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AN APPROXIMATE FORMULA FOR THE CUMULATIVE
z-DISTRIBUTION!

By Joun WisSHART?

Statistical Laboratory, University of Cambridge and Princeton University

1. Summary. A straightforward expansion and integration of the frequency
function for Fisher’s z produces a formula for the probability that z is not ex-
ceeded, of which the successive terms decrease rapidly when n, and n, are large.
It is given in terms of incomplete normal moment functions (or x* probabilities),
and as a polynomial in zN'/%, where N is.the harmonic mean of 7, and n, . This
last form is identical with the inverted Cornish-Fisher expansion, originally
deduced by quite different methods.

2. To obtain their well-known expansion for determining percentage points
for the distribution of z (one-half of the natural logarithm of the ratio of two in-
dependent variance estimates from normal data) in cases where the degrees of
freedom 7, and n, are large, Cornish and Fisher (1937) used the method of the
normalizing transformation. They developed a Gram-Charlier Type A series
expansion which required knowledge of the cumulants of z. These they worked
out in the approximate form for large n; and n, , to a point sufficient for the order
of approximation worked to. The method is rather complicated, but a final
formula is given which enables chosen percentage points to be determined.
Although it is possible by substitution to deduce the corresponding formula for
determining the probability associated with a chosen value of 2, the author does
not recall having seen such a formula explicitly stated.®

3. The frequency function of z may be manipulated directly so as to give
on integration this inverted formula. The method is direct and simple, re-
quires no Gram-Charlier Type A series, and no cumulants.

Consider two independent variance estimates s; and s; from normal data,
having degrees of freedom 7; and 7,. 2 is then 4 In (s} / s3). For the time being
write 3n; as ¢; and 3n, as ¢; . Then the frequency function of z is

) 2(c1/c2) e
B(cy, ¢2) (1 + c1e%/cy)

where the range of z is from —  to «, and B(c: , ¢;) is the Beta-Function, equal

)
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to T(c1)T(ce) / T(er + ¢2). We shall take n; as the smaller of the degrees of free-
dom, so that ¢; / ¢2 < 1. The frequency function may be written

gB(—(%% exp {2¢12 — (e + c?) In (1 + c1¢*/ea)}
2) = 2}5(62—1/’620)27 exp [2612 —(a+e)n 2 -ct E
. 2z
— (e + ) ln{l + M}]
&+ c

The first logarithm can be put into the outside term, and the second may be
expanded, noting that ci(e* — 1) / (c; + ¢) will lie between +1 and —1 ex-
cept in the extreme tail of the distribution when n; and n, are nearly equal and
of the order of 30 or less.

The frequency function then becomes

2t ¢ @ _Co—o
(01 + 62)°1+C2B(61, 62) 2 2! 2 C1 + C2 3!

@) _g(l_ 3C )(2z)4_gc2—c1(1_ 6C )(22)5
2 ¢+ ¢/ 4! 2ca+c a + ¢/ 5!

_Q<1_ 15C 30C* )(2_2)6_]
2 e+ e (e + ¢/ 6! ’

where C is the harmonic mean of ¢; and ¢; = 2 ¢i¢2 / (e1 + ¢2).
Now put 2z = 2(2/C)"?, whereupon the frequency function may be written

\/m c;1—1/2 c;g—llz e—z’la

(& + ) T B(e;, 1) A/ (27)

2Y° e —a 2, 2 3C ):z;4 <2>1'5
(4) ‘exp{‘[(a> 'c—,+62’37+a<1 “axa/ntle

a—af, 6C \d <2>2<__ 15C 30C" )x6 :I}
c1+62(1 cl-i-c;)ﬁ-l——@ atetarar)a T '

On expanding the I'-functions in B(ci, ¢;) by Stirling’s formula, the first part
of this expression becomes approximately

1 1 1 1\
(1 T oG T T 886 F 02)2> (1 T g T 2ssc§>
‘ 1 1\ 1 N
(5) '<1+T2_c2+288c§> =1 _€N<2_n1+n;>

1 N ¥
+ 72N? (2 T m + m)

exp [chz — 1(22) —

in terms of n; and n, and their harmonic mean N.
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The second part of (4) is the normal frequency function, and the third part
may be expanded into the following series in terms of n;, n, and N:

