.

Given 0 < 1 — a@ < 1 and I > 0, determine joint confidence intervals I;;(X)
for the k(k — 1)/2 differences 8; — 6;,7 < j < k, such that
(1) length of I,;(X) = I,
(2) Pr{6; — 6;el;(X)foralli <j <k} =1 — aforall 6;,6,, -, 6,0
SovurioN oF ProBLEM II. Determine a constant ¢ such that

l
Pr{Wgéz\/z}=1—Ol

when W, has the distribution of the Studentized Range with (k, m) degrees of
freedom. Determine N by

4.2.1) N = max (n, [§"/ ¢] + 1).
Observe X 41, Xinge, -+, Xev ¢ = 1,2, ---, k) if N > n, and estimate
0; — 0; by the interval
1% l
(42.2) NZ‘: (Xa — Xa) £ 5
4.3 ProBLEM ITI—ESTIMATION OF CONTRASTS.
StaATEMENT OF ProBLEM III. Again take ny = np = -+ = m = n. Given

0<1—a<1land!l > 0, determine a system of simultaneous confidence in-
tervals I (X) for the elements of the set L of all linear functions > 5..C's0; with
> %.4C% = 1. (The index » denotes a particular element of L.)

The intervals are to have the properties

(1) length of I(X) = I,

(2) Pr {D5uiCubi e I,(X) forall v} = 1 — aforall 61, 6z, -, 6, o

SovuTioN oF ProBLEM III. Determine a constant ¢ such that

PriW; < }/d¢} =1 — «
when Ws/k has the F-distribution with (k, m) degrees of freedom. Determine N by

4.3.1) N = max(n, [s*/c] + 1).

Observe Xin1, Ximtz, -+, Xav, if N > n, and estimate ) 5.1C6; by
the interval
(4.32) ]]\.7. Z; Cw Z Xah :*: "

Note that to estimate some linear function Z;_ld;,o,- , where > idi, #= 1, we
simply employ the interval

1
ZdszX’th:[: Zdwz

N i=1 h=1 =1



692 W. C. HEALY, JR.

The argument required to justify these solutions is essentially the same as that
originally given by Stein, and details will be omitted.

b. Three applications. In this section we apply the previous section to the
solution of the two-sample versions of three simultaneous estimation examples
treated by Bose and Roy and by Scheffé for the single sample case.

5.1. 2" Factorial experiment. In this example we will utilize Problem I of the
preceding section. Suppose that in an experiment involving r factors, each at
two levels, it is desired to obtain joint confidence intervals of fixed length for the
r main effects and r(r — 1)/2 two-factor interactions. Suppose also that the
experimental situation is replicable as many times as desired. An example might
be an experiment to discover the effect on the yield of a chemical reaction of the
addition or nonaddition of different reagents.

Let 611, 0s2, - -+ , 6 be the true values of the main effects, and let 612, 613, - - - ,
0,_1,» be the true two-factor interactions. Denote the factors by 4;, 45, --- , 4,
and let the symbolic product (a;, as, - - - a;,) denote the true yield when factors
A, Asy, -+, A;, are at their upper levels and all other factors are at their
lower levels. For the chemical illustration, (a:a.0;) means the true yield when
reagents 1, 2, 3 have been added, and no others.

Then 6;; is defined by the result of multiplying out the expression

s = g 4 D@+ 1) -+ @+ Dla—Das + 1) -+ (@ + 1),

and 0,; is defined by the result of multiplying out the expression

0y = gz (+ D@+ 1 -+ @a+ Do = Das+ 1)

. (aj—l + 1)(“_1' - 1)(aj+1 + 1) e (ar-—-l + 1)(ar + 1);

where the dots indicate terms with plus 1’s. For further details on factorial ex-
periments, the reader is referred to [9], for example.

