DESIGN FOR THE CONTROL OF SELECTION BIAS'

By Davip BrackweLL anp J. L. Hobges, Jr.

University of California, Berkeley

0. Summary. Suppose an experimenter E wishes to compare the effectiveness
of two treatments, A and B, on a somewhat vaguely defined population. As
individuals arrive, E decides whether they are in the population, and if he
decides that they are, he administers A or B and notes the result, until n4’s
and nB’s have been administered. Plainly, if E is aware, before deciding whether
an individual is in the population, which treatment is to be administered next,
he may, not necessarily deliberately, introduce a bias into the experiment.
This bias we call selection bias. We propose to investigate the extent to which
a statistician S, by determining the order in which treatments are administered,
and not revealing to E which treatment comes next until after the individual
who is to receive it has been selected, can control this selection bias.

Thus a design d is a distribution over the set T' of the <2,:> sequences of length

2n containing nd’s and nB’s. We shall measure the bias of & design by the maxi-
mum expected number of correct guesses which an experimenter can achieve,
knowing d, attempting to guess the successive elements of a sequence fe& T
selected by d, and being told after each guess whether or not it is correct. The
distribution of the number G of correct guesses depends both on d and on the
prediction method p used by the experimenter. We shall consider particularly
two designs, the truncated binomial, in which the successive treatments are
selected independently with probability % each until » treatments of one kind

have occurred, and the sampling design, in which all (21?) sequences are equally

likely. We shall consider particularly two prediction methods, the convergent
prediction, which predicts that treatment which has hitherto occurred less
often, and the divergent prediction, which predicts that treatment which has
hitherto occurred more often, except that after n treatments of one kind have
been administered, the divergent prediction agrees with the convergent pre-
dictions that the other treatment will follow; when both treatments have oc-
curred equally often, either method predicts A or B by tossing a fair coin, in-
dependently for each case of equality.

We find that among all designs, the truncated binomial minimizes the maxi-
mum expected number of correct guesses. For this design, the expected number
of correct guesses is independent of the prediction method, and is

n+n (2');&)/22” ~n 4+ (n/=)*
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With the truncated binomial design, the variance in the number of correct
guesses is largest for the divergence strategy and is

3n/2 — D — D*/4 ~ (37 — 2)n/2r — 2(n/7)"?,

where D = n <2,:> / 2*"71 and is smallest for the convergence strategy, and is

n/2 — D*/4 ~ (x — 1)n/2x. For the sampling design, convergent prediction
maximizes the expected number of correct guesses; this maximum is

wt 2 /() Lt (o

n

Finally we note that, if treatments are selected independently at random,
bias of the kind we discuss disappears, but the treatment numbers can no longer
be preassigned. Three such designs are considered: the fized total design, in which
the total number of treatments is a fixed number s, the fized factor design, in
which we continue until 1/X + 1/Y = 2/n, where X is the number of A treat-
ments and Y is the number of B treatments administered, and the fixed mini-
mum design, in which we continue until min (X, ¥) = n. For the fixed total
design, we find that, fors = 2n + 4, Pr (1/X + 1/Y = 2/n) ~ 0.955 for large
n; at the expense of 4 extra observations, we have a bias-free design whose
variance factor will with probability 0.955 be smaller than that in which treat-
ment numbers are preassigned. For the fixed factor design, the additional
number of observations required to achieve the given precision has for large »
the distribution of the square of a normal deviate. For the fixed minimum de-
sign, in which we guarantee precision for the estimated effect of each treat-
ment, the expected number of additional observations is roughly 1.13 (n)".

1. Introduction. It is widely recognized that experiments intended to compare
two or more treatments may yield biased results if the experimental subjects are
selected with knowledge of the treatments they are to receive. Consider as illus-
tration of experiment in cloud seeding. From a sequence of storms the meteorolo-
gist selects 2n storms deemed suitable for seeding. Of these, n are seeded and we
compare the rainfalls they produce with those produced by the other n storms.
If the meteorologist knows (or can guess), while considering the suitability of a
storm, whether or not the storm will be seeded if he selects it, there exists the
possibility that his selection will be biased.