R (R LRI (Rl
- 810?\71-5" Z: ; 2[5 (1 - nlz-f-vn) 7 =45 (1 B nigivn) d
© +u(i- 0 [+ s (- )
— 90 <1 - nlzf m) (1 - = 3f 'm) el

94N 141N? > s ( 15N 30N* ) e:l
27(13 — - -
+ 7(3 n1+nz-i_(n1'+nz)2 @ —216(1 n;+nz+(n:+nz)”‘ v

as far as terms in N2,

We now have a frequency function for the variable z = 2N? (—w < 2 <
) in terms of the normal frequency function multiplied by a polynomial in z.
For a chosen X, the probability P(x < X) is given by the integral of the fre-
quency function from — e to X. Alternative forms can be found for the result
of the integration. We may express it in terms of Pearson’s incomplete normal
moment functions

w(X) = \—/%r——) fo e dz
ﬂr(X)
(r— 1@ —3)--1lor2

according as r is even or odd. Numerical values for m;2(X) are given to seven
decimals in Tables for Statisticians and Biometricians (Pearson, 1914, 1931),
while uo(X) = P(X) — 0.5, where

P(z) = '—\/(1—2—1'_—) f-: e dy

is given elsewhere in the same Tables (Table II), and also by Pearson and Hart-
ley (1954), Table 1.
In this form the probability P(0 < =z < X) is

1 N 1 N ¥
[1 —617(2—n1+nz>+72N2(2—n1+n2>:|

2 Neg — My
{Ilo(X) W m ms(X)

+ 6;—\7 [5 <1 - nIZi\/'m\) mo(X) — 3 <1 T m 3—]&Yn2> m4(X)]

mr(X) =
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8 m-m _ 2N )
135N1%  ny + ne [40 (1 n + 7y m(X)

R

2N ¥’ ( _ 2N )
+72N2[385< - +n2> mip(X) — 630 1 P

3N 94N | 141N’ )
(1 n + nz) m(X) + 21 (15 n + ne t (n1 + no)? ms(X)

_ _ 15N 30N* ) ]}
24 (1 m + ne + (m1 + no)? me(X) | -

The probability P(—« =< z < 0) is got from (7) as a special case by puttmg
po(— ) = mg(— ) =05, and maep1(—») = (=27 Y2 It then becomes®

1 N 1 N ¥
[1—W<2—n1+n2>+72N2<2—n1+n2>:|
2
e (-ain)tm (2-———N )
2 " 12N n + N 144N? m + N
2 Nneg — N I:l (4 N >:|
T 3V@)  m + me +45N Tt m

_1 2 nz—n][ 1 < 23N >:|
=337 miml TN Gt
The sum or difference of (7) and (8), according as X is pos1t1ve or negative,

gives the probability P(—«~ = z < X).
Alternatively we may write in (7)

@) e (X) = P(X*| 2r + 2),
2me(X) = P(X*|2r + 1),

)

8

where P(X? | ») denotes the probability that x* does not exceed X7, for » degrees
of freedom. These probabilities may be obtained to five decimals by subtracting
from umty the x* probabilities given in Pearson and Hartley (1954), Table 7

A series expansion for the probablllty P(—» <z = X) can be obtamed in
terms of P(X) and Z(X) = ¢~ *2 / y(2r), together with a polynomial in X, by
associating (6) with Z(x) and integrating term by term by parts. This gives the
required probability as

1 N 1 N ¥
{1_6N<2_n,+n2>+72N2<2"n1+n2>}

4 Reviewer’s note. The algebraic signs for mq,(— ) should be the opposites of those:
given here; when X is negative, (7) takes negative values.
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o e Xt - def(s - 2w
+ (2 - T) (x*+ 3X)} Z(X) +6 (2 - ) P(X)

1 Nng — M _ 2N 8 _ _ 11N 6
+ 810N n; + n2{5 <1 m + nz) X 5 (1 n + n2> X

N

+6 (4 + ) (X* 4+ 4X* + 8)} Z(X)

n + n
2
n 2N
9720N2{ ( n + m) X 5 <1 n + nz)
N

_ 0 52N 103N* ) 7
(7 n1+nz>X +9< nl+nz+(n1+m)2 X

+9 <2 __X )2 (X + 5X° + 15X)} Z(X)

n + M

1 N ¥
t N (2 T mF m) P(X):I'
On multiplying in by the outside factor this becomes

-m X'+2 1 _ 2N > 5
P + 200 [ XEZ L (- Ay

+ (2 T Z ’nz> (X + 3X)} + EEE_V“‘H{S (1 B n12-1:—rnz>xs
- 5(1 - n;ILN >X°+ 6(4+ T)X‘

