ON INFINITELY DIVISIBLE RANDOM VECTORS!
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1. Summary. A normally distributed random vector X is well known to be
representable by A -Y (in the sense of having identical distributions), where A
is a matrix of constants and Y is a random vector whose component random
variables are independent. A necessary and sufficient condition for any infinitely
divisible random vector to be so representable is given. The limiting case is
discussed as are connections with the multivariate Poisson distribution and
stochastic processes.

2. Notation and preliminaries. Let (2, ®, ®) be a probability space; that is,
Q is an abstract point set, ® a Borel Field of subsets of 2, and @ a probability
measure defined on ®. If m = 1 is an integer and X, ¥, Z - - - a set of m-dimen-
sional vectors defined on 2, we write X ~ Y to signify that the associated proba-
bility measures (or distribution functions) of X and ¥ are identical. Since the
relationship indicated by ~ is reflexive, symmetric and transitive, the use of this
symbol is in the best of taste and tradition.

We abbreviate the terms cumulative distribution function, charactenstlc
functlon random vector, and infinitely divisible by c.df., c¢.f., r.v., and id,,
respectively, and occasionally string some of these together. .Ar bar ov'er a set
signifies complementation.and the notation R™ is used for m-dimensional Eucli-

dean space.

3. Infinitely divisible vectors. Recall that an r.v. X and likewise its c.d.f.,
say F(zy, &2, -+, Tm) , and its c.f., say o(t1, &2, -+ - , tm), are called i.d.? if for
every positive integer n, X ~ sum of .n independent (identically distributed)
r.v.’s. P. Lévy (4], p. 220).has given a necessary and sufficient condition (NSC)
that X be id., viz.,

& 1 &
oty -+ tm) = X% D ¥iti — = 2 oatile
1) e 2 =

L+ [uf?
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- 1 This work was supported in part by an Office of Naval Research contract at Stanford
University.

2 In many works X is defin&d to be i.d. if for every positive integer n, X» = Xn1 -+ Xa2
+ --- 4+ X.n ,where X»1 ,Xn2, -+ , Xun are mutually independent. Such a definition places
demands on the basic space 2. A discussion of this point occurs in Appendix 2 of “Limit
Distributions of Sums of Independent Random Variables’’ by Gnedenko-Kolmogoroff,
Addison Wesley. The current definition obviates such questions.
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462 MEYER DWASS AND HENRY TEICHER

where v; are real coefficients = = {o,;} is a positive semidefinite matrix, | u | is
the Euclidean length of the row vector u’ = (u1, uz, *+- , 4m) and un(4) =
JadN(u1, ---, un) is a nonnegative additive set function (not necessarily
finite) defined on the Borel sets A of B™ and such that

@) [ 1N, ) < o, [ N, ) <

(with S, an m-dimensional sphere of radius e > 0 centered at the origin and 8.
its complement in R™) for arbitrary e.

Let o(t), N(u), and G(u) abbreviate o(t1, --* , tm), N(u1, -+, um) and
G(u, - - - , um), respectively. Analogous to the one-dimensional case, an alterna-
tive and frequently more convenient form of (1) is given by

o(t) = exp {1yt — &t'Zt}
@) tu ity 14 |ul
e""{fn-@ “lory Iul’)( [uf )"’G‘“)}’

where ¢, 4, ¥ are column vectors and

- - K
wal) = [ a6 = [ 3 avw
is, in view of (1’), a finite Lebesgue-Stieltjes measure on the Borel sets of R™
which may be taken to vanish for A = {u: |u| = 0}.} Thus, any i.d.c.f. . may be
characterized by a triplet [y, Z, G].!

The first factor in (2) is obviously the c.f. of a multivariate normal distribution,
while the second is generated by the Poisson distribution in a sense which will
be made more precise later. Thus, every i.d. vector X ~ X® + X where X
is multinormal and independent of X® which will be said to be “Poisson type.”
It will be convenient to refer to this as the canonical representation of X. If
X® = 0, X will be called “purely normal” while if X = 0, X will be dubbed
“purely Poisson type.”

If an i.d. vector X = (g) is partitionable into subvectors, one of which (say
U) is purely normal and the other V' purely Poisson type, then U and V must be
U U(l) U(2) U(l)
independent. For (V) ~ (V“’) + (V(z)) with (Vm) purely normal and
&)
independent of U(z) which is purely Poisson type. But U purely normal
14

implies U® = 0 and V purely Poisson requires V® = 0. The assertion follows.
“This observation may be-utilized to construct a non-i.d. vector, all of whose
marginal random variables are id.

