MULTI-FACTOR EXPERIMENTAL DESIGNS FOR EXPLORING
RESPONSE SURFACES!

By G. E. P. Box? anp J. S. HUNTER?

Summary. Suppose that a relationship 7 = ¢(&1, &2, - - -, &) exists between a
response n and the levels & , &, - - - , & of k quantitative variables or factors, and
that nothing is assumed about the function ¢ except that, within a limited re-
gion of immediate interest in the space of the variables, it can be adequately rep-
resented by a polynomial of degree d.

A k-dimensional experimental design of order d is a set of N points in the k-
dimensional space of the variables so chosen that, using the data generated by
making one observation at each of the points, all the coefficients in the dth
degree polynomial can be estimated.

The problem of selecting practically useful designs is discussed, and in this
connection the concept of the variance function for an experimental design is
introduced. Reasons are advanced for preferring designs having a “spherical”
or nearly ‘“spherical” variance function. Such designs insure that the estimated
response has a constant variance at all points which are the same distance from
the center of the design. Designs having this property are called rotatable designs.
When such arrangements are submitted to rotation about the fixed center, the
variances and covariances of the estimated coefficients in the fitted series remain
constant.

Rotatable designs having satisfactory variance functions are given for d = 1,
2;and k = 2,3, ---, . Blocking arrangements are derived. The simplification
in the form of the confidence region for a stationary point resulting from the use
of a second order rotatable design is discussed.

1. Introduction. Suppose we have k variables or factors whose levels are denoted

by &, &, - -+, & on which depend the level of some response % in accordance
with an unknown relationship
(1) =9, b, -, &)

Suppose that in order to explore this relationship, N experiments are performed.
The uth of these experiments consists in adjusting the factor levels to a certain
set of k predecided values, £1u, &4, - -, £ and of observing a response ¥, .
The problem of experimental design discussed is that of choosing the N sets of
levels at which observations are to be made. It is often convenient to view the
problem geometrically and to regard Eq. (1) as defining a surface referred to as
the response surface. The N sets of conditions at which the response is observed
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196 G. E. P. BOX AND J. S. HUNTER

will then correspond to N points in the space of the variables called experimental
points.

1.1 Notation. Following the convention adopted in previous papers [1], [2]
we shall define a set of standardized levels

(Ew. - t) (Em —_ 5)2\1”
2 w 5 y =
(2) x 5 where  S; uz_; SN )
For these standardized levels therefore
N
(3) > %w=0 and Z 2, = ~
u=1 u=l

and for the time being the convention is adopted that ¢ = 1.

We shall denote by D the N' X k design matriz which provides a program of the
N experiments to be performed. The elements of the uth row of this matrix are
the values of the standardized levels x4, 2., - -+ , 21 to be used in the uth
experiment. These elements also define the wth experimental point in the k-
dimensional space of the variables. Since the designs we consider may include
many factors, they will be called multi-factor designs.

Using standardized factor levels in accordance with Eq. (3) we can prepare
standard design matrices appropriate for various values of %k, and for various
types of assumptions concerning the function ¢. In given circumstances the
experimenter can select the appropriate design matrix and choose suitable
average values & , &, - - - , & and units S;, Sz, - - -, S; so that the design covers
the region of immediate interest in the space of the variables. The level of the
1th factor to be used in the uth trial is then £, = £; + Sizi, .

We shall assume in what follows that in the limited region of immediate
interest ¢ can be represented by a polynomial of degree d so that the response at
the uth point is assumed to be

Mu = Bo%ou + Bitiu + ++ + BiTku + BuTiu + -+ - + Bukhy + - - -

4)
+ Bt + -0+ Brastralie + BmTi. + ete.

Following convention, we call oo ; &y, - -+ , & ; &3, -+ , Tk ; Taa, - - ete., the
“independent” variables. When the polynomial is of degree higher than the first,
the “independent” variables are not, of course, functionally independent.

We shall obtain least squares estimates b, , b, , ete., of the coefficients 6, , 61 ,
ete, by fitting Eq. (4) to the N observed values 1, y2, -+, Yu, -+, yYn. It is
convenient to write down the constant term as Byro, rather than as 8, defining
Zou as unity for all values of u. We call 8; the 7th linear coefficient, 8;; the sth
quadratic coefficient, B8;; the ijth linear X linear crossproduct coefficient (or
simply the ¢jth interaction coefficient where no ambiguity will arise) and so on.
The independent variables z; , z; , ; are similarly named.

A design which includes & variables and allows all constants up to order d to
be determined will be called a k-dimensional design of order d. In a polynomial
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E+d

d > terms, so that for a £-dimensional design

equation of degree d there are <

of order d, the number-of experimental points must be at least (k ; d).

1.2 Factorial designs. A factorial design from which are to be determined all
the polynomial coefficients of order d or less includes all combinations of d + 1
levels of each of the factors. The number (d 4+ 1)* of experimental points so

generated is often excessively large compared with the number (k ; d) of

constants to be determined. In five variables for instance, the factorial design
would require 3° = 243 points to determine the 21 constants in the second order
polyhomial.' The number of experimental points may sometimes be considerably
reduced by fractional replication [3]. Unfortunately the device of fractional
replication is not very effective in generating from the higher level factorials
satisfactory designs of order greater than one. For the particular problem here
considered of fitting multivariate polynomials to data there seems to be no reason
for basing experimental arrangements on the factorials and a more fundamental
approach will be attempted.

1.3 Requirements. The following are properties of an experimental design of
order d which are desirable in the present context. The relative importance of
these properties depends on the particular experimental situation. To be of value
for specific purposes a design will not need to possess them all.

(a) The design should allow the approximating polynomial of degree d (ten-
tatively assumed to be representationally adequate) to be estimated with satis-
factory accuracy within the region of interest.

(b) It should allow a check to be made on the representational accuracy of the
assumed polynomial.

(c) It should not contain an excessively large number of experimental points.

(d) It should lend itself to ‘blocking’.

(e) It should form a nucleus from which a satisfactory design of order d + 1
can be built in case the assumed degree of polynomial proves inadequate.

In this paper we are concerned with interpreting (a) in such a way as, where
possible, to satisfy the other properties also. In Section 2 some general results in
Least Squares are stated. In Section 3 the criterion of orthogonality is discussed.
In Section 4 the concept of the variance function for the designs is introduced.
This indicates the desirability of designs for which the variance is constant at a
constant distance from the origin of the design. Such designs are called rotatable
designs and the conditions that such designs must satisfy are derived in Sections
5 and 6. In Section 7 second order rotatable designs are obtained. The arrange-
ment into blocks of second order rotatable designs is discussed in Section 8. The
details of the calculations required when using the designs is given in Section 9.
Completely worked numerical examples will appear in [14]. Section 10 discusses
the construction of a confidence region for a stationary point.
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2. Least squares results. For any linear model, such as (4), in which there are
L unknown coefficients, the N equations at the N experimental points may be
written in an obvious matrix notation as
(4a) n = Xg,

where the N X L matrix X is called the matrix of independent variables.

If the cbserved values found at the N experimental points are represented by
a vector Y and
(5) &Y) = n; &Y — n){Y — n) = Iy

then, on the supposition that the mathematical model (4a) exactly represents the
true situation, the estimates B of § linear in the observations which are unbiased
(i.e., &(B) = B) and have severally the smallest possible variances, are those
which reduce to a minimum the sums of squares of discrepancies (¥ — Y)" (¥ — Y)
between the observed values Y and the values ¥ = XB given by the fitted func-
tion. These are the ‘“least squares” estimates

(6) B = XX)"X'Y.

Their variances and co-variances are the elements of the matrix

Q) §B — B)(B — 8) = XX)

and an unbiased estimate of (N — L)o’ is provided by the quantity
(8) & -Y)¥ -Y) =YY — BX'XB.

If, contrary to supposition, the mathematical modeln = X8 is inadequate and
in fact L, further terms X8, are needed to ensure an adequate representation of
the response so that

n= Xg + Xl@l ’
then the estimates given by (6) are biased for
(8a) &B) = 8 + AB:,

where A = (X’X)™'X'X, is an L X L; matrix of bias coefficients which has been
called, [1], the “alias’’ matrix. In this situation the residual sum of squares is also
biased and we find

(Y'Y — B'X’XB) = (N — L)o* + 8i1(X; — XA)'(X; — XA)B,
= (N — L)o* + g:X1(I — XX'X)'X")X,8; .
2.1 The moment matriz. Equations (6), (7), (8), (8a), and (8b) contain the
matrix X’X of sums of squares and products of the independent variables. We
notice that N'X’X may be viewed as a matrix of moments of the design. For

example, if there are k = 2 variables, and we are considering a design of order
two, the equation to be fitted is

(8b)
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9) 7 = Bo%o + Bixs + Boxs + Bui + BTy + BisiZs
and the matrix N7'X'X is
0 1 2 11 22 12

of 1 @ [ 220 [2]]
1 ] [ (@2l (][22 [112]
(10) 2| [ (21 [22] [112] [222] [122]
| (1] (1) [112] [1111] [1122] [1112]
22 1 [22] [122] [222] [1122] [2222] [1222]
12 | [12] [112] [122] [1112] [1222] [1122] |

The quantities in square brackets denote the moments of the design. For ex-
ample, N' X w1z, = [1], N D on_; ziuz. = [112] and so on. We shall call
N7'X’X the moment matrix and its inverse N(X'X)™" the precision matrix. When

= 1 the elements of this latter matrix are the variances and covariances of the
effects measured on a ‘‘per-observation’ basis.

3. Orthogonal designs. The problem of choosing a “best” design for the
fitting of a model n = X@ has usually been interpreted as that of satisfying the
requirement that D should be so chosen that the coefficients § are separately
estimated with smallest variance. In references [4], [5], [2], and [6] a theorem is
proved (for the case where the variables in the matrix X are functionally inde-
pendent and the diagonal elements of X’X are fixed by the definition of the
problem) that the requirement of smallest variance is satisfied by so choosing D
that the matrix X'X is diagonal. Such an arrangement may be called an orthog-
onal design.

In the present context it is only in the case of designs of first order that the
variables are functionally independent and that all the diagonal elements of
X'X are fixed by the definition of the problem. For this reason, as we see in more
detail below, the above theorem is directly helpful only in the derivation of first
order designs. IFor higher order designs an alternative approach is necessary.

3.1 First order designs. In this case the independent variables are a¢, z;,

, Zir. Since these variables are also functionally independent, and since
Zx.u = N (t=0,1,2, - - -, k) so that the diagonal elements of X'X are fixed by
definition of the problem, the smallest variance theorem referred to above leads at
once to the conclusion that a best design matrix D is one for which N7'X’X = I.
It will be noted that for this case we are led to a unique form of moment matrix.
Such a moment matrix is realized in practice simply by choosing D to have
orthogonal columns subject to Egs. (3).

The construction and properties of such designs are discussed in [2]. Geo-
metrically the designs consist of N points, at the vertices of an N — 1 dimen-
sional regular simplex if k = N — 1, or the projections onto a space of k dimen-
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sions of the vertices of the N — 1 dimensional regular simplex if k < (N — 1).
The arbitrariness in the choice of D corresponds to the fact that the simplex may
be taken in any orientation. This class of designs includes the factorials and
fractional factorials. These latter designs are of special value because they are
easy to carry out, they allow the adequacy of the first degree representation to be
checked and the nature of departures from it to be readily identified, they form
natural nuclei which can be augmented to form designs of higher order, and they
are readily arranged in blocks.