We shall call this selection bias. It presents a serious problem when the trials
constituting the experiment occur sequentially in time. If it were possible to
‘collect at one time a block of as many subjects as there are treatments, a simple
random assignment of treatments to subjects would dispose of the bias. But in
many experiments potential subjects occur singly and must be dealt with when
they arise. For example, in clinical trials it is often essential to treat the patient
as soon as the illness is diagnosed—the physician cannot wait until he has a
similar patient merely to permit randomization of the bias.

In some cases it is possible to eliminate selection bias by conducting the ex-
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periment in such a way that the person who selects the subjects is not otherwise
involved in the experiment or is not able to discover which treatments have been
applied. Again, it may be possible to define subject suitability with precision and
to accept without conscious selection all subjects metz%%ethe criteria. But often-
times the exercise of judgment is essential if the treatments are to have a con-
vincing test, and the best or only judges available are those most deeply involved
in administering the treatménts. Therefore we thought it interesting to see to
what extent selection bias can be controlled through design of the experiment—
i.e., through the statistician’s strategy in choosing the sequence of treatments to
be given to the subjects selected by the experimenter.

Admittedly, selection bias will usually operate subconsciously, but to sharpen
the problem we imagine an experimenter E who is consciously seeking to produce
biased experimental results, while the statistician S is attempting to prevent this.
To fix the problem, suppose we wish to compare two treatments, say 4 and B.
It is customary to decide in advance of the experiment how many subjects will
receive each treatment, and it is also customary to assign equal numbers of sub-
jects to the two treatments. While we shall return to this question below, at first
let us suppose it given that each treatment will be administered to n subjects.

If E wishes to make it appear that A produces a greater response X than
does B, and if he knows (or guesses) that S will assign treatment 4 to the next
subject, then E will try to select a subject whose expected response E(X) is
high. Conversely, if E anticipates a B treatment, he will select a subject with low
E(X). The results of E’s guesses and S’s assignments can be displayed in a two-
by-two table:

Number of times when S
assigns
A B
and E 4 * n-8 \
guesses B n— B

Suppose that the treatment effects do not differ, but that when E anticipates
an A(B) treatment he selects a subject with expected response u + A(x — A).
Then the expected difference of treatment sums is

(1.1) 2A(a 4+ B — n) = 2A(G — n).

The quantity G is thus the total number of correct guesses. If he guesses at
random, E would on the average be right half the time, giving E(G — n) = 0.
His ability to bias the experiment depends on getting E(G) above n.

In accordance with the foregoing analysis we now férmulate our design prob-
lem as a two-person game. The game is played in 2n moves. On each move,
each of the players E and S privately selects one of the letters A and B, with
the restriction that exactly n of S’s choices must be 4. They then compare
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selections; if they agree S pays E one unit. The total payoff is G, and we wish
to know S’s minimax strategy for minimizing E(G), i.e. the optimum design
for controlling selection bias. The value of the game will indicate to what ex-
tent selection bias can be controlled through design.

2. The biases of three designs. Before giving the solution of our game, we shall
illustrate the ideas by deriving the optimum strategies for E and the correspond-
ing biases for three designs used in experimental work.

(i) A very common practice is the alternation of treatments, producing the
treatment sequence ABAB --- AB or BABA --- BA. While this design is
exceedingly simple and does an optimum job of spreading the treatments over
time, it is about the worst possible design from the standpoint of selection bias.
Since F can correctly guess every treatment, E(G) = 2n. Even if, as is some-
times done, S selects one of the two patterns at random, £ can guess all but
the first trial and has half a chance for that, so that E(G) = 2n — 3. (Exactly
the same conclusions apply to the ‘“Student’” sandwich design ABBAABBA
--- ABBA).

