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1. Introduction and summary. Suppose X, -+, Xm, Y1, -+, Y, are
m + n = N independent random variables, the X’s identically distributed and
the Y’s identically distributed, each with a continuous cdf. Let

z=(zly"'yzm)zm+ly°",zN)=(xly"'yxm,yly'”,yn)

represent an observation on the N random variables and let
m N
u@) = (1/m) 2z — (I/n) 2. 2= & — 3.
i=1 1

Consider the r = N'! N-tuples obtained from (2, - - - , z») by making all permu-
tations of the indices (1, - - -, N). Since we assume continuous cdf’s, then with
probability one, these r N-tuples will be distinct. Denote them by 2, -- -,

2", and suppose that they have been ordered so that
u(z(l)) > .2 u(z(r)).

Notice that since
3—g=/m Xz — W/my = (N/mz — (1/n) 2 2,

the same ordering can be induced by choosing u(z) = ¢% or u(z) = — cj for
any ¢ > 0.

Assuming that the cdf’s of X, , Y, are of the form F(x), F(x — A) respectively,
Pitman [2] suggested essentially the following test of the hypothesis H’ that
A = 0. Select a set of k (£ > 0) integers 4,, -+, %, 1 ST < - <% = 7).
If the observed z is one of the points 2V, - .., 2", reject H’, otherwise accept.
When H’ is true, the type one error does not depend on the specific form of the
distribution of the X’s and the ¥’s and is in fact equal to k/r. The choice of the
rejection set 7; , - - -+ , % should depend on the alternative hypothesis. For instance,
if the experimenter wants protection against the alternative that the “X’s tend
to be larger than the Y’s,” then the labels 1, - - -, k might be reasonable. For
the alternative that the “X’s tend to be smaller than the ¥’s” the analogous
procedure is to use the other tail, » — k + 1, -- - , r. Against both alternatives,
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TABLE 1
Under each a heading, the left-hand column is computed from (8) and the right-
hand column from a normal approximation. Computations were made only
for those values of s such that d + 1 = a (s + 1) is an integer.

o 14 (a)
a
§
0 02 05 10

19 .642 743

39 .736 .815

49 .636 .834

59 782 .848

79 .810 .868

929 .634 .618 .732 .726 .829 .827 .881 .881
119 .843 .842 .892 .891
149 778 775 .903 .902
199 .725 .804 877 .915
299 774 .840 .900 .931
499 .824 .876 .922 .946
999 .875 .912 .945 .962

a two-tail procedure could be used. Lehmann and Stein have shown in [1] that
in the class of all tests (of size « = k/r) of the hypothesis

H: the distribution of X; - -+ , X, Y1, - -+ , ¥, is invariant
under all permutations,

the single-tail test based on 1, --- , k is uniformly most powerful against the
alternatives that F; is an N(6, o) cdf, Fois an N(6 + A, o) cdf, A < 0; the test
based on r — k + 1, --- , r is uniformly most powerful for A > 0.

A practical shortcoming of this procedure is the great difficulty in enumerating
the points 2 and the evaluation of u(2*?) for each of them. For instance, even
after eliminating those permutations which always give the same value of u,

5

then for sample sizes m = n = 5, there are (10) = 252 permutations to examine,
and for sample sizes m = n = 10, there are (?g) = 184,765 permutations to

examine. In the following section, we propose the almost obvious procedure of
examining a “random sample” of permutations and making the decision to
accept or reject H on the basis of those permutations only. Bounds are deter-
mined for the ratio of the power of the original procedure to the modified one.
Some numerical values of these bounds are given in Table 1. The bounds there
listed correspond to tests which in both original and modified form have size «,
and for which the modified test is based on a random sample of s permutations
drawn with replacement. These have been computed for a certain class of alterna-
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tives which is described below. For simplicity, we have restricted the main
exposition to the two-sample problem. In Section 5, we point out extensions to
the more general hypotheses of invariance studied in [1].

