TIGHTENED MULTI-LEVEL CONTINUOUS SAMPLING PLANS
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1. Introduction. Industrial needs have provoked some recent studies on con-
tinuous sampling. This procedure is especially of interest when the formation
of inspection lots for lot-by-lot acceptance may be impractical or artificial as

in conveyor-line production, or when there is an important need for rectifying.

quality of product as it.is manufactured.

These newer papers are best considered in the light of the earlier papers of
Dodge [3] and Wald and Wolfowitz [11]. One point of departure from the Dodge
type of plan has been the introduction of several levels of partial inspection
with different rates of sampling in each level. Multi-level continuous sampling
rlans (which reduce to the Dodge plan when only one sampling level is tolerated)
have been considered by Greenwood [8], Lieberman and Solomon [9], and Resni-
koff [10]. A plan based on the Wald-Wolfowitz approach, a scheme essentially
handled by the methodology of sequential analysis, was created and developed
by Girshick about 1948 in connection with a Census Bureau problem and has
only recently been reported [7]. The reader is referred to Bowker [1] for a more
thorough account of continuous sampling plans.

The multi-level plan given in [9], namely MLP, allows for any number of
sampling levels, subject to the provision that transitions can only occur between
adjacent levels. Three generalizations of MLP, accomplished by altering the
manner in which transition can occur, are analyzed in this paper. In each situa-
tion, we will make it more difficult to get to infrequent inspection than in MLP,
and thus we can label these three plans as tightened plans. These three plans
which will now be specifically defined obviously relate to more realistic situa-
tions for control of industrial processes. The three plans are givén in language
which assumes some familiarity with MLP, which is given in detail in [9].

(a) The MLP—r X 1 Plan. We say we are in the jth sampling level if every
(1/f)’-th item produced is systematically sampled. If ¢ consecutively inspected
items are found clear of defects when sampling at the jth level, begin sampling
at the (j + 1)-th level. On the other hand, if a defective item is found before

this is accomplished, revert immediately to the (j — r)-th level, if j > r, or to -

the zero level, that is, one hundred per cent inspection if j = r. Let inspection
begin at the zero level. When r = 1, we have the MLP plan described in [9].

" (b) The MLP-T Plan. This is exactly the same as the MLP-r X 1 Plan,
except that when a defective is encountered, we immediately revert to one hun-
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dred per-cent inspection. This is obviously the tightest of the three multi-level
plans considered in this paper and thus bears the label MLP-T.

(¢c) The MLP—r X s Plan. This plan follows exactly the same pattern
as the MLP—r X 1, except that when 7 consecutively inspected items are found
nondefective while on the jth sampling level, systematic sampling begins at
level (j + s). We shall consider the case r > s, since we are concerned only with
tightened multi-level plans. If » = s, we are effectively using the MLP Plan.

2. Summary. Each of these generalizations can be appraised under the as-
sumption of an infinite number of sampling levels or a finite number, &, of sam-
pling levels. Under the assumption of an infinite number of allowable sampling
levels, it is possible to obtain explicit relationships between the AOQL and the
parameters of the plan for MLP—r X 1 and MLP-T. Thus it is possible to
graph contours of equal AOQL for each of these plans under these conditions.
Approximations for contours of equal AOQL for the MLP—r X s Plan are then
easily obtained. This makes feasible the possibility of a catalogue of continuous
sampling plans which contains plans having a prescribed AOQL and thus aids
immeasurably in the choice of an appropriate plan. As is demonstrated in the
next sections, the following results are obtained, assuming that the production
process is in statistical control and items found defective on inspection are re-
placed with good items. For the MLP—r X 1 Plan:

~ NV
@1) 40QL = 1 — (f;___{t;ﬁ) :

When r = 1, this reduces to the result previously obtained in [9]. For
the MLP-T Plan:

(2.2) AOQL = 1 — f*°.