(ii) As just remarked, S can insure that E’s expectation of correct guessing
on the initial trial is only % by simply choosing a treatment at random. Further,
S cannot do any better than this, since £ can guarantee himself half a chance,
whatever S may do, by guessing at random. A similar analysis applies to the
second trial, and to all trials until one treatment has been given to n subjects.
At that point the requirement that each treatment be given to just » subjects
takes over, and the remainder of the subjects must be given the unexhausted
treatment. We shall refer to this as the truncated binomial design.

Suppose S has announced that he will adopt the truncated binomial design.
What should E do, and how large can he make E(G)? In the tail of the experi-
ment, consisting of the terminal sequence of trials having like treatment, £
knows which treatment will be assigned, so he is sure to guess all of these cor-
rectly—let R denote the number of trials in the tail. We take advantage of the
fact that E(Q) is independent of E’s strategy except in the tail, and give to E
a strategy which simplifies the calculation. Suppose E guesses 4 evely time,
except of course in a tail of B’s. Then G must be at least n (since n A’s are used),
and may in addition contain a B tail. By symmetry, E(G) = n + E(R)/2. We
must now discuss the distribution of R.

To calculate the probability that B = r, notice that this may occur in two
ways: the nth A treatment, or the nth B treatment, is assigned on ‘the

(2n — r)th trial. These events have equal probability (2n n__f 1— 1) / 2""" ac-

cording to the negative binomial distribution. Therefore R has a truncated
negative binomial distribution,

-

2.1) Pr(R=r)= (2”,;_’“ ; 1)/22"~'—1, F=1,2, -, n
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By calculating £(2n — R), it is easy to establish

_ 2n 2n—1 z(n)m 1
(2.2) E(R) = n(n)/Z N— ~ 4(m)”2+ -

In a similar way, calculation of E[(2n — R)(2n — R + 1)] yields E(R?) =
2n — E(R). Furthermore, R(2n)"* has asymptotically the distribution of the
absolute value of a normal deviate. For example, there is about one chance in
ten that R will exceed 2.32 n*%. Combining with the result of the previous
paragraph, we see that the value of the truncated binomial design is E(G) =

n4+n (2:>/ 2*" The excess B(@) — n ~ n'?/x"* — 1/8(xn)"* + - .. isshown

in Table II for a number of values of n.

(iii) In the random allocation design, S selects n of the first 2n positive in-
tegers at random without replacement, and then assigns treatment 4 to those
subjects whose ordinal numbers have been selected. Another way of expressing
this strategy is to say that on each move S selects a treatment with probability
proportional to the number of subjects still to receive that treatment.

It is intuitively clear that against this strategy, E should always use the
convergence strategy, i.e., he should guess that treatment which has previously
been less used; when there is a tie in past use, S will choose 4 or B with equal
probability so E’s choice is arbitrary. In calculating E(G) for the sampling de-
sign it is very convenient to picture the results of S’s choices as a walk on the
lattice points of the plane. We start at the point (0, 0), and move one unit to
the right (or up) when S picks treatment 4 (or B). The experiment terminates
when we reach the point (n, n). In terms of this walk, E will always guess that
the walk will move toward the diagonal—if the walk is on the diagonal his
guess is arbitrary. Since the walk starts and stops on the diagonal, it must
move towards it exactly n times and away exactly n times. Therefore E’s strat-
egy assures him of n correct guesses. In addition, there will be a number of
steps originating on the diagonal, say T of them.

If we denote generically by B(k) the number of successes in k binomial trials
of success probability one-half, we see that @ = n + B(f) when T = {. Thus
E@G|T =1t) = n+ t/2,and E(G) = n + E(T)/2.