3.2 Second order ‘“‘orthogonal” designs. For designs of order higher than the
first the quantities z¢; 21, -+, % SXY, e, T TTa, Ty, e, Teoa®k) T,
ete., are not all functionally independent and a diagonal moment matrix is im-
possible of attainment since, unless the z;, are all zero, certain sums of products
such as those between z; and 2, and between z7 and z; are necessarily positive.

Orthogonal second order designs of a sort can be obtained if we redefine the
independent variables in terms of the orthogonal polynomials. We show below
however that there is an infinite variety of such designs with widely different
properties and that these designs do not provide a wholly satisfactory solution to
our problem.

Let z{™ he the orthogonal polynomial of mth degree for the sth variable ;.
Thus

(m) m—1
(11) -l'z'm = x;n + X1, ms + et + a1y, 25 + Ao o
where the a’s are chosen so that
> )
(m), (m— p, &
(12) inzxi: = O; P = 1; ‘-')) s, M.

u=1

Then we can express the original polynomial equations in terms of these ortho-
gonal polynomials and their products in the form

n = (XP)(P7'8) = X,

where P is the matrix transforming the old independent variables to the new.
For clarity we will discuss the particular case of a two dimensional design of
order 2 but, as will be readily appreciated, the conclusions drawn will be quite
general.

Using (3) with (11) and (12) we have
(13) e = 2, 2 = 2 — [ — 1
and the second degree equation (9) for ¥ = 2 could be written as

7= (Bo + Bu + Bz) 2o + (B + [111] Bu)xr + (B2 + [222]822)2:

(14) ) .
+ Bulzi — [111l)z; — 1) + Bw(zz — [222]r; — 1) + Butiza.

The symmetric moment matrix N~* X’X is then that given below.
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0 1 2 11 22 12

0 1 . . . . a
il 1 a - b ¢
2l - a1 d - e

(15) :
|- - d f g h

2 b - g 1 j

12/a ¢ e h j k]

Here a = [12], b = [122] — [222][12], ¢ = [112],d = [112] — [111][12],

e = [122], f = [1111] — [111]2 — 1,

g = [1122] + [111][222][12] — [111][122] — [222][112] — 1,

= [1112] — [111][112] — [12], i = [2222] — [222]* — 1,

J = [1222] — [222][122] — [12], k = [1122].
To obtain a diagonal matrix we must evidently choose the design so that

[12] = [112] = [122] = [1112] = [1222] = O and [1122] = 1,

which insures that all the elements of the matrix (15) vanish except those on the
diagonal. Examples of such designs are the factorials with more than two levels
and the orthogonal composite designs given by Box and Wilson [1].

There Seems little justification for limiting consideration to only these arrange-
ments. In particular nothing in our discussion has indicated that the choice
[1122] = 1 is necessarily a good one, or that it would not be better to choose some
other value and let the quadratic effects be correlated. Again, it is far from clear
what constitutes a “good” choice of the diagonal elements [¢557] — [i5:] — 1
corresponding to the quadratic constants in the moment matrix.

Since the scaling of the design has been standardized, [¢33)° and [¢77%] are measures
of ‘“‘skewness” and “kurtosis” for the ¢th variable. The choice of the moments
[#72] decides the question of whether the marginal distribution of the pattern of
design points for sth variable is to be symmetric or skew. The choice of the
moments [777] decides whether there is to be a tendency to a uniform distribu-
tion of points or to a concentration of points at the center and at the extremes of
the range. Since for. all such designs in our conventional scaling the variances of
linear, quadratic and interaction estimates corresponding to the 7th variable are
N7, N ([545] — [#5 —1)™" and "N respectively this choice also decides
the relative precision with which linear quadratic and interaction coefficients are
estimated.

It may be noted for example that, for the 3" factorial design in conventional
scaling, [¢77] = Oand [&2452] =3 (7 = 1, 2, - - - , k). The variances of the estimates
for the quadratic coefficients are thus twice as large as those for the interaction
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coefficients. In terms of estimated derivatives at the center of the design there-
fore, the estimated “quadratic’ derivative 9’n/(dx;)* has eight times the variance
of the estimated “interaction” derivative 8/dx.0; . This was pointed out in [1],
where an intuitive attempt to reduce this apparent unbalance was made by in-
troducing designs in which quadratic and interaction derivatives were determined
with equal precision. In fact designs both orothogonal and non-orthogonal can be
found for which the relative variances of estimated coefficients of different kinds
can differ over a wide range. Up to this point the present discussion has provided
no satisfactory basis on which a rational choice can be made.

In selecting from possible orthogonal designs it seems at first sight that the
quantities [#775] — [¢7] — 1 should be made as large as possible. This would seem
to give the smallest possible variances for the quadratic effects without affecting
the precision of the remaining constants. On closer inspection however the ap-
parent advantage of such a choice turns out to be somewhat illusory because

(a) The apparent advantage of making the quantity [ii75] — [#i]° — 1 large
arises only because of the particular scale convention adopted. If for example we
scaled our designs on the basis of the size of the fourth moment instead of on the
size of the second moment a contrary conclusion would be reached.

(b) The quantity [#%7] enters not only into the precision matrix but also into
the alias matrix. In fact for any orthogonal design of this type the expected value
of the 7th linear effect is

8(b;) = Bi + [i5d] Biwi + ; Biij -

Thus the apparent reduction in the variance of the quadratic effects is gained
only at the expense of an increase in possible bias in the linear effects.

(¢) The quadratic effect 8;; measures curvature of the surface in the direction
of the 7th coordinate axis, It is shown in the next section that by attempting to
measure the precision with which curvature is determined in the directions of the
coordinate axes we may decrease the precision with which it is determined in
some other direction which might be of equal importance to the experimenter.

3.3 Effect of rotation on precision of the estimates. If, as we shall assume, we wish
to use the design to explore a surface about which little is known, we shall in
particular not know how the design is oriented relative to the response surface.
For example suppose the surface could be represented locally by an equation of
second degree, then the response contours would be a set of conics which could be
referred to their principal axes. The orientation of these axes relative to the axes
of the variables would differ from one problem to another. It is of some interest
therefore to consider how the variances and co-variances of the estimated coef-
ficients are changed when the design is rotated.

As an example suppose that we were to use the symmetrical 3’ factorial design
to estimate the coefficients in the second degree Eq. (9). Then bearing in mind the
conventions expressed by Egs. (3) concerning the origin of the design and the size
of the scale factor,, we should use the nine combinations of the levels
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F1a. 1. Variances of, and correlations between, second order coefficients estimated from a 3?
factorial design rotated through an angle ¢

7= (—a,0,a)and z; = (—a, 0, @), where o = (%)’. In the normal orientation
of the design the variances of the linear effects, quadratic effects and interaction
effects would be ¢°/9, 2¢6°/9 and ¢°/9 respectively, and consequently the cor-
responding entries in the precision matrix (which measure the variance on a
“per observation” basis for unit experimental error variance) would be 1, 2, and
1, respectively. All the covariances between these effects would be zero. If the
design were rotated through some angle 6 however then, as is illustrated in Fig. 1
the variances of the quadratic and interaction effects would undergo marked
changes and the quadratic effects would become correlated with each other and
with the interaction effect. Only the linear effects would have constant variance
and would remain unchanged in all orientations.

We see that the variances of individual coefficients estimated using a design in
a particular orientation may give a somewhat misleading impression of its
efficiency. The condition of orthogonality refers to orthogonality in a particular
orientation, and this property is in general lost on rotation of the design.
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4. The variance function for the design. We have proceeded so far by con-
sidering the accuracy with which ndwidual coefficients are estimated. This
approach does not, for the case of designs of order higher than the first, seem to
lead to any unique class of solutions, but points to the conclusion that we should
in some way consider the joint accuracy of the coefficients. We are really in-
terested in the individual coefficients only in so far as they supply information
about the surface. To make further progress therefore we consider what we call
the design “variance function”.

We shall denote the k coordinates #;, - - -, &;, - - - , 2 of a point in the space
of the variables by the £ X 1 vector x = {z,}. Suppose that ¢, is the response
estimated at the point x using a polynomial fitted by least squares to N observa-
tions made in accordance with some experimental design D. The variance
V(9:) of this estimated value is a function of x and ¢* and we can reduce V (4,)
by increasing N (for example by replicating the points). The quantity V(x) =
NV (9.)/d", or alternatively its reciprocal W(x) = /N V(9.), is thus a stand-
ardized measure of the accuracy with which the design D allows the response at
the point x to be estimated. NV (¢.)/o” will be called the variance Sfunction of the
design and W(x) = {V(x)}™" the weight function. For any experimental design
V(x) provides a standardized measure of the precision of the estimated response
at any point in the space of the variables. It is a function of 2, , z;, -~ - , 7; and
the elements of the precision matrix alone and is uniquely defined for every k
dimensional experimental design of order d.

For example suppose we used the nine points of the 3° symmetrical factorial as
a second order two dimensional design. On the convention that the origin and
scale are chosen so that [1] = [2] = 0 and [11] = [22] = 1, we have for the
variances and covariances of the effects V(b)) = (8)o*, V(b)) = V(b)) =
@), V(bw) = V(bz) = 3)d*, V(b)) = &)o” and Cov (boby) = Cov (bobay) =

: (——%)f. The variance function for this design is therefore

V(x) = gV(ﬁz) =5 — 321 — 32} + 221 + 223 + 2ia}.

The variance contours for which are shown in Fig. 2(i).

In Figs. 2(ii) and 2(iii) are shown variance functions for other two-dimensional
second order designs mentioned in [1]. The arrangement in figure 2(ii) is the
‘“‘pentagonal design’’ and that in figure 2(iii) is an example of a class of designs,
already referred to in Section 3.2, in which quadratic and interaction derivatives
are determined with equal precision. It will be seen that the arrangement of
points in the latter design is in fact almost the same as would be obtained by
rotating the factorial through 45°.

If, as we shall suppose, nothing is known in advance about the orientation of
the surface, it seems most appropriate to adopt designs which have variance
funections like that of the pentagonal design. That is to say designs which generate
information such that the response is estimated with constant variance at all
points equidistant from the origin of the design. When we have no knowledge in
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Tn)  PENTAGONAL ) COMPOSITE

3 sactoReL

F1e. 2. Variance contours for some 2 dimensional designs

advance of the orientation of the surface relative to the design this also seems
instinctively to be a sensible requirement for designs other than those of second
order.

In general, for any k— dimensional design, if the variance of the response
estimated by the fitted polynomial is a function only of

k
=21k
50 that the variance contours in the space of the variables are circles, spheres or
hyperspheres centered at the origin the design will be said to have a spherical
variance function V(p). An arrangement of points giving such a variance function
will be called a rotatable design.

The remainder of this paper is devoted to constructing rotatable or nearly
rotatable designs, that is, arrangements of experimental points which symmetri-
cally generate information in those coordinates regarded as most relevant by the
experimenter. We shall interpret requirement (a) in Section 1.3 in this sense.

6. Condition for rotatability. In the developments which follow we need some
properties of derived power and product vectors and Schliflian matrices [7],
(8], and [9]. If X’ = (21, %2, - - - , &) then we denote by x’*”' the derived power
vector of degree p. For example if k = 2

x' = [z, ) and  x'% = [af, 2}, 2"%; 2,

and in general x’'*' will contain as elements all the powers and products of total
degree p and less (duly ordered) of the elements in x” with suitable multipliers
attached so that x’®'x”! = [x’x]’. If a vector x is transformed to a vector
z by z = Hx, the pth Schliflian matrix H" is defined such that z™™ = H™"'x™,
It is readily confirmed that [HK]™ = H™K" and also that if H is orthogonal
then so also is H™.