3 For the most frequently encountered case m = 1, this G(u) is not in general identical
with that used by the authors of the book mentioned in Footnote 2.

¢ It does not appear to have been remarked (even for the case m = 1) that a bounded r.v.
is i.d. if and only if it is constant with probability one. This may be argued directly from the
definition without resorting to (2).
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The fact that for an arbitrary nonzero constant vector

¢ = (cl 1 €2,y 00y cm) and c.f. ¢Xl.xz-"'-xm(tl ’ 2} y " tm)’
eled, ety -+ -, cmt) = Elexp{i(aXy + -+ + caXm)t}] = ox(l)

shows immediately that if X is an i.d. vector, every linear combination ¢’X of
its component random variables i$ i.d. The converse, however, is untrue. That is,
it is possible for every linear combination ¢’X to be i.d. without the vector X being
i.d.* The Wishart distribution provides an example.

For the c.f. of a so-called I-variable is well known to be [1 — (it/a)]™, A\, & > 0
and is manifestly i.d. Hence, the ¢.f. [(1 — #)(1 — )], A > 0, of the sum of
two independent I'-variables is clearly i.d., whence by the remarks at the begin-
ning of the preceding paragraph, [I — i(c; + c2)t — o’ is i.d. for arbitrary
constants ¢, ¢;. But if Z; = (Zy;, Z;) are independent normally distributed
vectors with mean vector zero and common covariance matrix 2, then X’ =
(X1, Xa, Xs) = Q.1 Zhi, 2.1 Zaj, D17 Z1;Z,;) has the Wishart distribution
with c.f.

II - 2T l—nlz = [1 - 2i(0’ut1 + aoola + 2012t3) + 4(0’110’22 - sz)(t: - tltﬂ)]—”lz-
Thus, every linear combination ’X has the c.f.
(1 — 2i(bions + baom + 2bsora)t + 4(onom — o32) (b — biba)fT™?,

which is i.d. by the preceding remarks. On the other hand, P. Lévy has shown
[5] that the Wishart distribution is not itself i.d. and that for n = 1, it is even
indecomposable.

If Y is a k-dimensional r.v. whose component random variables are inde-
pendent and.i.d. and A is an arbitrary m X k matrix of real constants, X = AY
is an i.d. r.v. In what sense is the converse true? That is, if X is an i.d. vector
when does there exist a constant matrix 4 and a finite set of independent i.d.
random variables Y;, ---, Y, such that X ~ AY?

If X is purely normal it is well known that such a representation is always
possible. Thus, it suffices to investigate X', the Poisson type r.v. in the canonical
representation of X. For if X® ~ 4,Y" with the k, components of ¥ mutually
independent, since X® ~ A4,Y® with the k, components of Y independent,
we will have

. Y(l)
X~XP 4+ XP ~ (4, 4) (Y(zf) = 4Y,

with the £ = %k, 4+ k, components of ¥ independent random variables.

An answer to the question posed is given by

TreeorEM 1. A NSC that a Poisson-type rv. X ~ AY where the components
Y1, -+, Yrof Y are independent non-degenerate t.d. random variables and A is an
m X k matriz of constants, no column of which consists entirely of zeros, is that in
(2), ne vanish identically except on k differeni rays through the origin. Then k is

6 It is presumed that the assigned distributions of-all linear combinations are compat-
ible with the existence of a joint distribution.
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the minimum number of random variables for which a representation X ~ AY, with
the components Y, , - - - , Y} independent Poisson-type random variables, is possible.

Sufliciency. From the hypothesis of Theorem 1, the c.f. of the i.d. vector X
may be supposed characterized by [y, =, @], with ¢’ = (0, ---, 0), = = {0},
ie, X = (0, ---, 0). By hypothesis, u¢ assigns positive mass only along k
rays, say R;, whose direction cosine vectors are r; = (ri;, raj, -+ * , T'mj). Let
Gi(s) = pe(43), where A} = {uiu e R™ u' = pr;, —o < p < s}and h(t'u, | u |)
denotes the integrand of (2). Then

[ 1w 1up d6t) = 32 [ e, ) d6ie)

and

k . T 2
¢x(t) ___‘J]-;I]exp{‘/‘;l (ez(t ride __ 1 _i(_t-;i)p_f;)(l':;p)dGJ(p)}

k
= II ¢j(t'rj)’
j=al

where ¢;(t) is a univariate i.d. c.f. characterized by [0, 0, G,].

