THE SURPRISE INDEX FOR THE MULTIVARIATE
NORMAL DISTRIBUTION

By I. J. Goop

1. The surprise index and its generalisations. Let E,, E., E;, ... be a
natural classification into a finite or countably infinite number .of possible
mutally exclusive and exhaustive results of some experiment or observation, and
let P(E; | H) = pi(t = 1,2, 3, --+), where H is a simple statistical hypothesis.
Then the surprise index (Weaver [7]) associated with the result E; is
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If the experiment consists in the measurement.of a continuous vector or
scalar variable with a differentiable distribution function, we define
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where p* is the random variable that is the probability density of the original
random variable, and p is a realisation of p*.

For practical purposes, (2) is almost the same definition as (1). For example,
a continuous scalar variable is usually measured to some fixed number, n, of
decimal places, and the natural classification of the possible results of the experi-
ment is into intervals of length 107" of values of the variable. If we then use
definition (1) and let » tend to infinity, we get definition (2). For experiments
with results that are real variables having distributions that are partly discrete
(atomic) and partly continuous (differentiable), it is not immediately obvious
what definition should be used. Something more will be said about this later.

The surprise index is open to two criticisms:

(I) It is changed when the results of an experiment are lumped together
in a new way, in the discrete case, or when there is a change of mathematically
independent variable in the continuous case.

(IT) The numerator in (1) or.(2) is somewhat arbitrary.

We shall now discuss these two criticisms.

As an example of (I), suppose that an “unbiased coin” is spun twenty times.'
There is an obvious classification of the possible results of the experiment into
2% categories. But, with this classification,
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1 By putting the description ‘‘unbiased coin’ in quotation marks, we intend to imply
that a certain self-explanatory simple statistical hypothesis is to be taken for granted, and
the probabilities of the possible results are the tautological ones usually associated with this
idealised experiment.
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has the same surprise index as
“4) HTTHTHHHTTHHHHTTTHTH.

In practice, (3) would be more surprising than (4), at any rate if neither of them
had been written down in advance of the experiment. This is partly because
(3) is simpler. (The reader should avoid being confused by the two meanings
of the word “simple.” We use the word in its technical sense only in the phrase
“simple statistical hypothesis,” while in “simple hypothesis,” the word has its
ordinary non-technical meaning.)

If we imagine that the 2% possible results are classified into groups of rougbly
equal simplicity, (3) would belong to a small group, whereas (4) would belong
to a large group. If we regard all the results in one group as a single possible
result, it follows that (3) would, after all, have a higher surprise index than (4).
Thus the vagueness of definition (1) is seen to arise from the difficulty of meas-
uring simplicity. (With regard to the regrouping of results, see Bartlett [1],
page 231.)

The connection between surprise and simplicity can be defended by the
following argument.

Perhaps the main biological function of surprise is to jar us into reconsidering
the validity of some hypothesis that we had previously accepted. Hence, we
tend to be surprised when evidence is received against such a hypothesis, i.e.,
when the result of an observation has much greater probability when given
some other, not entirely untenable, hypothesis. But in the process of being
surprised, we often do not have time to estimate the initial probability of the
rival hypothesis; instead, we tend to notice whether the rival hypothesis is very
simple. More formally, we are surprised if E occurs when the likelihood ratio
P(E | H') / P(E | H) is large, where H was previously believed and H’ is very
simple.

Fortunately, simple hypotheses often have higher initial credibilities than
complicated ones, so that the capacity of surprise leads to the discovery of new
truths.

In the above example, a hypothesis that would explain (3) would be that the
coin always, or very often, rotates by the same (odd) number of half-revolu-
tions.

Since no one has yet thought of a satisfactory measure of simplicity, it seems
unlikely that a really satisfactory measure of surprise can be given. For an
experiment whose result is naturally expressed as a single integer, the difficulty
does not seem to matter greatly. It is true that we may be temporarily surprised
because the integer has striking properties, like those of 10,000 or 22,222, but
we are often able to discount this sort of surprise as being due to a “mere co-
incidence” and as being dependent on the irrelevancy that we use radix 10.