2. Description of modified procedure. We first make some definitions. For
any z = (2, -+, 2n), let T(2) be the set of all points obtained from z by per-
muting its coordinates. With probability one, all sets T'(z) contain r = N!
points 2, - -+ , 2 and we restrict our discussion to such sets. We also suppose
that they are ordered in the manner described earlier. Define R'” to be the
union over all sets T(z) of the points 2?, = 1, - -+, r). Evidently R® , - - -,
R are disjoint sets whose union is the whole sample space except for a set of
probability zero. Let P(i) = P(R'). Restricting ourselves to the case A < 0,
we describe the Pitman procedure given above in terms of a test ¢, as follows:

B 1 if u(z) = u(z®),
D0 it < ue®), L<k=0),

where 27, - - -, 2™ are the points of 7'(z) and ¢(2) is the probability with which
H is rejected when z is observed. Let r* = r7(2) be the number of z*? in T'(2) such
that u(z”) 2 u(z). (Notice that R is the event that #(z) = 7.) Then the test
described is equivalent to rejecting H when »* < k and accepting otherwise.

The modified procedure will be to make this decision on the basis of examining
a random subset of 7'(z). Specifically we describe a modified test ¢, as follows:
Select at random s (s < r) points of T'(z). For simplicity, we suppose the sam-
pling from T(z) is done with replacement. Let " equal the number of the s
points for which u(2”) = u(z). Then we define

. 1 if '+ < d,
0 ifrt>d,

L
where d(0 < d = s) is a predetermined integer. We point out that ¢, is a ran-
domized test and that '+ depends not only on z but on the s points of 7(z) se-
lected. Let

¥() = 3 (j) (1 — 9, Osi<1)

1=0

The following is easily verified.
ProrosrTion 1.

1) Ees = g ¥i/MP®, Be = X PO).

ReMark. In particular, when H is true, then P(3) = 1/r and for large r,
Epp,, is approximately equal to

(2) { ' w(?) di.
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In what follows, we always assume that
Eppr = En¢ = k/r.

Notice that ¥(¢) is a nonincreasing function in (0, 1). This fact is used in de-
riving the following bounds in Propositions 2 and 3.
Prorosrrion 2.

3) Ep, = ¥(a)Ep, (a = k/7).

The above bound is quite weak. On the other hand, equality in (3) is attained
only when P(z) = 0, (z > k), P(k) = 1. It would not be unreasonable to say that
the alternatives against which ¢ can be expected to be effective are those satis-

fying
4) P(1) 2z P@2) z --- = P(r).

In particular, (4) is satisfied when the P(7) are the probabilities induced by any

simple alternative against which ¢ is most powerful for all 0 < a < 1. According

to [1], this is true for the normal alternatives described in the introduction, uni-

formly for A < 0. Hence, we shall next determine the value of inf Ep, / Ep over

all P(1), ---, P(r) satisfying (4), and such that ¢, ¢, have size o = k/r.
Prorosrrion 3. Suppose (4) is satisfied. Then

(5) Eop 2 k! f;: ¥(i/r)Ep.
Proor.
Eew | Bp = ; wWi/MPG) [ 3 P
= 2_;1 ¥(i/r)P() / g P(j) + ,-.%1 ¥ (i/r)P(3) ’2_; P(j).

Hence, by replacing P(;) with P(5) / D -1 P(j) for s = 1, ---, k, and with 0

fori =k + 1, ---, r, we do not increase the value of Ep, / Ep and we may as
well assume at the outset that P(k + 1) = --- = P(r) = 0. Now by the mono-
tonicity of ¥, it is easy to see that subject to (4), X imy ¥(i/r)P() / St L PG)
is minimized when P(1) = --- = P(k) = 1/k, which completes the proof.
REMARKS.
(a) It is evident from the proof that (5) holds if (4) is replaced by
4) PQ1) =z --- =z P(k).

(b) By (5), Bo/ Be = (r/k) 25 ¥(i/r)/r. For large r, 3 i W(i/r)/r is
approximately equal to [¢ ¥(¢) dt; hence inf Ep, / Ep over all P(7) satisfying
(4’) approximately equals

©) ot fo " 2 a.
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Let Bls, t] denote the number of successes in s independent binomial trials with
¢t the probability of success in each. Then

s! i s—d—1
P(Bls,{ < d) = (&) = 1 “(‘s—d“‘——mafo (1 — )™ du,

Let A(t) = [ ¥(u) du. After integration by parts, we have

t
1w (t) 4 s(s ; 1> f W1 — W) gy,
0

=t¥() + (d+ 1)/(s + DPBls + 1,4 2 d + 2).