Let Y1, ---, Y be independent i.d. random variables with Y; having c.f.
¢;(t) as defined in (3) and take 4 to be the m X k matrix whose jth column is
ri. Thenif Z = AY,

@212ty tm) = E [exp {z’t'Z}] = E [exp {i({A)Y}]
k k
= jI;];E' lexp {i(tr)V;}] = ]I;Ilw(t’rj)-

Thus, X ~ Z = AY. This representation in terms of the distributions of % inde-
pendent i.d. random variables (k being the number of rays with positive mass)
is unique to within a relabelling of the variables and multiplication of each vari-
able by a nonzero constant. The columns of A must then be adjusted accordingly.

Necessity. Since X ~ AY with the components of ¥ independent and non-
degenerate, the first equeality of (3) holds with r; equal to the jth column of the
given matrix 4 = {a,;} divided by the scalar norming factor (3_7; a};)"/*. Com-
paring this with (2), it follows from the uniqueness of the i.d. representation
that G and e are as stated in the theorem.

Note that if & < m, the mass of the distribution of X® is concentrated in a
space of lower dimensionality than R™ (i.e., the distribution of X is singular).

A family of distributions § = {F} has been defined in [7] to be factor-closed
if F = G, *@;, F ¢Fimplies Gy, Gz ¢ . Then we have as a

CoROLLARY. If some component X; of X® has a distribution belonging to a
factor-closed family &, the distributions of r;;Y; belong to &, forj = 1,2, - -+ , k.

To avoid trivialities, let all components X; of X be nondegenerate. Then no
row of A is a zero vector. If X’ = 0 and m = k, then the components of X
@i.e., X®) are independent if and only if the rows of A may be permuted so as to

@)

(4)
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form a diagonal matrix. This is palpably sufficient; on the other hand, if A can-
not be so juggled, some Y; has nonzero coefficients in two (necessarily inde-
pendent) linear forms in the independent random variables Y'; . But this implies
[2] that Y;is normally distributed. The proof of the theorem, however, shows that
when X'V = 0, the ¥; are all purely Poisson type, producing a contradiction.

Let a; be a k-tuple with 1 in the jth position and zeros elsewhere, ;. =1,
-++, k. Then if £ < m and all o; belong to the m-manifold spanned by the m
rows of B, no representation of an i.d. vector X in the form BZ with the & com-
ponents of Z independent but not all i.d. random variables is possible. For in
such a case C;B = a; has a nonzero solution C; forallj = 1,2, -+, k whence
CiX ~ CiBZ = a;Z. But C;X and therefore Z; is i.d. If, e.g., k > m such a
representation is not summarily precluded.

It is, in general, untrue that an m-dimensional random vector ¥ ~ 4X where
the components of X are independent random variables and the matrix 4 is-
m X k. This may be seen with the familiar multinomial distribution.

Ezxample. In r independent repetitions of an experiment, let Y1, -+, Yny
be the number of occurrences, respectively, of the mutually exclusive and ex-
haustive outcomes A;, :-:, A4 with (single) trial probabilities p., -- -,
Pmi1, O p;=1);take Y’ = (Y4, Ya, -+, Y,) and suppose there exists an
integer k = 1 and constant vectors a; = (aji, - - - , ;) such that ¥ ~ AX with
the components of X independent random variables. Then "

)] Ik]:w(i ajvtv) = [VZ:} pole’™ — 1) + l:lr

j=1 ye=1

Setting ¢, = ¢, &, = 0 for v = g,
k
IIlwi(ajui) = [pu(e’ — 1) + 1T,
e

Since the classical binomial family is factor-closed [7],
ei(aut) = e"[pe" — 1) + 1] with0 < r; S,

2ri=r12¢; =0,

or

eilt) = ¢ Mp,(e i — 1) + 17, j=12- k.
Since the left-hand side is independent of u, so is the right-hand side, whence
Du = D, 0ju = Gj,p = 1,2, ---  m. Thus, if the multinomial probabilities are

-not identical, (5) cannot hold. However, even if p; = p, (5) would imply

fio(Eer) - > (eolie] ) ]
= [? P — 1) + 1]

7
’
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which is impossible since the middle expression is a function of Y 7w ¢; only
(and hence a degenerate multivariate distribution) whereas the right-hand side
is not.

The following theorem covers the case that the measure ug is not necessarily
wholly concentrated on a finite number of rays through the origin.

TeEOREM 2. If X i3 an i.d. random vector, then there exists a sequence of vectors
{Yn} consisting of independent i.d. components, and a sequence of finite matrices
{An} such that the distribution of A,Y, converges to the distribution of X asn — o,
The components of Y, can each be taken to be of the form (Y — b), where Y is a
Poisson random variable if X is purely Pogsson type.