This result can also be obtained heuristically by letting r approach infinity in
MLP—r X 1. For the MLP— X s Plan (r > s) bounds and sometimes exact
AOQL’s can be obtained using the previous two results. For example, if r = 4
and s = 2 and f is given, the MLP-2 X 1 Plan for f/ = f* will be the same plan
and hence have the same AOQL. More generally for a given f we can write

(2.3) AOQL,r 55 < AOQLy ;. < AOQLy: 24

where ' = greatest number less than r that is a multiple of s, and r” is the
smallest number greater than r that is a multiple of s. For, if 7 < r”, the plan
associated with ” is tighter and the added protection thus insures a better
outgoing quality, i.e., a smaller AOQL. Under the assumption of a finite number,
'k, of allowable sampling levels, the A0Q function for MLP-T is obtained, and
it is seen that the use of digital computers may be expedient for the computation
of A0QL contours. This was exactly the situation, for finite levels, in [9]. The
main results of the paper are obtained through the use of Markov chain tech-
niques which are developed in Section 3. In these plans inspection, as described,
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is by systematic sampling. However, the A0Q and AOQL results also hold when
inspection in each level is accomplished by random sampling—i.e., in the kth
level, each item in the block of ™ items has probability f* of being chosen for
inspection.

3. Markov Chain Result. Let {X.}(n = 0, 1, ---) denote an irreducible
recurrent positive Markov chain with states {E;} (j = 0, 1, --- ). Let {p:;}
(?,7 = 0,1, ---) denote the probability of transition from state E; to E;.
It is known (see [5]), that a unique sequence {v;} exists such that

gvipij = vy, (J =01, ):
(3.1) Vg > 0, ‘ (i = O) 11 ..’))

Z v; = 1.
=0
The v,’s are sometimes referred to as “steady state’’ probabilities.

Now let A = {E;;} be a subset of the states. Let Yo, Y1, --- be successive
members of {X,} which take on values in A. Since the chain is recurrent, infi-
nitely many such Y’s will exist with probability one. It was shown by Derman
[2] that {¥3} (k = 0, 1, - -- ) is also a Markov chain; and if {pi;} (E:, E; e A)
are its transition probabilities, then the solutions ; of

EZ‘; Vipi; = vj (Eje 4),

(3.2) ;>0 (Eie A),

Z v =1

EjeA
are given by
3.3 AR Eie A).
(3.3) v > ( )

EitA

Suppose A; = {E;} (j=1,2,---); A2 = {E;} (j = 2,8, -++); -+ 4o =
{E;} j = g,9+ 1,---) --- are subsets to be considered. Let {Yi(g)} denote
the Markov chain defined over 4, . Also let E;(g) (j = 0, 1, --- ), the states
for the chain {Y¥i(g)}, be a relabeling of the states Ex(k = g, --- ) by letting
j = k — g. Finally let p;;(¢g) denote the probability of transition from state
E.(g) to state E;(g) in the chain {Y%(g)}. Our main tool is the following theorem

Tueorem. If pi; = pis(g) (5,5 =0, --- ;9 =1, ---), then

(34) v; = vo(1 — o)’ G=1-).

Proor. Let {v;(g)} denote the solution of (3.1) for the chain {Y(g)}. Since
the transition probabilities, by hypothesis, are the same regardless of which
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chain is under consideration, v;(g) = v; = 0, 1, -- - ). However, from (3.3)
we have
(3.5) vy = w(g) = :" = v:_l @g=12---).
2 1=
=0 7=0
Thus by induction,
v;=v(l —vo— -+ —v;y)
i-1 )
(3.6) =0l — v — ¥ zl‘, (1 — )]
= vy (1 — o)’ G=1,---),

and the theorem is proved.
We shall apply the theorem in the following case. Suppose

p".i+1=a>0 (i=0,1,"'),
pi.0=1—a (i=0’1""’7)’
Piir=1—a @z > 7).