The distribution of T has been studied by Feller, and it is apparent from
formula (6.15) of Chapter 12 of [1] that

e ww=o=2[(" 0100209/ ()

from which it follows that, for large n, T/n"* has asymptotically the distribu-
tion of an absolute normal deviate. If we consider the probability of the walk
passing through the point (7, j), we see-that

-/
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The identity (see [2], p. 252)

2 2j>(2n - 2j> o
2.5 . ) =2
28) G G

gives
1/2

2 _ on 2n ~ 12 m .
26)  B(T) =2 /<n>——1~n L+ g+
The asymptotic approximation has error of 0.03 per cent at n = 5.

Table 1 gives some values of E(G) — n computed with the aid of these formu-
las. Notice that the truncated binomial design has in each case a smaller value
of E(G) — n than does the random allocation design. This is not an accident,
as we now proceed to show.

3. Solution of the game.

TaEOREM 1. The truncated binomial design is the solution of our game.

In proving this theorem, it is helpful to generalize the problem to permit
different preassigned numbers of subjects for the treatments. Let D(m, k) de-
note the design problem when we are required to use A just m times and B
just k times. By analogy, we say S uses the truncated binomial design if he
chooses treatments independently and at random until one of the treatments
is exhausted. As in the special case D(n, n) it is easy to see that E(Q@) does not
depend on E’s strategy (provided always that he guesses the obvious in the
tail) when S uses the truncated binomial strategy. If we denote this invariant
value of E(G) by ¢(m, k) for the problem D(m, k), we easily find that

é(m, 0) = m;  ¢(0, k) = k;
o(m, k) =[1+o¢(m,k — 1)+ ¢(m — 1,k)]/2 form, k& > 0.

For future reference we note that

3.1) l¢(m — 1, k). — ¢(m, k — 1)| < 1.
TaBLE 1
E@) —n
n Truncated Binomial Design Sampling Design
0 1.23 1.53
10 1.76 2.24
15 2.17 2.96
20 2.51 3.49
25 2.81 3.95
30 3.08 4.37
40 3.56 5.12
50 3.98 5.78
100 5.63 8.37
@ 0.564(n)1/2 0.886(n)V/®
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This is obvious for m + k = 2, and since ¢ on the line m + k = s + 1 is just
one-half more than the average of consecutive values on the line m 4+ k = s,
(3.1) holds in general.

Our design problems D are inductively related. Suppose we have checked
our theorem for the design problems D(m — 1, k) and D(m, k — 1), showing
that the truncated binomial strategy solves these, yielding values ¢(m — 1, k)
and ¢(m, k — 1) respectively. We now consider the game D(m, k). After the
first move we shall be faced with one of the former games. Therefore the payoff
matrix can be expressed in terms of the choices of E and S on the first move
only. In fact, the expected payoffs are given by

S
A B
A 1+ ¢m—1,k d(m, k — 1)
B ¢(m — 1, k) 1+ ¢(mk — 1)

Now we hope to show that S should choose the columns with equal probabili-
ties. Therefore, let us try to find a strategy for E which will make these columns
equally attractive to S. This leads at once to having E choose the first row
with probability

3.2) 1+ é0m, k — 1) — ¢(m — 1, k))/2.

(That (3.2) is indeed a probability follows frem (3.1)). The game is now solved,
since (a) when E uses (3.2), the options are equally attractive to S who is then
content to choose them at random, while (b) S’s random choice makes F in-
different and hence content with (3.2).

Incidentally, our game has an interesting feature. When either player uses
his minimax strategy, the expected outcome of the game is independent of the
strategy adopted by the other player. Notice also that we have shown the
truncated binomial design to be the solution of the general design problem
D(m, k), with preassigned but possibly different treatment numbers.

We remark that although this design minimizes E(G), the minimized value
is disturbingly large. If we divide the difference of treatment sums (1.1) by
n'* as is customary in standardizing it, the expected value is about 2A/x'?,
which does not tend to 0 as n — «. In many experimental situations A could

be large enough to produce a serious distortion.