By (2), Exp = Enq. = k/r is approximately equal to A(1) = (d + 1) / (s + 1).
Suppose d and s are chosen se that (d + 1) / (s + 1) = k/r = a. Then by (7),
the value of (6) is

(8) a'A(e) = P(Bls,a) < d) + P(Bls + 1,a] = d + 2).

Some values of a4 (a) are given in Table 1.

A(t)

(7)

3. Concluding remarks for the two-sample problem.
(a) The main point is that instead of basing our decision on (m ;L'_ n) per-

mutations of the observations, we can base it on a smaller number of permuta-
tions and the power of the modified test will be “close” to that of the most
powerful nonparametric test. It may be argued that s still has to be ridiculously
large. For instance, if « = .05, s = 10°, then (8) equals .945; and if a = .05,
s = 10 then (8) equals .98. However, the optimum test is usually completely

impossible. For instance, if m = 20, n = 20, then (m ;zi_ n) > 10", and if there

were a machine that could check 10 permutations a second, the job would run
something on the order of 1000 years. The point is, then, that an impossible test
can be made at least possible, if not always practical.

(b) For some alternatives, the efficiency of the modified test may be better
than the bound in (8) would indicate, since we would often expect a strictly de-
creasing sequence in (4).

(c) For moderate size s there may be reasonable hand-computing procedures.
A possibility is the following: Enter each of the m + n observations on a sepa-
rate card. Perform s “random shufflings.” For each shuffle, sum the first m
entries and record. ‘

(d) An open problem which may be worth investigating, at least empirically,
is the following: For what value of s is the modified test already better than some
given rank order test, or in particular, than the rank order test which is best
against the alternative under consideration?

4. Generalizations. Lehmann and Stein [1] have studied randomization tests
in a general framework. We do not describe here the most general setup, but
rather one to which the results of the earlier sections are adaptable. Suppose
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(Zy, -+, Zy) = Z are N random variables and there is a partition of the sample
space of points (z;, < - - , 2v) = 2 into classes of equivalent points. For instance,
in the Pitman example, two points are equivalent if the coordinates of one can
be obtained from the other by a permutation. For simplicity, we suppose that
with probability one, each equivalence class T'(z) contains a finite number, 7,
of points. Let H be the hypothesis that the distribution of (Z,, ---, Zy) = Z
is, for any z, invariant over all the points of 7'(z). (This is stated here in a some-
what unrigorous way. For the correct statement and for the necessary measura-
bility assumptions, see [1].) A test of H is a function ¢ which assigns to each
point z a number, ¢(2) between zero and one representing the probability of re-
jecting H when z is observed. If
o(@) = ar
z2'eT(z)

identically in 2, then ¢ is a similar size-a test for testing H. Lehmann and Stein
have shown in [1] that under quite general circumstances, a most powerful and
similar size-a test of H against a simple alternative is given by ordering the
points of T'(z), so that

u(z(l)) % e g u(z(r))’
and setting

1 if u(z) > u(z(1+[ar]))’

o) ={a if u(z) = u(**D),

0 if u(z) < u(tieD)y,

where u is an appropriately chosen function and a = a(z) is uniquely determined
to provide a size-a test. We assume that the random variable »(Z) has a con-
tinuous cdf and that the size of the test is k/» where k is an integer (1 < k =< r).
The effect of this assumption is to eliminate ties and to provide a nonrandomized
test with probability one. We can now describe a modified test procedure exactly
as was done in the two-sample case above. There is no reason to suppose that s
items are to be selected at random and with replacement from the set 7'(z)
when z is observed, however. Any “lot acceptance” plan for deciding whether
or not rt(2) < k would be appropriate; for instance, the elements of T'(z) can
be selected without replacement or sequentially, etc. Let

¥(t) = P{deciding r™ < k| r/r = t}.

Notice that this coincides with the definition in the special case studied pre-
viously. Now Proposition 1 goes through in exactly the same way as before. If
W¥(u) is a nonincreasing function in (0, 1) (which is a negligible restriction), then
Propositions 2 and 3 also go through exactly as before. It is also true that for
large r, [o W(t) dt is practically equal to « and that the lower bound on the effi-
ciency of ¢, versus ¢, under the condition (4') is practically equal to o 6w (t) dt,
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but in general these quantities may be more difficult to compute than they were
for the earlier special case.
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