We will conduct the experiment by taking some number of replications of the
2" factorial design. Let ¥;; represent the usual estimate of 6;; from the Ath repli-
tion. That is, Y5 is obtained by substituting the observed yields for the true
yields in the expression defining 6;; . Then the usual assumptions are that ¥Y;; ,
YVip, --,1 =7 = r are mutually independent random variables with Y
distributed N{6;, (¢*/2"%)], where o is the variance of a single observed yield.
Suppose that an unbiased estimate of o® can be obtained from the sum of squares
due to replications.

Having decided upon a conﬁdence coefficient 1 — « and a common length [,
the problem before us is to produce r + (r — 1)r/2 confidence intervals of length
1, one each for the 6;;,7 < j < r. Except for notational changes, this is exactly
Problem I with a common length [ for all the intervals. It remains to adapt the
solution of Problem I to the present case.

The first step is to obtain a preliminary estimate of ¢°/2" . There are a variety
of ways to accomplish this. A simple one to describe is:
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Choose an integer n and perform 7 replications of the 2" factorial design;
compute the replications sum of squares, say T', which will be based on (n — 1)2"
degrees of freedom; and estimate ¢°/2" > by T/(n — 1)272"% = T/(n — 1)2" .

Determine a constant ¢ such that

l
PI’{W1§2\/C—}=1—OL

when W; has the distribution of the Studentized Maximum Modulus with
r+r (@ — 1)/2,2(n — 1) degrees of freedom; determine N by

N = max{n, [(n——%ﬁfc:l + 1};

perform N — n further replications of the 2" factorial design; and estimate
6;; by the interval

l
‘2',

Of course, it is not necessary to replicate the entire design in order to estimate
0*/2""%. In the event one does replicate only a portion of the design for this pur-
pose, a question not encountered before can arise; namely, what to do if the total
number of replications required, based on the estimate of ¢°, is smaller than the
number of replications already obtained of a portion of the design. This question
seems too special to discuss further than to point it out, at this time.

In practice it would be unlikely that all main effects and 2-factor interactions
would be of equal importance. It would be tempting to specify different lengths
as in Problem I. However, the factorial design requires that each combination
be replicated equally often in order to get orthogonal estimates; and the estimates
all have a common variance. In this case, one might end up choosing N based on
the smallest length and would then get the same results as though all lengths
had been specified equal to the smallest.

5.2. Randomized blocks experiment. In a randomized block setup for comparing
k treatments, suppose it is desired to obtain joint confidence intervals of fixed
length and confidence coefficient for the k(k — 1)/2 differences between the
true treatment means. This example utilizes the solution of Problem II.

We will assume the following conventional model for any given block, say
block number A:

N
lZYijhﬂ: 1Sj=r.
N =

Yo=p+0;4+bn+ ea,

where Y is the observation on treatment 7 in block 4,
u is a constant,
9, is the contribution from the 7th treatment,
by is the contribution from the Ath block,
ea are mutually independent, each distributed N (0, o*) fors = 1,2, - - , k;
h=1,2,---.
Assume that the experiment can be replicated in as many blocks as desired.
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The problem is this: given a confidence coefficient 1 — « and a length [,
produce k(k — 1)/2 simultaneous confidence intervals each of length I, one each
for the differences 8; — 8;, (¢ < j = k). To recognize this as Problem II, let

(521) X,-h =Yg — » - bx .

Then X;, X, -+, € = 1,2, ---, k) are mutually independent random
variables, X being distributed N(6;, ¢°). In terms of the X the problem is
exactly Problem II. Although we cannot observe the X , we can nevertheless
write down the solution from (4.2) in terms of the X ; we will then discover that
the solution to the original problem depends only on the original ob-
servations Y .

Following (4.2), the experiment can be conducted as follows:

Choose an integer n and perform the randomized block experiment with
blocks and estimate ¢°. The conventional estimate, which we adopt and call T,
is based on (k — 1) (n — 1) degrees of freedom. This estimate is computed from
the Y that are observed.