4. The variance of G. When S uses the truncated binomial design, the value of
‘E(QG) is independent of E’s strategy, but it should not be thought that E is
unable to influence other aspects of the distribution of G. For example, if E
guesses the treatment A, as long as that treatment is possible, he is assured of at
least n correct guesses, while if he guesses at random, @ can be as low as 1. We
shall in particular examine the influence of E’s strategy on the variance V(G).
This would be an essential quantity in computing the expectation of a payoff
function which can be represented by a quadratic function of @, or in approxi-
mating the probability that the estimated treatment effect exceeds a specified
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critical value. (If E believes that the treatments are not different, but wishes as
large as possible a probability of having the difference appear highly significant,
he would want V(@) large.)

Our methods permit us to find the strategy for E which will maximize (mini-
mize) V(G@). We have introduced above the convergence strategy, according to
which E always guesses the hitherto least frequently used treatment. Opposite to
this is the divergence strategy: as long as both treatments are available, E guesses
the one which has been most used ; when there is a tie, he guesses at random; while
as always in the tail he guesses the treatment certain to be used.

THEOREM 2. Against the truncated binomial design, V(Q) is maximized (mini-
mized when E uses the divergence (convergence) strategy.

Since E(Q) is constant it will suffice to prove the corresponding assertion
for E(G*) = V(@) + E*@). Consider the problem D(m, k) where to avoid obvi-
ous cases we assume mk > 0. Let E employ the pure strategy of guessing A on
the first trial. If S assigns 4, E wins 1 on that trial and is faced with the game
D(m — 1, k), in which E wins, say, H. If S assigns B, E wins nothing on the
first trial and then must play D(m, k — 1), winning K. As the assignments are
equally likely,

E@) = [E(1 + H' + E(K))/2 = } + ¢(m — 1, k) + E(H + K°).
Similarly, if E adopts pure strategy B on the first trial,
E(@) =} + ¢(m, k — 1) + E(H' + K°).

Now the distributions of H and K depend on the strategies adopted in playing
D(m — 1, k) and D(m, k — 1) respectively, but not on the guess which & makes
in the first trial. Therefore, E(G") will be maximized when E guesses A on the
first trial if p(m — 1, k) > ¢(m, k — 1), and when E guesses B if the inequality
is reversed. As ¢(m, s — m), viewed as a function of m, is an increasing function
of |[m — s/2|, we see that the divergence strategy will maximize E@GH. A
similar argument shows that E(G”) is minimized by the convergence strategy.
As argued in Section 2, when E adopts the convergence strategy, and the
walk has ¢ ties, @ = n + B(t). Thus G has as its distribution a mixture of bi-
nomials, the mixing coefficients being given by the distribution of T. We shall
derive this by considering first the joint distribution of T' and E. Denote

Pr(T=t and R =7)

by =(t, r), and observe that these variables have therange 3 < ¢t +r = n + 1,
1=¢r.

It is remarkable that (¢, 7) depends only on ¢ + 7. This can be seen by estab-
lishing a two-to-one mapping of the walks with values (¢ + 1, r) onto walks
with values (¢, r + 1). Consider any walk W with T = ¢ 4+ 1, R = r. Let W’
be the walk identical with W except that the part after the last tie has been re-
flected about the diagonal; W’ also has T = ¢ 4+ 1, R = r. Each of these walks
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has probability 1/2°"™" under the truncated binomial design. Now locate on
W(or W’) the point immediately preceding the last tie, and denote its coordi-
nates by (z, y). We shall assume y = = + 1 with the case x+ = y + 1 being
argued similarly. Suppose W is the walk having its last part above the diagonal.
We now create from W a new walk W*, by (a) eliminating the step from (z, y)
to (z + 1, y), (b) shifting one step to the left that part of W from (z + 1, y)
to the boundary, and (¢) closing the gap thus created by adding a step to the
tail. Note that the correspondence between the pair (W, W’) and W* is one-
to-one, that W* has probability 1/2** ", and that it has T = t, R = r + 1.