It is clear that the chain is irreducible. It also follows from a slightly modified
theorem of Foster ([6], Theorem 5, p. 81) that the chain is recurrent positive if
a < r/(r + 1). Intuitively this condition guarantees a sufficient pull to the
left, thereby insuring the existence of the steady-state probabilities inherent
in a recurrent positive chain. Furthermore, it is easily seen that the conditions
of the theorem are satisfied so that the v»; have the form (3.4). From
3.1), 5 = 0, vo is determined by the following equation

(3.7) a-— a){l_:_(l_—”")m] =

Vo

L
and thus any »; can be obtained.

4. Application to MLP-r X 1 infinite-level plan. The multilevel plans can
now be studied from the point of view of a Markov chain {X,} and the results
in Section 3 employed. We let E;(j = 0,1, --- ;m = 0, ---, ¢ — 1) denote
the state of such a chain where we say that X, is in state £, if just after the
nth item has been inspected, the process is in the jth sampling level (i.e., every
‘(f?)th item inspected) and m nondefectives have been observed successively
while in the jth level. Suppose the process is in a state of control such that p
is the probability of a defective being produced. The transition probabilities
are then given by

PEm—Ejmu) =1—p=4q
G=0,1,---;m=0,1,---,1—2)
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(4.1) P(Ejia1— Ejno) = q G=0,1,---),
P(Eim'-)EJ'—'.O)'__'p (j=r"")y
P(Ejm— Ex) = p G=1,---,r=1).

The chain is easily seen to be irreducible. From Foster’s theorem it is seen to
be recurrent positive if ¢! < r/(r + 1). We shall assume ¢* < r/(r + 1) for the
present. Now let A = {Ej} be a subset of the states and let {Y,} denote the
chain defined over it. The chain is of the form of the special case considered in
section 3 with @ = ¢'. Let {v;} and {v;n»} denote the steady-state probabilities
of the chains {Y}} and {X.}, respectively. Using (3.1), (3.5) and (4.1) it follows
that

1- . .
(4.2) Vim = l—z' viq" (m=0,1,--+,4—1;5=0,1,---).

For from (3.1)
Vim = Vjq"
(m =Y, e :i_ l;j= 0’1’ M ))
and from (3.5)
v§=-wv—’°- (j'__-\oyly'“)'

Z Uro
k=0

Hence,
= ’
”m=zvkoqum (j=0;1)"');
k=0
but summing over j and m we get, since Zf mUim = 1,
1 —
Z Vo = —q,
- q

From (4.2) it is clear that v] is the sum of the steady-state probabilities of being
in the jth level of sampling. Also from (3.4)

(4.3) v; = vo (1 — w)’ G=1,2-)
where v is given by (3.7) with @ = ¢*; namely,

@ - [P -

0

where as previously remarked,’vé is the probability of being in one hundred

per cent inspection.
Now that we have expressions for the steady-state probabilities, we proceed
with the derivation of the AOQ functions and the AOQL. Let h(X,) = f~ for
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X, = Ejm. It is easily verified that the reciprocal of the average fraction in-
spected after n inspections is

(44) F3l = % g h(X,).

It follows from the Birkhoff ergodic theorem, applicable for stationary Markov
chains of the type considered here (see Doob [1], p. 460), that
0 i—1
(4.5) F'=1lmF7 =277 vm.
) n-»0 7=0 me=0
Now F ! denotes the reciprocal of the average fraction inspected for all sequences
(except for a set having probability 0); for let £ = Y o1 k(Xm) = number of
items produced during the first & inspections. Formula (4.5) says that k/tz — F
ask — «. Let #; < ¢ < #z41 . Then since k¥ = number of items inspected in the
first ¢ items produced, the inequalities
k k
— - =
tes1 < t —
imply that lim.. k/¢t — F with probability 1.

If ¢ = r/(r + 1), it can be shown more directly that F~' = « with prob-
ability 1. If v exists and is positive, it follows from the theory of recurrent
Markov chains that ¢* < r/(r + 1). Thus since 0 < f < 1, we have from (4.2),
(4.3), (4.5) and the last remark that

PN <__1____> when (f > 1 — u),
1 _ )

S &

1—u
f

= o, otherwise.