Determine a constant ¢ such that

l
Pr{Wgém}=l—a

when W, has the distribution of the Studentized Range with &, (k — 1)(n — 1)
degrees of freedom; determine N by

N = max{n, [T/c] + 1};

perform a second randomized block experiment with N — = blocks, if N > n;
and estimate 6; — 6; by the interval

IIA

1+ l .
N’;(Xih—xjh):l:—, i <j <k

This is the solution in terms of the Xy . To get the solution in terms of the
Y, note from (5.2.1) that each interval is

1< l
N-h;(Yih—#—bh'— {len-ﬂ—bh})iE,

or

.1. EN: (Yo — Vi) = .l._
N& v i 2°
5.3. Two-way analysis of variance with replications. Consider a situation ap-
propriately represented by a two-way classification, say by rows and by columns,
and suppose there are & rows and p columns. Suppose further that the situation
is replicable as many times as desired.
Let Y. denote the observation in the 7th row, jth column of replication
number h. We adopt the following conventional model for the Ath replication:
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(5'3~1) Yiih=ﬂ+ri+tf+bii+eiih7 i=1,2"'7k,j =12.---,0p,

where u is a constant,
r; is the contribution from the zth row,
t; is the contribution from the jth column,
b;; is the contribution from the (z, 7) cell,
e are mutually independent random variables, each distributed N (0, o®).

Suppose we are interested in comparisons between true row means, i.e., be-
tween the quantities

1 P
b = p+ ri+ =2 by
P =1

=pu+ i+ bi, i=1,2,--,k

where b;, = 1/p>_ Pabii. (We will use this dot notation in the usual way to
indicate summed-out subscripts.)

Suppose further that the situation is such that we cannot tell in advance what
row comparisons will be of interest or what rows may turn out to be important.
In this situation, since we do not know precisely what we want, it may be de-
sirable to ask for a fixed degree of accuracy for any and all confidence statements
that might be made about contrasts between the row means. A contrast is a
linear function Y 5-,C:f; such that >_s4C; = 0. If we should fix the confidence
coefficient at 1 — « for the infinite set of all possible contrasts, then for any
necessarily finite number of contrasts that we decide to estimate, the joint con-
fidence coefficient must exceed 1 — a.

It is apparent, however, that requiring the confidence intervals for the various
contrasts to have a common fixed length would be asking too much; two con-
trasts differing only by a constant multiplier and each estimated by an interval
of length [ are logically incompatible. We will ask instead that the intervals
for all contrasts Y +yC:0;, such that > i;C? = 1, should have fixed length I;
i.e., we consider only ‘“normalized” contrasts. This is equivalent to asking that
the interval for every contrast > :_id:0; should have length (D f-id?)"”.

The problem is this: given a joint confidence coefficient 1 — « and a length l
produce a system of joint confidence intervals, each of length I, one each for
every normalized contrast ) ;-1Cif;. We have now to reduce this problem to
Problem IIT. To this end, let

(563.2) Yin = %il Yin = p+ri+ bi. + 8 + &in,
ij=
and let
(533)  Xa=Yin—t.=p+r+ b+ &n=0;+Eun.

Then, Xu, Xi2, -+ (G = 1, 2, .-+, k) are mutually independent random
variables, X being distributed N(6;, o*/p).
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The problem is now in the form of Problem ITI, except for the present restric-
tion that Z’E=1C,- = (, since we here are considering only contrasts. This excep-
tion can be resolved by the following reduction.

Make an orthogonal transformation from the X to Zy , defined by

k
(5.3.4:) Xih = .Zluijzjh’ . 7 = 1’ 2, ...’k’
i=
such that
1 &
(5.3.5) L, = _—\/_E ;_1 Xa.