As a corollary we observe that T and R are identically distributed. Since
we have already obtained the distribution of R (2.1), we ¢an now give that of G:

Pr(@ =g) = Z(g K n)( nn———t - 1)/22,._1

V(@) can also easily be calculated. We have
EG@|T=t)=n+nt+ (t+ /4
so that E(G®) = n* + (n + LET + LET® = 2’ + n/2 + nE(R). Since E(Q) =
n + E(R)/2, we get
1 1

41) V@) = n/2 - BR/ANT Znt o+ -

This is the smallest value which V(G) can have.
Since (¢, r) depends only on the sum of its arguments,

w(t,r) =xt+r—1,1).

A walk which has T = ¢ + r — 1 and B = 1 must have just { + r — 2 ties
before reaching the point (n — 1, n — 1). Each such walk has probability 3***
and the number of them can be read at once from (2.3). It follows that, for
n>1,

(=t —r =2\ (2n—t—1r—2 n—tmr
@2 altn) = [(n—t—r+1> (n—t—r— 1)]/2

We shall need E(RT). If we let U, indicate a tie at (k, k), so that T =
Us+ U; + -+ + Up, we see that

E(RT) = ,Z:: P(Uy = 1) B(R| U = f_:l (n — k)( ><2” - 2’“) / g,

n

Again making use of (2.4), we find that E(RT) = n.
In computing V(@) for the divergence strategy, note that when T' = ¢ and
R =1rG=n-t+ r+ B(f). Therefore,

EG@|T=tR=r)=M0+r—tin+r+ ¢+ /4
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Using the relations E(T) = E(R), E(T”) = E(R?) = 2n — E(R), and E(RT) =
n, we find after simplifying

—~ 92 2(n)1/2
o T T

43) V(@) = 3n/2 — E(R) — BXR)/4 ~ 3"

1
+o

This is the greatest value which V(G) can attain.
Note that the range of V(G) is quite large. The ratio of maximum to mini-
mum values tends with large n to (3 — 2)/(x — 1) = 3.467,

6. Completely binomial designs. Since it is not possible to find a design with
adequate bias control when the treatment numbers are preassigned, we shall
now examine some designs free of this restriction. In the present section we
shall assume that each subject has probability } of receiving each treatment,
and that the assignments are independent. Such completely binomial designs
are bias-free, in the sense that every guessing strategy will produce a G whose
expectation, given the number s of trials, is exactly s/2. We can still exercise
a measure of control over the experiment through the decision to terminate it.
In our geometrical picture, the design of the experiment now consists in specify-
ing a set of points in the plane at which experimentation will stop. Each such
sequential stopping rule will provide a distribution of the numbers X and. Y
of subjects receiving treatments A and B, respectively, leading to distributions
of the total number of trials X + Y = S and of the variance factor
1/X +1/Y =V.

(1) Fized total design. In some experiments it may be necessary or desirable
to know in advance the total number s of trials to be performed. This leads to
the stopping rule z 4 y = s, for which the variance factor V is variable and
indeed unbounded: if z or y is 0, V = . However, since X = B(s), if s is large
it is unlikely that X will be far from s/2 and V will probably not much exceed
its minimum value 4/s. In fact, if we expand V in powers of (z — s/2), we find

4 16 s\
Here 2(X — s/2)/s'* is approximately distributed as a normal deviate. If
K, denotes the upper /2 point on the normal distribution, and if we want to
have V < 2/n with probability 1 — «, we should choose s so that

2 4 4 .,

— _ e — Ka

n s + & ’
or s = 2n 4+ K% . For example, if we set s = 2n + 4, we shall be for large n
about 95.5 per cent sure of obtaining a bias-free experiment with variance

factor smaller than that obtainable with X = Y = n preassigned.
(ii) Fized factor design. Instead of fixing S and permitting V to vary, we
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might often prefer to fix V and permit S to vary. For example, we could con-
tinue taking observations until X and Y satisfy

1 1
(5.1) LS

v S

Write X + ¥ = S8 = 2n 4 U, so that U = 0 may be viewed as the number
of additional observations required to obtain freedom from bias.