We need some properties of spherical distribution functions discussed in
references [2], [10]. These distribution functions are of some importance in basic
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statistical theory, and especially in randomization theory, but these aspects
are not pursued here.

5.1 Moments of a spherical distribution. If we have a set of random variables,
21,2, ***, 2, which may be regarded as the elements of a random vector z,
and each of which has zero mean and unit variance and if their joint distribution

can be written ir the form
(16) p(z) = kf(z'z), 0=<zz<W,

where W may be infinite and k is taken so that the integral over the whole
space is unity, then since the density will be constant on hyper-spheres centered
at the origin of the 2’s, we shall say that the variables have a spherical distribu-

tion.
Now if all the moments of a distribution exist, and the m.g.f. o(f) can be

expanded in an infinite series, we can write this series

a7) o) = 1+ X S—‘, {m, |

where m, is the vector of moments &{z"'}. But for a spherical distribution the
moments are invariant under any orthogonal rotation of the coordinates whence

the m.g.f. is
o) = 8(e") = &(¢"™);
that is,

(18) o(t) = o(H't)

for any orthogonal matrix H. Regarding now the matrix H as transforming
the matrix t/, this implies that ¢(t) is unchanged by any transformation on
t which leaves t't unchanged. The m.g.f. is therefore a function of t't and can be

written in the form

1

5 (07,

(19) e(t) = 1+ gﬁl Azp

where the \’s are real positive constants depending on the function f in (16).
Equating terms in (17) and (19) and writing [1**, 2%, - .. | k**] for the moment
8lxrt, 222, - -+, ™) we have

k
H a,—!
(20) [1“1, 2013’ ) kak] = e = ’
20"/2 H (%(2,)!

=1

where & = D w1 a; is called the order of the moment.
If the 2’s are independent so that

(1) p(@) = I_I1 p(2),
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then it has been shown, in references [11] and [12] that the only spherical distribu-
tion possible is the multi-variate normal with equal variances and zero covarian-
ces, which may be called the spherical multi-normal distribution. For this dis-
tribution the m.g.f. is

(22) o(t) = exp[3(t't)]

and all the N’s are equal to unity. We see therefore that for any spherical dis-
tribution, the moments of the same order bear the same relationship to one
another as do the moments for the spherical multi-normal. The moments of
different orders will however depend on the A’s and hence on the function f(z'z).

5.2 Variance of an estimated response. Consider the response . estimated
by a fitted polynomial of degree d at the point whose co-ordinates are given
by the last k& elements of the vector X’ now defined asx’ = (1, 21, 22, «+ -, Zx).

The polynomial has (k jl_ d) = L terms and the estimated response at the

point x1, x2, - -+, Xx i8S

23) 9z = bo + by + boxs + -+ + bewr + bnxi + bnxg + ---
+ bui + burws + - -+ + b ate@s + bual + ete.,
which may be written

(24) 9. = x'¥b,

where the L X 1 vector b contains all the b’s with suitable multipliers attached
so that (24) is equivalent to (23). Suppose also that the true response at this
point is given by

(25) Nz = x,[d]@-

Then for a given design matrix D for which there exists a matrix of independent
variables X of full rank L the variance of 4, is

pgy V@) = 8l = 1)@ — 1)) = X8> — B)b — 6))x”
( 6) — xr[d][er]—lx[d] P

Consider now the variance of a second estimated value 7, which is the same
distance p from the origin and whose co-ordinates are the last k elements of the
vector z = Rx, where R is an orthogonal (X + 1) X (k + 1) matrix consisting
of an arbitrary orthogonal matrix H bordered by a first row v’ = (1,0,0, ---, 0)
and a first column u. Making the substitution in (26) we have

(27) V(,gz) — xl[lelldl[XIX]—IRId]x[d]o_z
(28) = xlld] (R'[d]X'XR[d])_lx[d]a-z,

To satisfy the condition that the variance is constant on spheres centered at
the origin of the design we require therefore that (28) and (26) are identically
equal for every x and every R. Whence
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(29) XX = R“YX'XRY

for every orthogonal matrix R. Now N'R’™X’XR™ is the moment matrix
for the design matrix HD, and consequently the variance is constant for every
point a distant p from the origin if and only if the moment matrix is invariant
under orthogonal transformation of the design matrix. This means that unlike
the 3* factorial design whose behavior under rotation is illustrated in Fig. 1,
every variance and covariance of the b’s and all the moments and mixed moments
of the design must remain constant under rotation. We now need to find the
form of moment matrix N_'X’X for which Eq. (29) is satisfied.

5.3 Moments of a rotable design. We redefine the vector t’ tobe (1,4 ,8, - -+ , &)
and consider expression

(30) Q = N'vYIXXt",
which is a generating function for the moments of order 2d and less of the design.
More specifically, since if X, = (1, Z1u , Tou , * 5 Tku), XK = D s xx19 we
have
N
Q = N9 <Z delx;m) £ @
u=1
ul /
@31) =N 2 (fxxut)
u=1

N
=N 21<1 + b + bTw + -+ bz)?

Thus if we write [1*, 2%, -- -, k] for the moment N "> ¥, 2} 252 - - - zfk
then the coefficient of {1, t52, -+, t¢*in Q is
(2d)! o a

(32) T [1%, 2%, . . . K7,

H a;1(2d — a)!

=1
Now from (29) the design is rotatable if and only if
(33) Q — N—lt/[dlx/xt[dl = N—lt/Ile/IdlxlXR[dlt[dl
(34) = N (tR)X'XRH)Y;

that is to say, if any transformation which leaves t't unchanged does not change
Q. Hence the design is rotatable if and only if @ is some function of t’t and since
it is a polynomial in the #’s it must be of the form

(35) 0=2au (L)

8=0 =1

The coefficient of 72, 2%, - -+, & " in this expression is zero if any of the a; are
odd integers. If the «; are even integers the coefficient is

(36) atta)t /1T Gt
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We may now equate coefficients to obtain specific values for the moments to
order a = 2d as follows

k
H a;!

au(3a)!2d — a)!

2d! k ;
III (3a)!

(37) [1%,2% ... k™ =

and if we write

a2 1) 1(2d — a)!
2d!

(38) = Aa,

then finally the moments of a rotatable design of order d are

[171,2%2 ... k" =0 if one or more of the «; are odd,
k
]
(39) IT et .
=X % if all of the a; are even,
2°7 I (Gewd)!

T=1

which are the moments up to order 2d of a spherical distribution.

5.4 Effect of transformations on zero moments. It is readily seen that if the
original variables z;, 2, -+, #; are transformed by any non-singular linear
transformation to variables X;, X,, ---, X, then any moment of order a for
the new variables will be a linear combination of moments all of order.a for the
old variables. It follows in particular that if an arrangement of points is such
that all the moments of a given odd order are zero then they remain zero in
every orientation of the arrangement.

6. Moment requirements for rotatable designs of first and second order.
It has been shown that the moment matrix for a rotatable design of order d
has a specific form which is invariant under orthogonal rotation of the axes of
the variables. The moments which are the elements of this moment matrix are
the same as those of a spherical distribution and are known apart from arbitrary
constants Ao, Az, **-, Aw . The variance function V(p) for a rotatable design
depends only on A, Az, - -+, A and on p = (x'x)"%. In selecting a design of or-
der d we can proceed as follows:

(a) Using Eq. (39) we first obtain in terms of the A’s the form of the moment
matrix for a rotatable design of the required order.

(b) Since for a rotatable design the variance function depends, apart from the
\’s, only on p it is now comparatively easy to study the effect on the variance
function of varying the \’s. Having selected the A’s to give a satisfactory variance
function and alias matrix the required form of the moment matrix is com-
pletely defined.

(¢) We have then to determine actual arrangements of points which, so far
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as possible, satisfy the requirements listed in Section 1.3 as well as these moment
conditions.

From Eq. (39), A = [0l and Ap = [#¢], (¢ = 1, 2, - -+ , k). Since by convention
[0] = [] = 1, Ao and A; are always equal to unity, and no element of choice
for the N’s arises with rotatable designs of first order, but only with designs of
order 2, 3, etc., for which the values of Ay, As, etc., must be selected. In making
this selection both the variance function and the alias matrix must be con-
sidered. It will be recalled that the alias matrix contains as elements the co-
efficients of biases which arise in the estimated coefficients when the assumed
form of the model is inadequate. For a design of order d it is natural to first
consider biases arising from terms of order d + 1 not allowed for in the assumed
form of the model. If we suppose that the true form of the model is of order
d + 1 it will be clear from the form of the alias matrix A in Eq. (8a) that for a
rotatable design of order d the coefficients of the biases can be completely ex-
pressed in terms of Ao, Az, -+, A and the moments of order 2d + 1. When
possible, it is advantageous to use a rotatable design of order d for which all
moments of order 2d + 1 are zero. From Section 5.4 these moments are then
zero in every orientation. The alias matrix A is a function only of the A’s and all
biases arising from terms of order d + 1 are avoided except those which arise
inevitably because the bias coefficients are functions of the \’s themselves.

The remainder of the present section is devoted to determining the necessary
form of the moment matrix and to discussing the properties of designs of first
and second order. Specific second order designs having the required form of
moment matrix are derived in Section 7.

6.1 Rotatable designs of order 1. Suppose we have k variables z1, zz, - -~ , &
and we desire to fit a polynomial of degree d = 1, that is to say, a fitted equa-
tion representing a plane

(40) Gz = bo + bty + baxa + - -+ + bpxr .

Then from Eq. (39), for a k-dimensional rotatable design of first order

all moments [7] (z = 1,2, ---, k) of order 1 are zero,

mixed moments [4] (4 # j = 1,2, ---, k) of order 2 are zero,

quadratic moments [¢7] (z = 1,2, --- , k) of order 2 =X, = 1.

Thus the moment matrix N X'X is I, .

The condition that a first order design is rotatable is thus precisely the same
as that it should have smallest variances, namely that its moment matrix
should be the identity matrix.

The variance function for this type of design is given by

(41) NV(gs)/o" = V(p) = (1 + #°),

where p = { D123}

The standardized weight function W(p) = [V ()], which shows the relative
precision of the estimate 7 at a distance p from the center of the design, for any
first order rotatable design is graphed in Fig. 3.

Setting aside our scaling convention we see that in general the variance of
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wi(p)

Fi1a. 3. Weight function for any first order rotatable design

the estimated response at a distance p from the center of any rotatable design
of first order is given simply by

(41a) V(@) = V(bo) + V(bi)Pz.

This is of the same form as the well-known formula for a single variable z with
p replacing z.

6.11. Biases due to second order coefficients. If it happens, contrary to assump-
tion, that terms of second order are not negligible, then using Eq. 8a, the expected
values of the estimated coefficients for any first order rotatable design are as
follows

k
8(bo) = Bo + X Z=; 8.0
(42) & ’ k
&(bs) = B8: + GZ_”Z_; lghi]Bon. G=1,2 -,k

Those terms printed in boldface type inevitably arise but those in ordinary type
may be eliminated by a suitable choice of the design. On our convention A; is
equal to unity and it follows that, if 8, is estimated assuming a first order model,
then when the quadratic coefficients 8,, are not zero, bias in this estimate is
inevitable. In general the coefficients [ghi] of the biases in the estimates of the
linear coefficients 8; will vary as the design is rotated (see reference [2] for
particular examples of this). By selecting a design for which all the third order
moments are zero we may eliminate bias in the estimates of the linear coefficients
in every orientation of the design (see Section 5.4). Specific designs of this sort
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were discussed in [1] under the name “first order designs of type B.” They can
be obtained by duplicating with reversed signs any orthogonal first order design,
in particular any of the ‘“simplex” designs of [2], [5]. The two-level factorial
designs and many of the fractional factorials are also examples of particular
orientations of designs of this sort.