Then, since the inverse of an orthogonal matrix is its transpose, us = 1/ Vi
(¢=1,2 ---, k). In terms of the Z , substitution from (5.3.4) and (5.3.5)
gives

k

k k k k—1
Zl CiXan = 2, 2, Cowi Zin = 2 2, Ciwis Zin,

=1 =1 i=1 j=1
since ug = 1/4/Fk and D s.C; = 0.
Therefore,

k k—1
(5.3.6) 2:1 C: Xy = 21 d; Zj,

1= i=

where d;j = 2 51Cittij .
The Zj ,j < k, are independently normally distributed with common variance

o*/p. Setting n; = E{Zu}, we have

k k—1
(5.3.7) 21 C:0; = Zl din;,
1= i=
by taking the expectation of (5.3.6).
Also if
k k—1
(5.3.8) > Ci=1, then) dj =1,

i=1 =1

by computing the variance of both sides of (5.3.6).
Therefore, in view of (5.3.6), (5.3.7), and (5.3.8) we have reduced the set of
all normalized contrasts _;—1C:6; to the set of all normalized linear functions

1 dm; , without a restriction that %1 d; = 0. This reduction is given in [6].

j=1
The problem has become: to construct joint confidence intervals of length [
and confidence coefficient 1—a« for all linear functions D soidin;, with
*~1d} = 1, based on the random variables Z; , Zjs, -+ (j=1,2,--- ,k — 1)
which are mutually independent, Z ; being distributed N (n; , o’/p). This is now,
in terms of the Z, , exactly the Problem III, and we proceed to adapt its solution.

Again, it will turn out that the solution will depend only on the Y , which can
be observed.
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Following 4.3 the experiment can be conducted as follows: Choose an integer n
and perform n replications of the two-way layout in order to estimate o*/p.
Suppose that the replications sum of squares, say T, provides an unbiased esti-
mate of o; T will be based on kp(n — 1) degrees of freedom. Estimate o*/p,
therefore, by T/kp’(n — 1).

Determine a constant ¢ such that

2
Pr{Ws = —l——l =1—-a
4c

when W3/k — 1 has the F-distribution with ¥ — 1, kp(n — 1) degrees of freedom;
determine N by

_ T 1.

¥ = oo gt + 1

perform N — n further replications of the two-way layout, if N > n; and estimate
k—1 k
2 din; = 2 Cib;
=1 =1

by the interval

(53.9) }ﬁ (Z d; z,h> + -

h=]. J=1

To express this interval in terms of the original observations, substitute in
(5.3.9) from (5.3.6) and (5.3.3), obtaining

IZECXm:i:l/2

h-:l f=1

or
1 N k
=2 2 CVin — 1) = 1/2
Nimii=
or
L &E
=22, C Vs £ 1/2
N i1 i3
or

k
Z:l CiY.. =+ 1l/2.

5.4 Comments on the examples. The preceding three examples were chosen for
illustrative purposes. Depending on actual circumstances, any analysis of vari-
ance design could produce any of the three types of problems we have considered,
that is, estimation of independent effects, differences, or general contrasts.

In each example we have specified a way, arbitrarily, to estimate the variance,
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utilizing the experiment design involved. It is perhaps worth remarking that it
is only necessary to have an independent unbiased estimate of the variance.
Where is comes from is immaterial and in practice it may come from some other
experiment (though in theory it should not have been used for any other purpose).
This fact is inherent in the setup of Problems I, II, ITI, since we allow the initial
sample sizes n; to be 0.

Another feature of the examples is the lack of discussion of how to choose the
degrees of freedom on which to base the estimate of variance. Such a discussion
would presumably be based on tables of the expected total sample size, but such
tables are lacking for these problems.

Also, somewhat more general situations than the preceding examples would
indicate are reducible to one of the Problems I, II, or ITI. In particular, the situa-
tions in Scheffé [6], p. 87, and Bose and Roy [7], p. 515-519, when posed as prob-
lems of simultaneous confidence intervals of fixed length and eonfidence coefficient
are so reducible. The methods of reduction are essentially the same as indicated
in these papers.

6. Multivariate problems and solutions. Throughout the discussion of multiva-
ate problems, we will denote all matrices by boldface letters; primes will
denote matrix transposes.