0 o B ) el )
- (1 a nlzfnz)(Fi B mg?l-Nm> X'+9 (4 - nxs?i-an
+ %) X-9 (2 Cm Ii "2>(8 a nll?!-Nm) X

— 45 <2 —’nl ]_;’: m>2 x* + 3X)}:|.

This is the expression which is the “direct” form of the Cornish-Fisher expan-
sion, yielding, to terms in N7, the probability that z shall not exceed zN "2
Additional terms could be worked out by noting that the terms of the exponen-
tial in (3) are equivalent to the binomial cumulants, but the terms in (9) should
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suffice for W of the order of 50 or above, and fewer terms will do if the probability
is not required to a large number of significant figures.

For the benefit of those accustomed to the notation of Cornish and Fisher,
(9) may be put into the form

#+z[L:§zi‘_).%(X2+2) —%{3(X3+3X)+§2(2X“+X3+3X)}

N L ‘5-{9(5X° + 6X* + 0X° + 18) + 2
1620 o 7
: 5 _ — 6X* — 69X — _ o)
(10) (10X® — 55X° — 6X* — 69X 138)} 38380

2
: {27(5X’ +3X° — 15X — 45X) + 182,
-(10X° — 51X" — 27X° — 15X° — 45X)
4
+ ‘:_4 (20X" — 320X° + 927X" — 171X° — 45X° — 135X)}:|,

but note that z here is what we have hitherto written as Z(X). In using (10) we
take X as the chosen value of Fisher’s z divided by v/(%0), i.e. by its approxi-
mate standard derivation, [3(1/ny + 1/n)]"%; 6 is, of course, 1/n, — 1/na.

The order of the terms in (9) or (10) may be seen if we choose as an example
n = 60,n = 120,Z = (1/5) /20 = 0.1118034. Then N = 80, while v/ (39) =
(v/5) /20 and 8/c = %, and X = 1. Using Pearson and Hartley’s Table 1 we
find for the probability that this chosen value of Z is not exceeded

0.8413 447
90 177

10 642

218

16

+H 0+

0.8493 216

so that we are here close to the 15 per cent point of the z distribution.
When 7, = no = n we have N = n, N/(ni + ng) = 3, also 6 = 0, 30 =
n . Then (7) and (8) give

1) 5+ (1 — .t ?Tlnz) (uo(X) 4 m‘jg) - 32"‘“(X)9gn235m“(x )>,

while (9) or (10) gives

2 7 5 __ 2
(12)  P(X) — Z(X) {X(Xu: 3) | 5X +3X . 4401n52X(X + 3)}.

When n; = n, ns = ®, we have an expansion from which can be calculated
the probability that a chosen value of x*, for n degrees of freedom, is not exceeded.
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If this value be denoted xo, then we take X = v/(&n) - ln(x,, /n), so that we are
effectively transforming x* by first forming the ratio of x* to its mean, raised to
the power of its standard deviation, and then taking one-half the natural loga-
rithm of this quantity. The expansion for the probability may be obtained from
(7) and (8), or from (9), by putting N = 2n, (n, — n)/(m + me) = 1 and
N / (m + ng) = 0, or from (10) with ¢ = § = n™". It has been developed from
first principles by the author in [7].
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THE MIXTURE OF NORMAL DISTRIBUTIONS WITH
DIFFERENT VARIANCES!

By D. TEICHROEW?
University of California, Los Angeles

1. Introduction. In some practical problems, the observed variable may have
a normal distribution whose- variance varies from one observation to the next.
The purpose of this note is to give the formula for the marginal distribution when
the variances are assumed to be distributed according to the Gamma distribu-
tion.

2. The distribution in the general case. We assume that the conditional den-
sity of X, given o, is

fz/d®) = PRt —o <z< o, >0,

(2 ) ¢
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