6.2. Rotatable designs of order two. Suppose we have k variables, and desire
to fit a polynomial of degree two. From (39) the moments of a k-dimensional
second order rotatable design suitable for this situation are such that all odd
moments are zero, and the remaining moments are [i7] = Ay = 1, [igj5] = A4,

[¢2d7] = 3\s.

Thus for a second order rotatable design the moment matrix is of the form:

(43) N'XX =

[
1
2

) NX'X)' =

kk
12
13

0 12 ...k 11 22 kk 1213...k— 1,k
o1 * 1 1 1 * 7
1 1
1
%]
* *
k 1
111 1 BV Moo M
22|11 PV ) VD
* *
kk] 1 ) VIS VIR ) W
12 M
13 M
* * * *
k—=1,k| Ay
where the asterisks indicate null submatrices.
The inverse matrix (i.e. the precision matrix) is readily shown to be
0 12...k 1 22 kk 1213...k=~1,k
[2Mk + 2) 4 * ~20,4 -2, A -2\, 4 . ]
1
1
1
-2\ A ((k 4+ DA~ (k- 1DIA- (1=2)A (1 =24
-2, A (1-24 4+ DN~ (k-1IA... (=24
-4 (1-24 (1-204 ok DA = (k= DI4
N ¢
N

k- kL
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where
(45) A = 20k 4+ 2N — K7L

The variances and covariances of the estimated coefficients using any second
order rotatable design are therefore given by

Nngo) = 2\i(k + 2)4; NV(bi), =1;

7 a?

wo)  YTOD - - miay NV
N COVg:o ’ bn’) = — 2\ A; N CO‘;z(bﬁ bji) — (1 _ 7\4) A

and all the remaining covariances are zero. Thus all first and second degree
coefficients are uncorrelated except the quadratic coefficients. These have a
coefficient of correlation {[2/(1 — \)] — (k + 1)}

If we put \; = 1 the correlations between the quadratic coefficients are all
zero and the design is orthogonal (in the sense of Section 3) as well as rotatable.
We then have

NI;(b”) = 3k + 2); Nng") =1 Nv;(zb“) =%
(47)
NV(bsy) _ 1. N Cov (bobs) _
e

The conditions of rotatability and orthogonality together fix the relative variances
for effects of different orders. In particular for designs of this sort the variances
of the quadratic coefficients b;; are one half those of the two-factor interaction
coeflicients b;;, in contrast with three-level factorial designs for which the
variances of the quadratic coefficients are twice those for the interaction co-
efficients. Compared with the factorial in standard orientation, the orthogonal
rotatable design thus places four times as much emphasis on the quadratic
coefficient relative to the interaction coefficients. From (44) the variance function
for any general second order rotatable design is given by

(48) V(o) = A{2(k + 2)\i + 20\ — 1)(k + 220” + [(k + 1h — (b — 1)]6'},
and for the particular case of orthogonal secona order rotatable design by
(48a) V() = 3(k + 2 + o).

Setting aside for the moment our scaling convention we see that in general
the variances of the estimated response at a distance p from the center of any
rctatable second order design is simply given by

V(@) = V(bo) + 2 Cov (bebii)o” + V(b:)p" + V(bis)p'.



214 G. E. P. BOX AND J. S. HUNTER

> )4=|0

w(‘o)

F1e. 4. Weight functions for second order rotatable designs having various values of
Awhen k = 2

This, with p replacing z, is of the form obtained for a single variable x when the
design employed is any symmetric arrangement.

In Fig. 4 the standardized weight function W(p) = {V(p)} ™ is graphed for
various values of A4 for the case of a two dimensional second order design.
Similar graphs are obtained for other values of k.

We notice that whatever value of A, is chosen the precision falls off rapidly
when p exceeds unity. If we chose Ay = 1 the design is orthogonal in the sense
discussed previously. When A, approaches or exceeds unity, the precision,
particularly at the center of the design, is high but the bias coefficients are high
also. It is well to remember at this point that we are comparing designs for which
the “spread” of points, as measured by the marginal second moments S? =
NY v (8. — E)’, is constant. Such a convention is bound to favor designs
with a high value of A4, so that although the general shape of the design weight
function will be meaningful, the absolute height of the curve at any point will be
to some extent an outcome of this convention. It seems reasonable to seek a
relatively uniform distribution of precision in the immediate vicinity of the
design. This is attained with a value of A\, somewhat less than unity and such
a choice will give satisfactory values for the .third order bias coefficient. In
particular, if the variance at p = 1 is to equal the variance at p- = 0, the
values of Ay shown in Table 1 will be needed.
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TaBLE 1
Values of A4 required to make the variance at p = 1 equal to that at p = 0

k 2 3 4 5 6 l 7 8

A 0.7844 0.8385 0.8704 0.8918 0.9070 ’ 0.9184 0.9274

So far we have supposed that our interest centers on the absolute value of 7
as estimated by 4. In some circumstances we would be more interested in the
relative value of % rather than in its absolute magnitude. For example, the
estimation of the slope of a first degree surface, or of the position of the sta-
tionary point on a fitted second degree surface, does not require knowledge of
the absolute value of # but only of its value at one point in the space of the
variables relative to its value at some other point.

A natural reference value is 8y , the response at the origin of the design, and

he appropriate estimate of

=9 —B0=Bm + - + Bxx + Puri + ete.
is
d = by + -+ + bizr + buzi + ete.

For the rotatable designs already discussed, V(d) as well as V(4) is constant at
a constant distance p from the center of the design. At a point distance p from
the center, for any first order rotatable design, we have simply

(49) V(@) = V(b)e*
and for any second order rotatable design
(49a) V(d) = V(b:)e' + V(bii)e'

It is not our intention at this time to claim optimal properties for the designs
which are here derived. The only justification presented is that these arrange-
ments symmetrically generate information in the coordinates regarded as most
relevant by the experimenter. An approach which makes it possible to measure
the practical efficiency of these and other arrangements has however been
attempted and it is hoped to publish this elsewhere. In this more complete
appraisal of the situation, a citerion on the effectiveness of the design is taken
as the integrated mean square error of #) over the region of interest to the ex-
perimenter. The scale of the design, and the constants such as A4 , which reflect
the distribution of the experimental points, are so chosen as to minimize this
criterion. The integrated mean square error contains two terms: one which
measures the variance of § and the other the bias in § due to possible inade-
quacies of the assumed model. As A4 is increased the variance term becomes
smaller and the bias term becomes larger. The problem is to strike some com-
promise which will be satisfactory for practical situations. It appears that the
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values of A, given in Tabie 1, although perfectly satisfactory, may be a little
high in the light of this more recent work.

In the present paper we consider the nature of the bias in the estimates of the
individual coefficients rather than the nature of the bias in 7.

6.21. Biases due to third order constants. If it happens, contrary to assump-
tion, that terms of third order are not negligible, then using equation 8(a),
the expected values of the estimated constants for any second order rotatable
design are as follows:

k k k k

(50) &8(bo) = Bo — 2MA 2, D0 D0 D [fghidlBron

171 0=f h=g i71
k
(51) &(b) = B: + 3MBiii + M hZ_ Bani
=1

8(bi) = B + {(k + 2\ — k}Al45534]B:is

(52) Kok k k
+ (1 —\)4 ; ’;f Z‘., ; (fghaiBson »
(563) 8(bi) = Bs + Nt DO O [fghig] Bron -

f=1 g=f h=g

Again terms printed in boldface type arise inevitably but those in ordinary
type may be eliminated in every orientation by selecting a design for which
all the fifth order moments are zero.

The requirements and properties of rotatable designs of third and higher
order may be studied in the same way as for designs of order 1 and 2. We shall
not pursue this topic here but will now consider how we may obtain actual
arrangements of points which satisfy the requirements for rotatable designs of
second order.

7. Examples of second order rotatable designs. The above discussion has
been directed to deciding what type of design we should be seeking. We have
shown the moment conditions which a design of any given order must satisfy
to obtain constant precision on spheres ceritered at the origin of the design.
We now consider the problem of finding arrangements of experimental points
which satisfy these conditions. The classes of rotatable designs we discuss are
by no means exhaustive but rather are intended to illustrate some of the possi-
bilities. ‘

We mention in passing that for any design of order d which is both orthogonal
in the sense already discussed, and rotatable, has moments up to order 2d which
are the same as those of the spherical multinormal distribution. This is of interest
since it shows that in the usual multiple regression problem where the values of
the independent variables x;, x2, - - - , Zx are not held at predetermined levels
but are allowed to vary at random we should obtain a good arrangement, if it
happened the 2’s followed a multivariate normal distribution with zero covari-
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ances—a conclusion which is intuitively very acceptable. Rotatable designs could
be approximated simply by taking independent random samples from a normal
distribution, but in fact it is possible to satisfy the criterion of rotatability exactly.

We have seen that for a rotatable design of order d the moments must be the
same up to order 2d as those of a spherical density function. This suggests that
we might construct rotatable designs by equally spacing the available finite num-
ber of experimental points on one or more spheres.

We find in fact that it is convenient to regard designs as built up from a num-
ber of component sets of points each set having its points all equidistant from the
origin. This we call an equiradial set and p the distance of each point from the
origin the radius of the set. If the moments to order 2d of such a set are unchanged
by rotation we call this an equiradial rotatable set of order d.

An equiradial rotatable set of order d does not necessarily, or even usually, of
itself provide a design. For example, n points at the origin provide an equiradial
set, of infinite order. Furthermore, no single equiradial set can provide a design
of order greater than one, for if p is the common distance from the origin then

k
'Elx?"=p2a"0"’ w=12---,N.
It follows that if d > 1 the matrix of independent variables for such an arrange-
ment is singular and the quadratic coefficients by , be, - -« , bix and the con-
stant term b, cannot be separately estimated.
As is shown later we can obtain equiradial sets of points which satisfy the
moment conditions (39) for rotatable design of order 2 but only for such values of

As as lead to a singular moment matrix. For such a set of points ol = ;T
foru=1,2,-.--, N, whence
N k k
(54) i =N" Zl _lef,. = Zl lé5) = k;
also,
N k 2 k k k
(55) o= N ZI{ZI x} = 2, liii] + 2 2. G,
U= = o= 1=l £
whence
(56) Sk + k(k — DA = K
and
(57) o= k/(k + 2).

When this value of A, is substituted in (45) and (46) the quantity A becomes
infinite and the quadratic terms and the constant term are not separately estima-
ble. We shall refer to this value A4 as the “‘singular” value.