Proor. As earlier, we may suppose X® is zero. Let

_faw o, itu 1+|ul”)
o = (¢ = 1 = 3 7ep) (FFar)-

There is a double sequence of positive constants

Ani, o0y Ankemy n=12---

and a double sequence of m-tuples,

Unay *°° ) Unkn) n=1,2---
Uni = (unt, -+, usd), i=1,2--,kn)
such that
k(n)
®) 2 Mchlnd) = [ ) dG(u),

as n — . Now An,ih(un.;) is the log of the c.f. of a random vector

@) (Vi = badul? , -+, [Vai — aul),

where the b,; are appropriately chosen constants, and Y, is a Poisson random
variable with parameter \.; . Hence, the left-hand side of (6) is the log of the
c.f. of a sum of k(n) vectors of the form (7), where Y1, - -+ , Yuxm are mutually

independent. In other words, the left-hand side of (6) is the log of the c.f. of the
vector

1 1 -
ui(t 1) uf;}e(») Ynl
.’
(m) 7
\ u'(t'l.) unt;:(n) Yo

‘where Ypi = [Yni — bad, 2 = 1, -+ -, k(n) are mutually independent i.d. random
variables. This completes the proof.

4. Multivariate Poisson distribution. Let V denote the set of 2" — 1 vertices
(excluding the origin) of the unit cube in the first orthant of R™ and lying along
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the m-axes; let V; signify the vertex with one as the jth coordinate and zeros for
the others,j = 1,2, --- , m;let V,;, ¢ < j, represent the vertex with one’s for
the 7th and jth coordinates but zeros for the remaining; - - - ; finally, let Vi,....m
denote the vertex (1,1, ---, 1).

In (2), define G(u) by ue(V;) = a; 2 0,5 = 1, .-+, m, ua(Vs;) = as; 2 0,
i <7; ,06(Vig,....m) = @12,...n = 0, and for any Borel set B of R™, pe(B) =
ue(VB) where the measure of the empty set is zero. Then if z; = "/, (2) becomes

B8 o) = exp{Z; a;2; + ; a;;2i2; + -0 + a;,g,...,,,,_I]l:z,- — A,,.},
J= 1<J J=

where A ., is a constant such that (0, 0, - - - ,0) = 1. The c.f. in (8) is that of the
multivariate Poisson discussed in [6]. Since G(u) is of the form prescribed by
Theorem 1, with & = 2™ — 1, it follows from this theorem (supposing the con-
stants a;, @ij, -+, G,....m strictly positive) that there are 2" — 1 random
variables Y; and a constant matrix A such that X ~ AY. The matrix A may be
chosen so that its 2™ — 1 columns are the vectors (vertices) of V. By the corollary
to Theorem 1, the Y; are also Poisson distributed with parameters a; , @z, - -,
Om } Q12 , Q13,--. Om_1,m } * - * ; G1.2,-.-,m . Since the classical Poisson distribution is
not invariant under scale change, the matrix 4 is uniquely determined to within
a permutation of its columns by the stipulation that the Y; be independent
Poisson random variables.

Furthermore, the multivariate Poisson distributions specified in (8) are the
only i.d. distributions which are marginally Poisson. For, under this last proviso,
G(u) in (2) must be such that the projection of ue on the jth coordinate axis con-
centrates all mass at the point (0,0, ---,0,1,0, -- -, 0). This, in turn, requires
that ue be as defined in the previous paragraph,

More generally, let § = {F(z; b, -+, br;¢1, -, ¢} be a family of uni-
variate i.d. distributions whose c.f.’s are characterized by [0, 0, G] with x¢ a

discrete measure assigning massc, > 0 tou = by # 0,h = 1,2, .-+, r. Let
X be an id. vector with the prescribed marginal distribution Fx,(z) =
Fiz; by, -+, b ;¢ci,--,¢) ¢ = 1,2 ---, m. Then, as earlier, there is a

unique family of i.d. distributions for X having the stated marginals. Its c.f.’s
are characterized by [y, =, G4] wherey’ = (0,0, ---,0), Z = {0}, and ug; is 8
discrete measure assigning mass d; = 0 to the (r + 1) — 1 points
(41, s, -+ , Um) Where u; = b; or 0 (but u; not all zero). Here the independent
random variables may be taken to have the classical Poisson distribution and

k
Y
1*;1 ay T di;Y;

k .
Yy P
1
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It is degenerate vectors of this form based on a single Poisson random variable
Y ; rather than nondegenerate vectors having the most general multivariate
Poisson distribution that spawn i.d. vectors.