Obvious examples of experiments whose results are integers are those giving
rise to binomial and Poisson distributions. For these, A;, has been evaluated
by Redheffer [6]: for the binomial distribution, A; is expressible in terms of the
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sums of the squares of the binomial terms (not coefficients) and therefore in
terms of Legendre polynomials. Outside the range of existing tables, the Legendre
polynomials that occur here may be conveniently computed with the help of a
formula given by Good [4].

We now consider criticism (II). A generalisation of the surprise index, with a
more general numerator, has been briefly discussed by Good [3]. Let

ku\1l/u
N = .[F%T)]_ (x> 0),
N = exp {E(log p*) — log p} = G.E.(p*)/p,
(where G.E. means ‘“geometric expectation’), and let
A, = log Ay (uw = 0).

We may call A, a “logarithmic surprise index.” It can be seen at once that
M(u = 0) is multiplicative, whereas A, is additive, if the results of several
statistically independent experiments are combined into a single experiment.
Weaver [7] did not allow his surprise index to be less than 1, but it is necessary
to do so in order to achieve multiplicativity. A negative logarithmic surprise
index corresponds to an event that ‘“was only to be expected.”

Of the continuous infinity of surprise indexes, the most natural ones seem to
be \; and Ao, or, equivalently, A; and A, . Bartlett [1] discussed Ao, but not in
relation to Weaver’s suggestion. We shall argue below that \g (or Ao) is rather
better than A; , at any rate for multivariate normal distributions. For univariate
normal distributions, there is little difference between Ao and A; .

Before going on to this, we shall digress for a moment in order to discuss (i)
distributions that are partly discrete (as promised earlier) and (ii) ‘tail-area
probabilities.

2. Partly discrete distributions. The above reference to multiplicativity
suggests a possible definition of A, for a univariate distribution that is partly
discrete and partly continuous. We can first classify the possible results into
“atomic” on the one hand and “non-atomic” on the other. This is a two-category
(discrete) classification for which A" may be defined as A, was before. Then, if
the observed value of the random variable is atomic (or non-atomic), we can
compute a conditional A\?, i.e., conditional on the information that the variable
is an atomic one (or a non-atomic one). Finally, we can define A, = A"AP.

3. Tail-area probabilities. The so-much-or-more method in statistics is the
usual method in which the result of an experiment or observation is summarised
by means of a tail-area probability

P@* > 2z), P@E*==x), or P@*> )+ iP@*=2),

where x* is a real random variable and z is a real number. This method is most
satisfying when z* is the likelihood of an experiment (given a null hypothesis),
but in this case the tail-area probability is often difficult to evaluate numerically.
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Moreover, there are again logical difficulties for distributions that are partly
discrete and partly continuous.

The reciprocal of a tail-area probability is often not more than about 10
times the Bayes factor against the null hypothesis, calculated in accordance
with some reasonable assumptions about the initial distributions and proba-
bilities (See Good [2], page 94.) When the ratio is greater than about 10, there
is likely to be some argument about which is the better statistic. This difficulty
can easily arise for bimodal distributions.

Jeffreys [5], page 316, says “What the use of P (a tail-area probability)
implies, therefore, is that a hypothesis that may be true may be rejected because
it has not predicted observable results that have not occurred.” In other words,
a tail-area probability consists in the probability of an experimental result arti-
ficially added to the probabilities of results that did not oceur, or, if not artificially,
at any rate with incomplete logical justification.

M\, for any u, as a final summary of an experiment or observation, overcomes
Jeffreys’ criticism of a tail-area probability, although it may still be unsatis-
factory as compared with upper and lower bounds for a Bayes factor when
we are prepared to assume enough about the non-null hypothesis. For a dis-
tribution with density such as

1 —-— 2 —(z—4)2
—_8,,.(6 (z-+4)2/2 + e (z—4) /2),

A\ 18 apt to be a much better summary of the experiment than a tail-area proba-
bility would be. But it can be argued that better still would be the tail-area
probability associated with the value of A\, . This would come to the same
thing as the use of the distribution of the likelihood or the likelihood density.
(The possibility of using Weaver’s surprise index, \, as a substitute for the use of
tail-area probabilities was suggested in conversation by Mr. G. C. Wall.)