Now although no single equiradial set can supply a usable second order design,
two or more sets can do so. Suppose we have s equiradial rotatable sets of points
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having the same origin such that in the wth set there are 7, points each at a dis-
tance p, from the origin then the value of A, for the whole aggregate of the
N = > i.1n, points is

NEk Z T P
(58) A= w=l

b+ (5 np)

which will not in general have a singular value. By combining equiradial sets we
can thus obtain rotatable designs. Since a set of points at the origin will affect
only the value of V in (58) the formula may be applied without modification to
designs for which one set of points is at the center. In practice, we shall find that
the placing of one or more points at the center of an equiradial rotatable set
provides one useful means of modifying the value of A4 . If there are n; points at
the origin and 7, points in the equiradial rotatable set we see that for the ag-
gregate of n; + n. points ‘

(59) s

_ k(ny + n2)
(& + 2)ns

We now show that sets of points which are equally spaced on a circle, a sphere,
or a hypersphere and which thus form the vertices of a regular polygon, poly-
hedron, or polytope, can provide rotatable sets which may be combined to form
rotatable designs. Our study begins with the two dimensional figures.

7.1 Two dimensional designs. We first show that for the vertices of a regular
n-gon, all moments up to order n — 1 are invarient under rotation.

Suppose the coordinates of the wth point are p cos (¢ + 27u/n) and p sin
(¢ + 2wu/n) and that ¢ = ¢'* and w = /™. We have for the moment [pq]
which is of order p + ¢

n—1

(60) lpde = Go)** %" 2 (a0" + 07w ™) (aw” — a0 )"
u=0
After expanding the bracketed expressions and collecting terms

(61) [pq] — lp) ptq i Eq: i‘ﬂ—q <p)<Q> ap+q—2(r+t) "2_:1 wu(p+q—2(r+t)}.

’ 2 r=0 t=0 rJ\?! u=0
By putting a = 1 in the expression and substituting the result from (61) we
obtain the change in the value of the moment after rotation through an angle ¢:

p g n—1
(62) oo — oo = B0 3 (P () o etd -y Estrreern,
r=0 ¢t=0

u=0
Now

n—1

Z wu( pt+e—2(r+1t)}
u=0

(63) =n if p4+ q— 2(r + t) = 0 or mn where m is an integer,

Q] otherwise,
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and —(p+ ¢ =p+qg—2(r+1t) £p-+q. Thus if (p+ ¢) <n the ex-
pression on the left of (63) is zero unless p + ¢ = 2(r + ¢), but in this case a
@\ PTeEOl 1 = 0. Hence if p + ¢ < = then (62) is zero whatever the value
of ¢ and our assertion is proved.

A class of two-dimensional second order rotatable designs may be constructed
therefore from two or more concentric rings of equispaced points with unequal
radii. Points at the origin constitute a ring of zero radius and each ring which is
not of zero radius must contain at least five points. The number of the points in
each set and the radial distances will determine the value of A, in accordance with
equation (58).

Of this class of designs the simplest are those having one ring of n, = 5 equally
spaced points with additional n, points at the origin.

Pentagonal designs with center points. Putting n, = 5 we obtain the following
values of A4 for specimen numbers of center points

Number of points at center of pentagon............ 1 3 5
Value of Moo ovoo i e 0.6 0.8 1.0

By using three points at the center a value of A, = 0.8 is obtained which is close
to that given in Table 1. For orthogonality five center points are required.

Hezagonal designs with center points. If we put ne equal to six so that the ex-
ternal points are at the vertices of a hexagon, we obtain the added advantage
that all the moments of order 5 are zero thus insuring that in every orientation
of the design the estimate by and the estimates b;; , bi; of the second order co-
efficients are not biased by any third order terms. A value of A4 close to that given
in Table 1 is obtained by placing n; = 3 points at the center. “Orthogonality”
is obtained when n; = 6.

Designs containing two rings of points. A variety of designs, which however use
more than ten points, can be obtained by combining two or more concentric
circles of equispaced points. Table 2, below, shows some of the alternatives.
Values of the ratio of radii are shown (i) which give A, = 0.7844, the value given
in Table 1, and (i) which give Ay = 1.0, the value required for orthogonality.

TABLE 2

Radii for equispaced points on concentric circles

1 5 5 5 6 6 7

Ny 6 7 8 7 8 8
p2/p1 for Ay = 0.7844 0.414 0.438 0.454 0.407 0.430 0.404
p2/m for Ay = 1.0 0.204 0.267 0.304 0.189 0.250 0.176

The arrangements so far discussed by no means exhaust the possible second
order designs in two dimensions. A further class of designs is obtained by com-
bining sets of equiradial points which are not individual rotatable sets of order 2.
For example, sets of three points each of which form the vertices of an equilateral
triangle with center coincident with the origin, may be combined to form such
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arrangements. Suppose that a line, assumed to be of length p+/2 and connecting
one of the vertices of an equilateral triangle to the center makes an angle ¢
with the z, axis. Then it is easily shown that the second order moment matrix
for this arrangement is

0 1 2 11 22 12

[ 2 2
. . p p
2 3 3 3
p . pa —pa —pbd
2 3 3 3
P —pb pb —pa
NXX =
2 3 3 4 4 ’
P pa —pb 3p 30 .
2 3 3 4 4
P —pa pb  3p 30
3 3 4
| - —pb —pa - . 30

where & = 27 sin 3p and b = 27 cos 3¢.

This is of the form required for rotatability except for the elements containing
a and b. Suppose s arrangements of this sert are combined, the wth such arrange-
ment having p = p, and ¢ = ¢, . Then the moment matrix will be of the exact
form required for rotatability if

(64) Zl Pai sin 3¢, = 0 and Z p13” cos 3¢, = 0.

w=1
This implies simply that the sum of the s vectors
(b1 cos 3¢, pi sin 3¢1), - -+, (pi cos 3g, , p; Sin 3¢,)
shall be zero (i.e., they form the sides of some polygon) and an infinity of solu-
tions is at once obtainable.
The value of A, for such a design is

(65) M= 3s i pi/(i pﬁ,)z.

w=1 w=1

Tf s = 2, then to satisfy (64) the two vectors must be of the form
(0° cos 3p, p°sin 3p) and (—p® cos 3p, —p®sin 3p),

where o is arbitrary. The design then consists of the vertices of a hexagon with
A\ equal to its singular value.

If s > 2 an infinite variety of these designs, in which the sets of points have
different radii and appropriate relative orientations, can be derived. The largest
value of A4 is obtained when all but two of the p, are zero. The two non-zero vec-
tors are equal in magnitude and opposite in sign and A = %s. The resulting
design then consists of the vertices of a hexagon in any orientation together with
the remaining 3(s — 2) points at the center.

Designs may similarly be built up from combinations of regular figures having
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2 and 4 points. As before the maximum value of A4 is obtained by having a single
ring of equispaced points plus points at the center.

7.2 Rotation of Set of Points in k dimensional space. In order to investigate the
possibilities in more than two dimensions we first consider a method for studying
the effect on the moment matrix of rotating any k-dimensional arrangement of
experimental points.

Consider some set of N points in k dimensional space and as before denote by
D the N X k design matrix, the elements of whose rows are the coordinates of
the points. To correspond to our definition of derived power vectors suppose a
second degree model written so that product terms such as z;; have the co-
efficient \/2 attached. For example, if & = 3

n = Bo+ Bii + BaZs + Bs%s + Buzi + Buxi + Buts

+ % (V2 zzs) + —ﬁ\/’—% (V2zz) + % (V2 za23).
As before we denote by X the N X 1(k + 1)(k 4+ 2) matrix of independent
variables corresponding to D. If the set of points is submitted to some rotation
the new design matrix will be DH where H is &k X k orthogonal matrix. The
matrix of independent variables will be transformed to X = XG where G is a
matrix derived from H which when partitioned after the 1st and (¥ + 1)th row
and column has the form

(66)

(67) G =

The partitioning will be seen to correspond to the separation of the constant
term, first order coefficients and second order coefficients. The matrix HY is
the second Schliflian matrix derived from H which may itself be convenientlv
partitioned after its kth row and column and is of the form

L
(68) HY = | --mdeele

This partitioning corresponds to the separation of quadratic and interaction ef-
fects. For example, for k = 3

hi R hi
(69) H = hzl hzz h23 H
|_h31 h32 h33
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then
“hh hi: Ris 2hnhe 2huhis 2k
(70) and (71) e« = k% hE: ki |, 8 =|2%uhe 2huhs 2hahsy |,
I_h§1 B3 his 2hahe 2haihss  2hes hss
Phiuhy 2hahs 2hisha
(72) v = | 2huha 2huhe 2hishs |,

Phohs 2hashey 2hashes
Puhs + hihy  huhs + hishey hahes + Rishae
(73) 8 = | huhs + hihsy huhss + hishsy hizhass + hashas |,
horhss + hoshay  horhas + hashsy  hashas + hasha

where the terms are arranged in the order shown in Eq. (66).

The original moment matrix is N"'X'X. After rotation the moment matrix is
N7X’X = N'G’X’XG. If the design is rotatable then the moment matrix before
and after rotation are equal whatever the orthogonal matrix H from which G
is derived. As we have seen, this implies that the matrix N"'X'X must be of a
particular form. With the present definition of the interaction variables this

form is
1 - 1

(74) N(X'X) = ' ' ' ,
1 - N2+ 11') .

2M:1

where the dots indicate null submatrices, I is the identity matrix and 1 is a
column vector with elements all unity. The partitioning in this and all moment
matrices that follow is after the 1st, (k + 1)th, and (2k + 1)th row and column.
This partitioning separates the elements corresponding to the constant term, the
first order terms, the quadratic terms and the interaction terms respectively.

7.3 Three dimensional designs. In three dimensions sets of n points equally
spaced on a sphere are provided by the vertices of the five regular figures. These
are the tetrahedron (n = 4), the octahedron (n = 6), the cube (n = 8), the
icosahedron (n = 12), and the dodecahedron (n = 20). Using the method of the
previous section we can study the moment matrices for these sets of points sub-
ject to an arbitrary rotation.

For example, in the case of the tetrahedron we may suppose that initially the
coordinates of its four vertices, i.e., the rows of D, are (—1, —1,1), (1, —1, —1),
(—1,1, —1), and (1, 1, 1). We can then write down the matrix of independent
variables X for a second order model, the moment matrix -X'X and finally the
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corresponding matrix 1.X'X = 1.G’X'XG after an arbitrary rotation H has been
applied to D. We thus obtain

Tl I ! V2 2H'Jy | '\/ZH’JS
__l ilatiadie halaibalialdl Rendenheh b R
1 V2 JH U + 2¢'y - 2¢'8
e

i — ] 1

' A/IVJH 28y 1 28%
Where J is a square matrix with unit elements along the diagonal running from
the bottom left hand corner to the top right-hand corner and zero elements else-
where.

In a similar way for the other regular figures with scales adjusted so that
o’ = k = 3 we consider equiradial points formed by the

6 vertices of the octahedron (=43, 0, 0), (0, /3, 0), (0, 0, =4/3),
8 vertices of a cube (1, £1, £1),
12 vertices of the icosahedron (0, +a, +b), (&b, 0, +a), (Fa, 0, £b),
20 vertices of the dodecahedron (0, ¢, %¢), (¢, 0, ¢ ), (£, +¢, 0),
(%1, £1, +1),

[

>s.