6.1. ProBLEM IV—EsTiMATION OF CONTRASTS. The Problems IV and V of
this section deal with the following multivariate situation:

XI,»'_‘(XIh,X%,"',th), h=1,2,"',

are mutually independent random vectors, each X, having the multivariate
normal distribution with mean vector 8 and covariance matrix g.

A nonnegative integer 7 has somehow been determined, and if n > 0, values of
X:,X,, -+, X, have been observed. If » = 0, no observations on X have been
taken.

S = (8;;) is a matrix of random variables S;;, the S;; having a Wishart dis-
tribution with m degrees of freedom; S;; is an unbiased estimate of o;;, and the
S; are independent of D nXs, and Xpy1, Xngse, - . A value of S;; has been
observed, 7 < 7 = k. These may or may not have been computed from the X, ,
hSn.

StaTEMENT OF ProBLEM IV. Given 0 < 1 — « < 1 and I > 0, determine a
system of simultaneous confidence intervals I,(X) for the elements of the set D of
all linear functions Z’LIC’,-.,O,- with Z’LICE,, = 1. The intervals are to have the
properties that

(1) the length of I,(X) = [ for all »,

k
6.1.1) (2 Pr{z Ci0; ¢ I(X) for all 1/} > 1 — afor all 0 and ¢.
g==1
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SovrutioN or ProBrLEM IV. Determine a constant ¢ such that

l2
Pr{W4_Z—}=1-—a

when (m — k 4+ 1) Wy/k has the F-distribution with (k, m — k -+ 1) degrees of
freedom; determine N by

(6.1.2) N = max{ [ :|+ 1}

where \ is the largest latent root of S; observe X, 1, Xny2, -+« Xx ; and esti-
mate Z’;=lciv0i by

(6.1.3) CX + /2,

where C, = (Cy, Ca, -+ - Ci) and X =1/N SoiXn.
JusTiFicATION oF SoLuTtioN. We have to establish (6.1.1). Now,

Pr{|C,(X — 0)| = I/2 for all »}

It

2
Pr {N | X - 0)* < lil— for all v}

v

Pr{NlC,,(X _ oIt s %l—for all v},

since N = A/c. Using the fact that

sup C,SC, = \,
Cl',Cy"l

where \ is the largest latent root of S, it follows that

,
Pr{N [CX —0)f < %for all v}

N|CX — 0)]

(614:) = Pr {W 4 —for all v
14
= Pr{ sup (M) =< L}
C;Cy=1 C.SC, 4c
2
(6.1.5) = Pr {N(i — 07X —0) = al;;} ,
since
sup (C u) o'S .
c.c,=1 C,SC,

The Theorem 3.5, with a, = 1/N, and the definition of ¢ imply that (6.1.5) is
equal to 1 — «; this establishes (6.1.1).
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Problem V is a multivariate analogue of the original Stein procedure.

6.2. ProBLEM V—ESTIMATION OF MEAN VECTOR.

STATEMENT OF PROBLEM V. Given 0 < 1 — o < 1 and I > 0, to construct a
confidence region R(X) for 6 such that

(6.2.1) (1) the maximum diameter of B(X) does not exceed [,
(6.2.2) 2)Pr{6cRX)} =1 — a.

Here it is possible to obtain a solution for which the maximum diameter of
R(X) is exactly I, but the solution we present is uniformly better.
SoruTioN oF ProBLEM V. Determine a constant ¢ such that

Pr{Wa = k—} =1—a
4c

when (m — k + 1) Ws/k has the FP-distribution with (k, m — k =+ 1) degrees of
freedom. Determine N by

N = max{n,[%] + } )

where A is the largest latent root of S.

Observe X,41, Xn42, -+ -, Xy, and estimate 6 by the set R(X) of points t
satisfying
2
(6.2.3) NX -t X -1t = i_r,

where X = 1/N D X .

A similar problem in which R(X) is required to have predetermined volume is
solvable in a similar way but is possibly less useful.