It was pointed out above that if X is a multivariate i.d. vector, all of whose
components have Poisson distributions marginally, then X must have a multi-
variate distribution specified by (8) and X ~ AY when 4 is a finite matrix and ¥
is a vector of independent Poisson random variables. The purpose of the next
remarks is to indicate that in general a comparable situation does not prevail.
For example, suppose that U,, U, , U; are independent gamma variables whose
ef’sareall (1— )™, (A > 0). Then

U,
X, 101
- (3)-()(E)
X: 011 U,
is an i.d. vector with c.f. {(1 — )1 — it)[1 — (& + &)]}™ whose marginals
X, X, are gamma variables. On the other hand, in [3] it is shown that if | p | < 1.

then
© [ — )1 — its) + p'tuto] ™

isa c.f. for all A > 0 (and hence i.d.) and its marginals clearly have the same dis-
tribution as do X; and X, . Thus there is no unique i.d. family having gamma
marginals. Suppose p % 0 to avoid the trivial case of independence; then it is
easy to verify that (9) cannot be the c.f. of a finite linear combination of in-
dependent gamma variables.

6. Connection with stochastic processes. It is a familiar fact that in the one-
dimensional case the theory of i.d. random variables has a close connection with
the theory of stochastic processes with independent increments. The analogue for
multivariate i.d. vectors should be apparent, but it may be worth making some

of the facts explicit.
Let U be a random vector whose values are the vectors of the set V defined at
the beginning of Section 4. Denote these values by %, ---, ux and let their

corresponding probabilities be p , - - - , pr , where k = 2™ — 1. Let Uy, Us, - - -,
be an infinite sequence of independent random vectors, each distributed as U. Let
X'(t), (¢t =2 0, X'(0) = 0), be a Poisson process with stationary, independent in-
crements. It is well known that waiting times for “jumps” in X’(¢) are inde-
_pendent, identically distributed exponential random variables. That is, an
equivalent way of defining this process is in terms of an infinite sequence of in-
dependent, identically distributed random variables Wy, Ws, - - -, such that
P(W; < w) = M?¢e™ dy for w > 0 and zero otherwise (\ > 0) as follows:

X'(0)=0,0=t= Wi,
X't) =1,WM<ts W+ W,
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X'@t)y =2,Wo+We<t =W+ Wo+ Wy,
etc. Analogously, we can now define a multivariate Poisson process X (¢) as follows:
X(0) = 0, (zero m-vector), 0 = ¢t < W,,
X@t) =U, , Wy <t= Wi+ Wy,
X@t) =Ui+ Uy, Wi+ W<t =W+ W, + Ws,

ete. Making use of the well known fact that the conditional distribution of
Wy, -+, W, given that X'(t) = r is that of the ordered values of r independent
random variables, each uniformly distributed in (0, £), it is easy to compute that
the cf. of X(¢) is

0 7 =\t k
;,, coy 9%,6—— = exp{ktz (¢ — 1) pj},

=t
where
k
0(0) = C(017 Tt om) = Zl e'o'"fpf
J=
is the ¢.f. of the random vector U and u; , - - - , us is the set of the k possible values

of U. Making use of the material in Section 4, we see that we can choose the
p;’s and \ so that X(¢) has any prescribed i.d. multivariate Poisson distribution.
We remark also that X(¢) has independent, stationary increments for exactly the
same reasons that X'(¢) does.

Consider now the somewhat more general case in which U, U,, --- are in-
dependent, identically distributed random vectors (m-tuples) having an ar
bitrary distribution with c.f.

c() = f ¢ dF (u),
Ry

where F is the distribution function of U;. If we define X(¢) as above but in
terms of these more general U,’s, then the c.f. of X(?) is

exp {)\t fn (€ - 1) dF(u)}

We recognize this to be a multivariate i.d. c.f. either from the Lévy form or from
the fact that X(f) has independent increments. We cannot obtain the most
general multivariate i.d. c.f. in this way. On the other hand, we can find a se-
quence of constant vectors a, , az, « -+ and scalars by, bz, - -+ and distribution
functions Fy, F, - -+ such that if X,(t) is determined by F, as above, then as

n—> 0,

(Xn(t) - an)/ ba
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v

converges in law to an arbitrary Poisson i.d. vector. Thus, the most general
Poisson-type i.d. vector can be approximately obtained in terms-of a Poisson-
like stochastic process with independent exponential waiting times between
“jumps” and whose “jumps’’ are random vectors.
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