P
I

where ¢ = 1.473, b = 0.911, and ¢ = 1.618. For the octahedron and cube the
moment matrices after applying the general rotation are obtained by setting
k = 3 in the expressions:

(76) Z_EXX_

(77) Lygx=|-- !
11" + 2¢'y { 2¢'%

!
|
1
1
|
1
|
| T
|
-
|
=1
|
1

%'y i 265 |
Cube

and for the icosahedron and dodecahedron by setting » = 12 and 20 respectively
in the expression:



224 G. E. P. BOX AND J. S. HUNTER

SRS
. ! :
(78) L I e
" 1} 3@+ 1)
S SN R S
IR R ¢

As is to be expected, the vertices of the tetrahedron, octahedron, and cube do
not individually supply rotatable sets of order 2 although they all provide ro-
tatable sets of order 1. The larger number of points provided by the icosahedron
and the dodecahedron however provide rotatable sets of order 2. These have of
course the singular value of A, = £:

As before therefore we may combine icosahedral and dodecahedral sets either
with points in the center or with one another to form second order rotatable de-
signs. These designs are built up in any one of the following ways:

(1) the 12 vertices of an icosahedron in any orientation with n, = 1 points at
the center,

(2) the 20 vertices of a dodecahedron in any orientation with #; = 1 points
at the center,

(3) the vertices of two concentric icosahedra of differing radii p; and p. each
in any relative and absolute orientation,

(4) the vertices of two concentric dodecahedra of differing radii p; and p,
each in any relative and absolute orientation,

(5) the vertices of an icosahedron of radius p; together with the vertices of a
dodecahedron having the same center and radius p, each in any relative and
absolute orientation.

The choice of »; in designs (1) and (2) and of p1/p; in designs (3), (4), and (5)
determines the value of A\; and hence via Eq. (48) the manner in which the vari-
ance of 9 changes with p. In particular, the value given in Table 1 for k = 3 is
A\ = 0.84. This value is most nearly obtained (Eq. 59) with n, = 5 for design
(1), ny = 8 for design (2). Also from Eq. (58), p1/p should be 2.11 for designs
(3) and (4), and 2.85 or 0.530 for design (5).

As with the two dimensional designs, sets of points not themselves rotatable
arrangements of order two may be combined to give second order rotatable de-
signs. Of particular importance because of the existence of parallel designs in k
dimensions are the designs obtained by’combining the vertices of a concentric
cube and octahedron. The relative orientation of the figures is such that each
line joining the origin to a vertex of the cube pierces the center of a face of the
octahedron and vice versa. These designs are special cases of the central com-
posite designs described in references [1] and [13].

Since H™ is orthogonal

79) «B = —7'%; Yy =1— a; 86 = I — &.
Using these identities, it will be seen from the nature of the moment matrices
of the octahedron and cube (76) and (77) that by suitably choosing the relative
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sizes of the figures a combined arrangement can be obtained whose moment
matrix is of the form (74) required for a rotatable design of second order. If
pa and p. are the radii of circumscribing spheres of the octahedron and cube
then p/p. = 2"*/8"* = 0.9710 and X, = 0.6005.

This value of A4 is very close to the singular value of k/(k + 2) = 0.6. By add-
ing points at the center however satisfactory values of A, may be obtained. The
value Ay = 0.84 given in Table 1 which gives the same precision at p = 0 as at
p = 1 is most nearly obtained with 6 points at the center, and the value of
A\ = 1 required for “orthogonality” is most nearly attained with 9 points at the
center.

From the nature of the moment matrices in Eqs. (76), (77), and (78) it is
seen that in general an infinity of three-dimensional second order rotatable de-
signs can be generated by combining in various ways the vertices of octahedra,
cubes, icosahedra and dodecahedra with or without added center points. One
such design of considerable practical interest used by De Baun employs a cube
with two added octahedra but no center points.

7.4 Designs in more than 3 dimensions. In five or more dimensions there exist
only three regular figures. These are the regular simplex (k-dimensional analogue
of the tetrahedron having k& + 1 vertices), the cross-polytope (k-dimensional
analogue of ‘the octahedron having 2k vertices) and the measure polytope or
hypercube (k-dimensional analogue of the cube having 2* vertices). In four di-
mensions other regular figures occur. These have 24 vertices, 120 vertices, and 600
vertices. The figures with 120 and 600 vertices are of little interest from the
point of view of constructing usable experimental designs and the figure with
24 vertices may be obtained by combining the cross polytope with the hypercube.
Our discussion will therefore be confined to designs constructed from the vertices
of the regular simplex, the cross polytope and the hypercube.

The regular simplex always supplies a first order rotatable design and we shall
show that the cross polytope and hypercube can always be combined to give an
arrangement from which a second order rotatable design may be obtained.

If we suppose the cross polytope and the hypercube each to have radius
k"? and to be in ‘standard orientation’ so that the 2k vertices of the cross polytope
have coordinates

(£k",0,0, -+, 0) (0, £k, 0, ---,0) -+, (0,0,0, - -, k")

and the 2* vertices of the cube have coordinates (4=1, =£1, --- , &=1) then the
moment matrices, after applying the same rotation H, are those given in Egs.
(76) and (77).

By combining the vertices of the cross polytope of radius p, with those of.the
measure polytope of radius p. in the relative orientation indicated so that
2%ps = 2¥Mph | that is so that ps/p. = 2"*/k"*; an arrangement with the de-
sired moment matrix (74) results.

These rotatable arrangements when combined together or augmented with
suitable numbers of points at the center provide second order rotatable designs
of great practical value. In their “standard orientation” the resulting designs are
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particular examples of the composite designs discussed in references [1] and
[13] and consequently lend themselves very conveniently to sequential experi-
‘mentation. As is discussed more fully in [1] they may be built up in parts each of
which supplies valuable interim information. They are particularly simple to use.
In standard orientation the part of the design corresponding to the measure poly-
tope or hypercube defines a set of experimental points which follow the familiar
2" factorial design. To form the second order rotatable designs these are aug-
mented with points at the center and with points corresponding to the cross
polytope in which all the variables except one are held in turn at the ‘center’
levels, the remaining variable being maintained first at a level above its center
value and then at a level below its center value. Because in standard orientation
the latter points lie along the coordinate axes they may be referred to as “axial
points”’. :

When k is sufficiently large a suitable fractional replicate can replace the full
hypercube. Since a second order moment matrix identical with that of the full
factorial will be obtained with any fractional replicate of the 2* design in which
no effects of second order or lower order are confounded. The only result of this
substitution will be to effect the alias matrix of the design.

For a k dimensional design with n, = 2k axial points, n, points in the
(3)” replicate of the 2 factorial, and no points at the center, ps/p. = ne'*/k'”
and
(81) M = N/{n. + 4(1 + n™)},
where N = n, + n. + no .

When using these designs in their standard orientation it is simplest to regard

them as scaled so that the hypercube or fractional hypercube has its coordinates
equal to plus or minus unity. The N coordinates of the complete design are then

n. points (2° factorial or suitable fraction): (£1, %1, - -+, £1),

n. points (axial points): (%, 0, 0, -+, 0), (0, £, 0, ---,0), ---, (0, 0,
ceey, :i:a),

no points (center conditions): (0, 0, 0, -- -, 0).

— 2(’0—1’)

1/2

Then a = n.'* and the scale factor ¢ of Eq. (3) is N/(n. + 2n."). The values
of ne, Ma, Mo, @, pa/pe and A for second order rotatable designs, which give the
values of A set out in Table 1 and for orthogonal designs, are given in the Table 3
fork = 2,3, 4, ---, 8 dimensions.

8. Arrangement of the designs in blocks. To avoid bias due to systematic
disturbances the complete set of experimental trials corresponding to the points
which form the design could be performed in random order. Frequently how-
ever it is possible to carry out limited groups of trials under more homogeneous
conditions than can be attained for the complete set. It may then be possible to
achieve greater accuracy by performing the designs in blocks, carrying out the
individual trials within each block in random order. A block may for example
refer to a group of experiments performed on the same day, or a group of experi-
ments for which it was possible to use the same batch of starting material.
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We shall show how the designs we have discussed may be performed in or-
thogonal blocking arrangements. On the usual assumption, that the effect of
carrying out a particular trial in one block rather than another is merely to
change the expected value of the response by a fixed amount which depends only
on the particular blocks involved, such arrangements insure that the estimated
coefficients of the polynomial are completely independent of the block differences
and their standard errors depend on the within-block variance only.

For N experimental points assigned to m blocks with n., points in the wth
block we suppose that

Z 60wzwu + Z Bzxm + ; ]21 ﬁz]wzuxm y
where Bq, is the expected value of the response in the wth block at the experi-
mental conditions corresponding to the origin of the design, and z,, is a “‘dummy”’
variable taking the value unity for those experimental points which fall in the
wth block and zero for all other experimental points. We shall call z,, z.x;, ete.,
‘the polynomial variables and z, , 2, , etc., the block variables.

In whatever manner the experimental points are assigned to the blocks we can
except in the “pathological” cases detailed below estimate the coefficients of the
polynomial equation allowing for the block effects, by the method of least squares.
However the manner in which the experimental points are assigned to the blocks
profoundly affects the efficiency of estimation and the ease with which the esti-
mates are calculated. In particular, if it is possible so to allocate the experimental
points to the blocks that the block variables and polynomial variables are
orthogonal, then the irnclusion of blocks does not at all influence the estimation
of the polynomial coefficients and the only effect of blocking is the wholly de-
sirable one of limiting the experimental error to that occurring within blocks. The
analysis of the experiment proceeds exactly as if there were no blocking, except
that in the estimation of the residual error the contribution due to blocks is sub-
tracted from the residual sum of squares.

In order to find the conditions that must be satisfied to allow orthogonal block-
ing it is simplest to rewrite the model in the equivalent form

= ,30 + Z ﬁzxm + Z Z ﬂz}xm 'v_m + Z 6w(zuu - —w),

i=1 j=1

(82)

m

wa=1 N

We note that 2, — 2, is equal to 1 — n.,/N when the uth set of conditions is in
the wth block, and to —n,/N otherwise.

The conditions for orthogonal blocks, that is to say the conditions that the
block variables z,, — 2, shall be orthogonal to the variables

Bo = BOw, 0w = Bow — Bo, 2w=n1,0/N)

2 2 2
o, X1 ,T2, *** T, T1,T2, *** T, Lal2, * "+, Lp1Tk

in the second degree polynomial, can be written
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N
(83) Zl xiuxju(zwu - éw) = 0, (@1.7 =0,1,---, k)
that is
N N
(84) Liu Lju vu = Zw Z Liu Lyy.
u=1 u=1

Now for any second order rotatable design, if 7 # j, X w_i ZiZ;u = 0, whence
for orthogonal blocking we require

(85) mexju=0: 7'?53>w= 1,2,-"?71.,

where the summation includes only those values of « in the wth block. Thus (1)
all the sums of products between o , x1 , - - - , 2, must be zero for each block.
A second condition arises from putting ¢ = j in (84) whence

Zw x?u n’
(36) — =
2 T

u=l

where the summation in the numerator again is for those values of « in the wth
block. Hence (2) the fraction of the total sum of squares for each variable contributed
by each block must be proportional to the number of observations in each block.

8.1 Examples of orthogonal blocking with designs based on equiradial sets of
points. Where the rotatable design consists of an equiradial set of points with
added points at the center, we can satisfy both conditions (85) and (86) if we can
divide the equiradial set into subsets which are themselves first order rotatable
(i.e., first order orthogonal) designs. When this is possible the sum of squares for
each variable in each subset will be proportional to the number of points in the
subset, and we have only to add a number of center points to each subset propor-
tional to the number of points it already possesses to obtain a orthogonal block.