(4.8)

Hence since it can easily be shown that AOQ = p(1 — F), we have

A0Q = (1 — q) (1_;__1.) L;;;.E‘l’ when (f> 1-— v(;),

=1-—yg, otherwise.

4.7)

Now suppose it is true that the AOQ is an increasing function of g as long as
f> 1 — v . Then from (4.7) it would follow that

(4.8) AO0QL = 1.— g,
where g is the value of ¢ such that f = 1 — vo . From (3.7) with « = ¢/, it is

easily established that
g\
Q = f_—‘fi— ’
(1 = r**)
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so that
—- +1\ 1/4
4.9 AOQL = 1 — (‘{—_-%) .
We now show that the AOQ is an increasing function of ¢ as long as
f _ fr-H 1/z . ’
q < (mm) (l.e.,f >1-— 1)0).
Let
oo = (115) 400 = a - 9 152
1- f Yo
and
V(g) = 2
Vo
Then
de(q) _ _ 1 adV(g)
(4.10) dg Vi + (1 — g &
It is necessary to show that the right-hand side of (4.10) is positive or
(4.11) 4O Y
1-19 g
dg

But, using (3.7) with & = ¢,

(4.12) d—gﬂ = (7%;2) {(1 — g [(r + liq(‘l_ l”_"’ oy — __1__]}

1-4¢
Thus the left side of (4.11) becomes
1=+ 1A —w)™1 —¢) — 0 —n)
g (1 — ¢) '
From (3.7) it follows that (1 — ve)™™ = [(1 — w) — ¢'l/(1 — ¢). Hence (4.13)
becomes

@414) __% <i - Z’) [(1 —(Iivé)r o+ 1)].

(4.13)

But from (3.7),

’
q,'=(1_v6)1—(1—vo)7'

1————————-——_ 1= vé)'“ <1- vé.
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Hence

( -.v.;)r >
q‘
and the smallest value over the range f > 1 — v which the bracket factor in
(4.14) can take is minus one. Thus the largest value that (4.14) can reach is

(4.15) -(11;_9;) (g)

But

< 2 4
1—q<q)_q+q+---+q <l

1—q\i/ )

This proves (4.11).
6. The MLP-T Plan. We consider first an infinite number of sampling levels.
Let E ;. be as in the previous section. The transition probabilities are now
PEjn— Ejmt1) = g
G=0,1,---;0<m=7—2),
P(E;ia— Ejnp) = ¢ G=0,1,---),
PEjm— Exn) =1—g¢ (for all 7, m).
Of course, 0 < ¢ < 1.
It can be shown in this case that
Vim = pg=t"
G=0,1,--3m=0,--+,i—1),

and as before that
F' = X i, =128 (f > ),
im 11
= o (féq')‘;
and ‘
_(I—Q)Q‘ 1—f i
A0Q = l_q,(f> (f>q)
_1-gq s o).

It can easily be shown that AOQ is an increasing function of ¢ for 0 < ¢' < f.
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Hence,
AOQL =1 — fI°,

Now let the number of sampling levels, k, be finite. For this case we need only
modify the function A(X,) such that

MX.) =f7 when X,= Ejn G S k),
=f* when X,=ZEjn G > k),

where here we persist with the notation E;,, as if the k¥ = o« plans are in effect.
In similar fashion we have

k-1 3—1 3 0 <=1 .
F'= pgmgf"’q”‘”'” +p§cm2_3°f"‘q”+'"

PR 1 — (¢/f)" § ek
=1 Q)—l't—q;-/T"*'(Q/f)

For £ = 1, we have the Dodge Plan, and get the following result as in [3]:

. f
P =yrea=pn

Fork = 2,

reeso( ) o)

In order to obtain AOQL contours for this situation, as for higher values of k,
the use of digital computers would be expedient.
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