For a given value U = u, let z, denote the smallest value of X for which
(5.1) holds; i.e.,

1,1
- <
(5.2) m“+y“= <xu_1+y“+1,

A path will yield U = wu if and only if, at the (2n + wu)th step it is
at, say, (X* Y*) with 2, < X* < y. . As X* = B(2n + u), distribution of U
is now easily calculated.

As n — o, U has a simple limit law. From (5.2) it appears that for large =,
Yu ~ (0 4+ u/2) + u”(2n 4+ w)"?/2. Since the binomial X* has EX* =
n 4+ u/2 and g0 = (2n + u)"*/2, we have

Pr (U £ u) &~ ®w'?) — &(—u'?), u=20,1,2---.

Table 2 compares the distributions of U for n = 5, 10, 20, and «. We see that
on the average it costs about one and one-half observations, and is practically
certain not to cost as many as ten observations, to eliminate selection bias
entirely. (Even this' comparison is unfair to the bias-free design, as the ine-
quality (5.1) is usually strict and we are obtaining a somewhat more accurate
estimate. If we were to take the final step with a probability adjusted to make
E(1/X 4+ 1/Y) = 2/n, we should find EU —» 1l asn — «.)

Ty + Yu = 2n + wu.

2 1 1
n

TaABLE 2
Fized factor design
Distribution of U = excess observations required
PWU = 4)
u n = 10 20 ©
0 .246 .176 .125 0
1 773 .617 .651 .6827
2 .854 ' .866 .836 8427
3 .908 .907 .934 .9167
4 943 .936 .951 .9545
5 .965 .985 .984 .9747
6 .979 .991 .989 .9857
7 .987 .994 .992 .9918
8 .999 .996 .994 .9953
9 .999 .998 .999 .9973
10 1.000 999 .999 .9984
E(U) 1.338 1.464 1.535 1.6625
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In practice, the fixed factor design would be used in a truncated form. For
example, we could continue the binomial choice until (5.1) holds, or until
X 4 Y = 2n + u. If the latter eventuates first, the deficient treatment could
be applied until (5.1) holds. By setting « = 10, we would have practical cer-
tainty of a bias-free design, without the theoretical possibility of an infinite se-
quence of trials. , .

(iii) Fized minimum design. In some cases we might wish to guarantee the
precision: of estimation for each treatment effect separately, rather than for
their difference. We should then need

min (X, ¥) = n.

By symmetry, we are equally likely to stop at (n, ) and at (z, n), so it will
suffice to consider the probabilities of stopping at points (z, n) for x = n, n +
1, -+ . These probabilities are easily seen to be proportional to those of the
single negative binomial design, which is stopped by ¥ = n. Thus our X has a
truncated negative binomial distribution, with range just the complement of
that of n — R considered in Section 2. As each of the ranges is equally likely,
we must have §£S + 3E(2n — R) equal to the expected number of steps in
the single negative binomial, which is 2n. Therefore ES = 2n + ER, where
E(R) is given by (2.2). Roughly, we must expend on the average 1.13 n'* addi-
tional observations in this case.

6. Extensions. A good deal of the preceding argument generalizes rather easily
to experiments involving more than two treatments. In particular, the minimax
design for preassigned treatment numbers consists in choosing at each step
among the remaining treatments with equal probabilities. A simple bias-free
design, which generalizes 5(ii), consists in choosing a treatment at each step,
with equal probabilities, and terminating the experiment when the sum of recipro-
cals of treatment numbers falls below a preassigned level.
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