For example, consider a two dimensional ‘“hexagonal” design consisting of 6
points at the vertices of a hexagon together with 2p center points. We can per-
form this design in two orthogonal blocks each consisting of three points at the
vertices of an equilateral triangle and the remaining p points at the center. Sim-
ilarly an octagonal design (the two dimensional rotatable composite design of
Table 3) can be divided into two sets of four points at the vertices of a square
with equal number of center points added to each to form two blocks. A “nonag-
onal” design may be divided into three equilateral triangles, which form the
basis of three blocks and so on.

In three dimensions the vertices of the dodecahedron may be divided into five
sub-sets each of which comprise the vertices of a tetrahedron. Thus for example a
design consisting of twenty points at the vertices of the dodecahedron plus 5p
points at the center is divisable into five orthogonal blocks of 4 4 p points. Each
block consists of a complete tetrahedron plus p center points.
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8.2 Blocking with composite rotatable designs. The important composite rotatable
designs lend themselves very conveniently to blocking and some valuable work
on this topic has been carried out independently by De Baun [15]. Because the
number of center points in any block must be an integer, exact rotatability and
exact orthogonality between quadratic variables and block variables is not always
attainable. We can however insure that either one of these desiderata is exactly
satisfied and the other one nearly so. Although the extra labor involved in the
calculations due to the slight non-orthogonality is not very great and the loss of
efficiency is negligible, it is simplest in practice to use designs in which the block
effects are exactly orthogonal but the condition of rotatability is slightly relaxed.

The central composite design in standard orientation consists of n. points at the
vertices of a cube corresponding to a 2* factorial arrangement or some suitable
fraction of it with coordinates (=1, 1, ---, 1), together with n, = 2*
““axial” points with coordinates (+ea, 0, ---,0), (0, +a, ---,0), ---, (0,0,
-+ -, %a), and n, points at the center with coordinates (0, 0, - - - , 0). If & = n2*
the design is rotatable, but let us for the moment not assume that this is so.

The sets of points at the vertices of the cube and the set of the axial points are
each first order rotatable designs. These two parts of the design thus provide a
basis for a first division of the composite design into two blocks. The blocking
will be orthogonal if it is possible to allocate the center points to the two parts so
that the total number of points in each part is proportional to the sum of squares
for each variable contributed by that part. If n, and 7. are the numbers of
center points in the cubic part and the axial part respectively then we require

2a2 — Ng + 'ﬂao.
Ne Ne + Neo ’

(87

thus for any composite design with

{nc(na + na,O)}ll2
2(ne + nq)

we obtain orthogonal blocking. Now for rotatability « = n.’
achieve both orthogonal blocking and rotatability we require that

1/2
U2 — Ne + Neo

2 N Na + Nao ’

The set of axial points cannot be further sub-divided into sets which are first
order rotatable designs. Such sub-division is possible however for the set of
points at the vertices of the cube provided a system of confounding for the two-
level factorial or fractional factorial design exists such that all the comparisons
confounded rorrespond to interactions between three or more variables. If this
is so the comparisons confounded will be unassociated with the comparisons used
to estimate the coefficients of the polynomial. Also, since the comparisons con-
founded are the defining contrasts of the sub-sets regarded as fractional factorials
and correspond to interactions between three or more factors, it follows that the

(88) o=

* and hence to

(89)
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sub-sets are individually first order rotatable designs. If the cube is divided up
into sub-sets each containing the same number of points then in accordance with
Eq. (86) we must add an equal number of center points to each sub-set to main-
tain orthogonality.

8.3 Examples.

(i) We first consider the four-dimensional design to illustrate the situation
where both rotatability and orthogonality of blocking may be attained. From
Table 4 it is seen that in standard orientation this design consists of the 2* fac-
torial, with coordinates (&1, =1, &1, 1), 8 axial points at distance « =
16"* = 2 units from the center, and to approximately satisfy the requirement of
Table 1 seven points added at the center.

We can achieve orthogonal blocking and rotatability if we can satisfy Eq.
(89) which gives

16+nco
8+'n40‘

Now the total number of points at the center ny = nq =+ naw is not critical and if,
for example we use six points at the center instead of seven the only effect will
be to slightly change the variance function and in particular to decrease slightly
the precision near the origin. If we now allocate n. = 4 points to the cube and
na = 2 points to the axial part, we satisfy (90). In this way the complete set of
16 4+ 8 4+ 6 = 30 points is divided into two orthogonal blocks, one containing
16 + 4 = 20 points and one with 8 + 2 = 10 points. Now the 2! factorial de-
signs corresponding to the cube may be further divided into two halves each of
which is a rotatable design of order 1. This may be done without affecting the
estimation of the polynomial coefficients by arranging that the contrast between
the two halves corresponds to a three or four-factor interaction. The most suit-
able contrast is the four-factor interaction and to effect the division we allocate
those points in the design for which the product :rws74 is 1 to one part and those
for which it is —1 to the other. We may in accordance with Eq. (86) maintain
orthogonal blocking by dividing the four center points assigned to the cube equally
between the parts, two to each half. Finally therefore the design of 30 points is
carried out in 3 blocks each of ten points consisting of the axial points together
with two center points and the two half-replicates of the cube each with two cen-
ter points. The blocking is completely orthogonal and the design exactly ro-
tatable. It should be noted that since the separate blocks are themselves first
order rotatable designs, this scheme ensures orthogonal blocking not only in the
standard orientation of the design which we have specifically discussed but also
in every other orientation.

(i) To illustrate the situation where orthogonality of blocking and rotatability
are not exactly attainable simultaneously, consider the three-dimensional com-
posite design. From Table 3 we see that, in standard orientation, the design con-
sists of the 2° factorial with coordinates (%=1, 1, +1), the six axial points each
at a distance 8"* = 1.6818 and about six center points are needed to satisfy ap-

(90) 2=
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proximately the requirements of Table 1. From (89), to achieve orthogonal block-
ing and rotatability we require

1/2
(91) 8_ = 8 + Nco ,
2 6 + Nao
where 71,0 4+ nao 1s about 6. We come nearest to satisfying this requirement by
putting n, = 4 and n, = 2; however, since the equation cannot be exactly
shtisfied with integral values, some slight nonorthogonality must occur. This
non-orthogonality would be the same in every orientation of the design and
the estimates of the coefficients corrected for block effects would in fact be very
easily obtained without much extra labor. However since exact rotatability is not
required in practice we choose therefore to adjust the value of a to obtain
orthogonality at the expense of rotatability. From Eq. (88) it is seen that for
N = 4, ne = 2 and for orthogonal blocking we require

_ /8@ _
92) o= {-2(1—2)} = 1.6330

instead of & = 1.6818 required for rotatability. For this value of « the variance
contours will not be exact spheres, the difference from sphericity will however be
so slight as to be of no practical importance. Since the sub-groups are first order
rotatable designs the blocking will remain orthogonal in every orientation. The
elements corresponding to the constant terms and second order terms in both the
moment matrix and the precision matrix will change slightly as the design is
rotated however.

As before the cube part may be divided into two portions. These are the two
fractional replicates whose defining contrast is the three-factor interaction. Since
four center points are allocated to the cube we can divide these equally between
the fractions and so maintain orthogonality.

Finally therefore the 20 points of the design with « = 1.6330 may be divided
into three orthogonal blocks. One block consists of eight points containing the
six axial points and two of the center points, and other two blocks each contain a
half replicate of the cube together with two center points. A list of orthogonal
blocking arrangements for rotatable and near-rotatable composite designs is
given in Table 4 below.

An aspect which makes these blocking arrangements particularly useful arises
out of the nature of the situation in which these designs are often used. In the
exploration of response surfaces [1], [13] trials are usually performed sequentially
and often have as their object the increase or maximization of some response. It
has been shown that each block of the second order design is itself a first order
rotatable design with added points at the center. Such a design allows estimates
to be obtained not only of first order effects but also (assuming a second order
equation is adequate to represent the surface) of the sum of the quadratic effects.
For if §, is the mean of the observations of the center and . the mean of the ob-
servations in the first order design then using (8a) it will be found that for any
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TABLE 4
Blocking arrangements for rotatable and near-rotatable central composite design

k 2% 3 4 5 5(% rep) 6 6(% rep) 7 7(% rep)

Blocks within cube
n, : Number of points in 4 8 16 32 16 64 32 | 128 64
cube
Number of blocks in cube 1 2 2 4 1 8 2 16 8
Number of points in block 4 4 8
from cube
Number of added center 3 2 2 2 6 1 4 1 1
points
Total number of points in 7 6 10 10 22 9 20 9 9
block

Axial block
ne Number of axial points 4 6
Number of added points 3 2 2 4 1 6 2 11 4
Total number of points in 7 8
block

Grand total of points in the | 14 20 30 54 33 90 54 | 169 80
design

Value of a for orthogonal (1.4142|1.6330(2.0000|2.3664|2.0000{2.8284|2.3664/3.3636|2.8284
blocking

Value of « for rotatability |1.4142(1.6818)2.0000}2.3784|2.0000|2.8284/2.3784(3.3333)|2.8284

* A more economical design for ¥ = 2 (which is not however a composite design as here
defined) is that mentioned in Section 7.1, in which 6 points at the vertices of a hexagon are
divided into two sets of three points. To attain the value of A\¢ given in Table 1 two points
are added to each set to form two blocks.

first order rotatable design in any orientation (that is, for any orthogonal first
order design),

k
8Fa — Fo) = ; Bii .

In the neighborhood of a true maximum §a — o is not small relative to the
linear coefficients b; and this provides an additional indication of the inadequacy
of a linear model.

For example suppose that four variables were studied with the intention of find-
ing an optimum set of conditions using the methods of Box and Wilson [1]. A
half replicate of the 2* design with two center points could first be run in random
order. This design would supply estimates of the four first order terms g,
B2, Bs, and B; and combinations of the interaction terms namely (Bi + Bs4),
(Bis + Bas), (B + Bu) and of the sum of the four quadratic terms D By . If
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first order terms were dominant, progress could probably be made without a
more elaborate design and moves in the indicated direction of increasing yield
would be made until improvement in that direction was exhausted. At this point
a new first order design would be begun at the improved set of conditions.

If the first order terms were not dominant, or if more precision were needed,
or a tentative move had not met with success, the second half of the factorial
design together with two further center points could be carried out, and the situa-
tion again reviewed in the light of the set of 20 trials now available. Finally, if
the evidence indicated that further progress could be attained only by fitting the
second degree equation, the third block of ten experiments consisting of the
axial points and two center points would be added. The complete set of 30
trials could then be used to provide efficient estimates of the best fitting second
degree equation and further progress would follow.

9. Details of calculations using the designs. From the observations generated
by the second-order designs least squares estimates of the coefficients of the fitted
polynomial, together with their variances and the appropriate analysis of vari-
ance table, are readily computed.

9.1 Estimales of the coefficients and of their standard errors. To estimate the co-
efficients we require only the sums of products of the observations with the inde-
pendent variables. We shall use the notation

N N N
X_;xwyu = {0y}, ;xmyu = {iy}, Z_;x;uxjuyu = {ijy},

where 7,j = 1,2, --- , k. )

(i) Rotatable designs. The form of the inverse matrix for any rotatable design is
given by (44) whence we have for any k-dimensional second order rotatable design
with parameter \q

(93) by = ANT[2Ni(k + 2){0y} — 2ne X i {4 y)),
(94) b; = N iy},
(95) by = AcN '[c[(k + 2N — k]- {24 y)
+ el = N) D {77y} — 2000 1],

(96) bij = NN {ijy},

where

97) A = 20k + 2\ — K}
and the scale factor

(98) c=N/D wath.