JusTiFicaTiON OF SoruTioN. We have to establish (6.2.1) and (6.2.2) when
R(X) is the set of points t satisfying (6.2.3). Now (6.2.2) means that

Pr{N(’i —0)SHX—90) < %}

when 0 is the true mean vector, and hence follows from the definition of ¢ and
Theorem 3.5 with a, = 1/N.

To establish (6.2.1), we first note that (with probability one) (6.2.3) defines
the interior and boundary of an ellipsoid in k-dimensional space. Now, if w'Au = 1
is the equation of an ellipsoid, its maximum diameter is 2 4/X, where \ is the
largest latent root of A™. Replacing 4 by 4cN~ §'/F, it follows that the maxi-
mum diameter of the ellipsoid associated with (6.2.3) is I A/A/v/¢cN < I, since
N = M\/c. This establishes (6.2.1).

7. Concluding Remarks. As in the case of Stein’s original work, it is possible
to modify the solutions of Problems I, IT, and III slightly so as to obtain a con-
fidence procedure with exactly 1 — « confidence coefficient, and in Problem V
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so that the maximum diameter is exactly I. Such modifications, however, result
in larger expected sample sizes. It should be emphasized that such modifications
as these do not make possible the attainment of an exact confidence coefficient
in Problem IV, because of the inequality (6.1.4); an intuitive picture of why
this is so might perhaps be given by the following remarks. The total sample
sizes are the same for Problems IV and Vif Jand 1 — « are the same. Thus, after
the completion of sampling, we have the “information” that 0 lies in an ellipsoid
like (6.2.3). However, the simultaneous intervals constructed in Problem IV use
only the “information” that 0 is in the sphere having the same center as (6.2.3)
and with diameter equal to the maximum diameter of (6.2.3). Thus, to the
extent that the ellipsoid (6.2.3) is smaller than the sphere, the actual confidence
coefficient will exceed 1 — a.

It is fairly obvious that the use of the confidence region R(X) given for Problem
V, modified to have maximum diameter exactly [, to test a hypothesis concerning
0 does not yield a test with power independent of the unknown covariance matrix.
This is so since the shape of the region R(X) is not independent of the unknown
covariance matrix. It is possible, but in a wasteful and artificial way, to construct
a test of the multivariate hypothesis 8 = 0 having power independent of the
unknown covariance matrix. This can be done simply by estimating
on, om, -, ow irom k separate subsamples of the original sample and es-
sentially employing the Stein procedure for the Student hypothesis to the indi-
vidual hypotheses 6,, = 0, 6, = 0, ---, 6, = 0.

There are many other problems whlch come to mind in connectlon with the
Stein procedure and to which no specific allusion seems to have been made in
the literature. One is to obtain a confidence interval of fixed length and confidence
coefficient for a given linear fundtion Z'Z.,lCiGi of the means of a general. k-
variate normal distribution with unknown covariance matrix. This problem is
directly solved by Stein’s paper [4], since

VN i Ci(X; — 62)

1=1

(ZZC C; sl,)

=1 1=1

has the Student ¢-distribution with m degrees of freedom, when the S;; are un-
biased estimates of ¢;; , having a Wishart distribution with m degrees of freedom,

and (X;, X, ---, X)) is the (independent) sample mean vector based on N
observations.
If 61, 65, -, 6, are the means of % independent normal populations with

unknown (unequal) variances, it is a direct extension of results of Chapman [12]
to obtain a confidence interval of fixed length and confidence coefficient for a
given linear function »_:Ci0; . The procedure depends on the distribution of
the sum of k¥ independent Student-f variables, for which tables do not seem to
exist for & > 2. However, the normal approximation should be useful except for
very small values of k¥ and the degrees of freedom m.
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Finally, no study has been made of expected sample sizes for the procedures .
in this paper. Tables along the lines of Seelbinder [10] but with degrees of freedom
k(n — 1) rather than n — 1 would be helpful for the univariate problems. Ex-
pected sample sizes for the multivariate procedures would be more complicated.
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