4. )\, for multivariate normal distributions. For multivariate normal distri-
butions, P(p* < p), the distribution of the likelihood density, does not seem
to be expressible in elementary terms. It is therefore perhaps more worth while
to compute A, for the multivariate normal distribution than for the Poisson and
binomial distributions.

A k-dimensional multivariate normal distribution has a density function of
the form ,

l l} 1,2,+¢k

p = chxp {— 1 12'1 Aij(xi - ai)(xi - af)}’

where |A| = det{4:;}. (See, for example, Wilks [8], p. 65.)

Now, it is easily seen that for any k-dimensional probability density, the
generalised surprise indexes A, , A,(¥ = 0) are invariant under all non-singular
linear transformations.” This observation follows from the fact that the Jacobian

? The method of this paragraph is due to the referee; my own method was clumsier.
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of such a transformation is constant and non-zero. Therefore, for non-degenerate
k-dimensional multivariate normal distributions, there is no real loss of generality
in taking 4 = I (the identity matrix) and a; = a; = --- = a; = 0. For this
standardised distribution, we can use the multiplicative property of A, for
probabilistically independent experiments, together with' a simple univariate
integration, to evaluate A\, . Then, transforming back to the general non-singular
distribution, we get

Ay exp {3 Z Aij(x: — ai)(z; — a;)} (u > 0),

1
T (u A 1)k o

A= 3T Aule - ad@ — 0) — pelog @+ 1) @ >0),

o
Ao = 3{ ZAij(xi — a)(z; — a) — k.
]

It may be observed that A, (and therefore \,), regarded as a function of u,
is continuous to the right at w = 0. By writing u = ¢° — 1, we see at once
that A, is a strictly increasing function of u. When u — «, A, tends to

Ao =3 2 Auilai — a)(z; — a)).
]

From this expression it is clear that A is the logarithm of the likelihood ratio
in the sense of Wilks [8] for testing the hypothesis of our multivariate normal
distribution “within” the more general class of multivariate normal distribu-
tions that have the same matrix {4;;}, or, what comes to the same thing, the
same covariance matrix.

It is known (see, for example, Wilks [8], page 104) that 2A_ has precisely a
chi-squared (gamma-variate) distribution with % degrees of freedom. Since

k
Ay = Ay — %log w4+ 1),

we can obtain the exact tail-area probability corresponding to any observed
value of A, . But we may also develop an intuitive appreciation of A, (or \,)
in itself, for some fixed value of u. In order to decide which is the most natural
value of u to take, we note that E(Ao) = 0. (This is obvious from the definition
of Ao and also from the fact that 2A¢ + k has a chi-squared distribution with
k degrees of freedom.) It seems natural to demand that the expected log-surprise
should be zero before an experiment is performed. It is not equally natural
to insist that E(\,) = 1, or that E(\,") = 1 (which gives u = 1), since \, and
A.! have very skew distributions. For very skew distributions, expected values
are more artificial than for ordinary distributions such as the chi-squared. For
one thing, the median is a long way from the expected value for very skew
distributions.

We conclude, then, that for the k-dimensional multivariate normal distribution,
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Ao and Ao seem more natural measures of surprise than A; and \; , whereas other
values of u do not seem to have anything special to commend them. There is
little difference between Ao and A; when k is small.

For k = 1, we have

No = 632/2/\/‘;, A= eszlz/\/é’

where s is the ‘“‘sigma-age” of an observation; i.e., the deviation from the mean
divided by the standard deviation. Some numerical values of Ay and A; are
given in the following table, together with the reciprocals of the corresponding
two-tailed tail-area probabilities, P(s).

s 0 1 2 3 4 5
1/P(s) 1 3.1 22 370 16000 1740000
Ao 0.61 1 4.5 54.6° 1800 160000
A 0.71 1.17 5.2 64 2100 187000

If we have a sample of several independent observations (k-dimensional
vectors) from our multivariate normal distribution, we can compute Ao for the
whole sample by multiplying together the separate A¢’s. This method may be
regarded as an alternative to Hotelling’s generalised ‘“‘Student’’ test. (See, for
example, Wilks [8], Section 11.4, where further references are given.)
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