Again using (44) the variances of the estimates are

(99) V(by) = 24Ni(k + 2)d*/N,
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(100) V(b:) = cd’/N,
(101) V(bi) = A{(k + I — (k — 1)}¢'¢*/N,
(102) V(bi;) = c’o’/N\,.

These formulae apply to any rotatable design. For the particular case of the
rotatable central composite designs scaled so that in standard orientation the
coordinates of the n, points forming the two-level factorial or fractorial factorial
part are (&1, £1, ---, =1) the value of the scale factor ¢ is N/(n, + 2n.%).

(ii) Central composite designs not necessarily rotatable. In order to obtain ex-
actly orthogonal blocking for the central composite designs, we have proposed
certain arrangements which are not exactly rotatable. For any central composite
design the estimates of the coefficients and their variances are readily computed
and these are of course unaffected by orthogonal blocking.

The non-diagonal elements of the moment matrix for any central composite
design in standard orientation are zero apart from terms arising from ecross
products between the “constant term’ variable xz, and the quadratic variables
z:(i =1, 2, - -+, k). The sub-matrix of the moment matrix corresponding to

these variables is of the form
[d ¢ ¢ ¢ --- e
e f g g oo o . g

Le g 9 g - [
The reciprocal of this matrix is of the same form. Denoting its elements in
corresponding positions by capital letters we find

(104) D = H7{f+ (k — )g}(f — 9),

(105) E = —H7(f - g),

(106) F =HYdf + (k — 2)dg — (k — 1)},
(107) G = H'(¢" — dy),

(108) H = (f — gldf + (k — 1) dg — ke'}.

For the composite designs in conventional scaling
(109) d=N, e=n+2 f=n+2" g¢g=n.

Using (109) with (104), (105), (106), (107), and (108) the estimated coefficients
are readily calculated from the formulae

(110) bo = D{0y} + ED i {iiy},
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(111) by = (ne + 2¢°) 73y},

(112) b = B{Oy} + Fliiy} + G2k {iduh
(113) bi; = nz'{ij y}.

The standard errors of these estimates are

(114) V(b) = Do’

(115) V(b)) = (e + 20°)7',

(116) V(bi) = Fo?,

(117) V(biy) = n'd".

In practice we normally estimate ¢ from the data in the manner described
below.

9.2 Analysis of variance. The total sum of squares D w1 y% = S having N
degrees of freedom may be split into two parts: (i) The sum of squares Sos
attributable to the fitted second degree equation having (3)(k + 2)(k + 1)
degrees of freedom. This is given by
k

Z bii{tjy}.

feal ju=i

k
(118) sz = bo{o y} + ; bz{Zy} +

(ii) the “overall” residual sum of squares B having N — (3)(k + 2)(k + 1)
degrees of freedom which is obtained by difference

(119) ER=8— Su.

Each of these sums of squares may be further subdivided.
9.21 Analysis of sum of squares due to regression. The sum Sy2 may be divided

into three parts:
(i) The sum S, having one degree of freedom attributable to the fitting of a

polynomial of zero-th degree (the so-called ‘“correction due to the mean’’)
(120) So = {0 y}*/N.

(ii) The sum S;.o having k& degrees of freedom. This is the “extra’” sum of
squares associated with the fitting of a first degree polynomial. Since, for the
designs we have considered, b, is uncorrelated with any of the b;

k
(121) S0 = Zl biiy}.
(iii) The sum S,.10 having 3k(k + 1) degrees of freedom, the “extra’” sum of
squares associated with the fitting of a second degree polynomial. Since for the
designs we consider the b;’s are uncorrelated with b, and with the b;/’s

k. k

(122) Seao = bof0 y} + 22 2 bulijy} — {0 4}/N.

i=1 j=i
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In specific examples other sub-divisions may be relevant. For instance, it
might be suspected that a particular variable z; had no effect at all on the result.
In this case it would be appropriate to isolate a sum of squares S; associated with
the variable z; . This could be done most conveniently by carrying out an analy-
sis omitting z; and zx; (7 = 1, 2, ---, k) from the model. The sum of squares
associated with the reduced model would then be subtracted from the sum of
squares associated with the full model to give S;.

9.22 Analysis of residual sum of squares. Where blocking has not been used
the overall residual sum of squares R may be analysed into two parts:

(i) The sum

n0
(123) Sg = Z; (Yuo — G0,

where 3,0 is the uth repeated observation at the center of the design and %,
is the mean of the observations at the center. This sum of squares has no — 1
degrees of freedom and Sg/(ne — 1) provides an estimate of the experimental
error variance o° on the assumption that this variance is independent of the
levels of the variables z; .

(iil) R — Sg having N — (3)(k + 2)(k + 1) — no + 1 degrees of freedom,
the residual sum of squares which measures experimental error together with
lack of fit of the assumed form of equation. When the corresponding mean
square is large compared with the estimate of pure error obtained in (i) above,
this implies that the assumed form of the equation is inadequate. A full discus-
sion will be found in [16] and will be published elsewhere.

9.23 Analysis when blocking vs employed. When blocking is employed a fur-
ther sum of squares Sz due to blocks is extracted so that the residual sum of
squares R is now divided into three parts:

(1) Sp having B — 1 degrees of freedom

B
(124) Sp = bZl (@ — )%

where B is the number of blocks, 7, is the number of observations in the bth
block and 7, is the mean of the observations in the bth block.

(i1) The sum of squares Sg corresponding to pure error and having no — B
degrees of freedom. This is the sum of the individual sums of squares for re-
peated observations at the center of each block

(iiil) B — Sz — Sz the residual which measures experimental error plus
lack of fit.

The designs discussed are extremely convenient to use. The points at the
center of the design allow a check to be made at a standard set of conditions
while the experiment is being carried out and so helps to show up gross errors.
Furthermore the center points provide an estimate of pure error from which it is
possible to check the adequacy of the assumed form of equation without repli-
cating the whole design.
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10. Simplification of confidence region for maximum. On the assumption
that a second degree equation can adequately represent a response surface in
the region of interest, a confidence region for the stationary point of this surface
has been derived in [17]. Unfortunately the boundary of the confidence region
is, in general, not easy to compute but Wallace [20] has devised valuable ap-
proximations which are easy to compute and to appreciate. A very considerable
simplification in the expression for the exact confidence interval occurs when a
rotatable design is used to generate the experimental data.

Suppose the second degree equation in k variables z, ---, 5, ---, Z;,
-, Zr which has been fitted by least squares is written in the form
(125) Yy — an = X'a) + (3)x’'Ax,

where a, is the k£ X 1 vector {ay} and A is the k£ X k matrix {a;;} and in terms
of the notation previously adopted aw = bo, @ = b;, }ai; = bi;, as; = bj.

The position of the center of the fitted system is obtained by equating to zero
the elements of the & X 1 vector § defined by

(126) $ = a, + Ax.

Thus if xo is the vector of the k& coordinates of this center then
(127) a = —Ax,

at which point the value of y is given by the equation

(128) %o = aw + (3)Xo80.

The confidence region given in [17] is defined by the inequality:
(129) SV S = SkF (K, o),

where Vo’ = §(5'3), s’ is an estimate of variance having ¢ degrees of freedom
and distributed as x’¢’/¢ independently of 5, and F.(k, ¢) is the a probability
point of the F distribution having k¥ and ¢ degrees of freedom.

For a rotatable design using (100, 101, and 102), the variances and covariances
Jf the &’s are given by

(130) V(5:) = N %% + N7 + 'z)), Cov (8:8;) = N o’ tdzz; ,

where

2 _ S~ 2 _ kG -1 +2
sy S "SR T (e

=1

¢ is the scale factor for the design defined in (3), and A = A, .. Thus
- -1, 2 te ,
(132) NV=c(1+Nx Cp){l + i }\-lc,)?n} .
The matrix V is readily inverted using a theorem due to K. D. Tocher [18] to give

ct \

1 N - ___“
(133) V= eI + A icp?) {I 1+ M1+ t)cpznf
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Thus

(134) YV = E’(Tr_l\i—l@z) {s's - ﬁi?)c? (5’x)2}.

Now using (126) with (127)

(135) 8 = A — xo).

It follows that when the data have been generated by a rotatable design the
confidence region for the stationary point is given by the expression

N 1 A% v ¢ ) Ax)?
(136) (TTX‘—Tm[é (x = x)'Ax = 3) — ;g (X~ XA ]
< kS'Fo(k, ¢).

Now a fitted second degree equation can be interpreted most readily by writing
it in the canonical form

k
(137) Y — Y = ZB;,'X%.
i=1

The k elements B;; are the latent roots of the matrix (3)A. If a diagonal matrix
B is formed with the B;; for its elements then the latent vectors of A form the
% rows of an orthogonal matrix M such that

(138) (3)MA = BM

and the matrix X of “canonical variables’” whose elements are X;, X,, ---,
X is defined by

(139) X = M(x — Xo).

The coordinates of the initial origin x = 0 in terms of the canonical variables
is given by

(140) X, = —Mx,,
whence x = M’/(X — X,). Thus the expression defining the confidence region

reduces to the relatively simple expression
b

(141) I }\ 10p C =1 e | + (A—l + e)c 9 o 11 1 1 10,
< ks F (k’ i0)’

where
k
P =xx= (X - X)MM'X — X,) = Z:l (X: — X0

A rough delineation of the confidence region in a readily appreciated form can
now be obtained by enumerating the points at which it cuts the canonical axes.
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By direct substitution in (141) the point (0, - -+ , 0, X;, 0 - - - 0) will be included
in the confidence region provided that

k
B?i < Cksta(k, qa) {1 + )\_IC Z X?o + )\_1 C(Xi - Xm)z}

- FEL

(142) {1 + 7+ O }k: X+ 7+ He(Xs — Xm)Z}
% i

. )
ANX? {1 + O e 20 X%+ 2 e(X — Xio)z}
I#=E

If the quantities X1, Xa, - - -, X0 are finite then as X; tends to infinity this
becomes

(143) Bl < (4N)TkFo(k, 9) (N7 + £},

which is the condition that the confidence interval includes points at ==« on
the canonical axis X;

10.1 Redundancy of canonical variables. This result can be viewed from a
somewhat different angle. In real problems one would expect (see for example
reference [3]) that the underlying system would often be approximated by sur-
faces containing a stationary line, plane or hyperplane rather than a stationary
point. When this occurred one or more of the B; calculated from the fitted equa-
tion would be close to zero and the corresponding canonical axes would delineate
the stationary line, plane or space. Analysis of this sort is of considerable prac-
tical importance since it may help in the deduction of the underlying mecha-
nism of the system [19].

An important question that normally arises is how small the canonical units
Bi: must be before we may conclude that zero values are not inconsistent with
the data. Now for any rotatable design the variances of the coefficients are the
same in every orientation and since the B;; are simply the “quadratic effects’”
in the directions of the canonical variables they have the same standard errors
as have the quadratic effects b;; before transformation. Were it not that the small
values of the B;; will be selected because they are small we might “test the sig-
nificance” of the B;; by dividing by their standard errors and referring the quo-
tient to tables of the ¢ distribution. Now the estimated variance of the quadratic
coefficients selected from a rotatable design with scale factor ¢ is (4N)™*
(A7 4 £)c*s* and consequently the inequality (143) can be written

Bii 7 703 FEDAY
— | =
oy | S V)

implying that we can “test the significance’ of the B;; computed from a rotatable
design by referring not to the ¢ distribution but to the distribution of kF.(k, ¢).
This is a special case of a more general result derived by Wallace [20].
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