STATISTICAL PROPERTIES OF INVERSE GAUSSIAN
DISTRIBUTIONS. I.

By M. C. K. TweepIg!

Virginia Agricultural Experiment Station, Virginia Polytechnic Institute

0. Summary. A report is presented on some statistical properties of the
family of probability density functions

exp [~z — p)"/2u"z]\/ 27’}

for a variate x and parameters u and \, with z, g, X each confined to (0, «).
The expectation of x is u, while X\ is a measure of relative precision. The chief
result is that the ml estimators of ¢ and N have stochastically independent
distributions, and are of a nature which permits of the construction of an ana-
logue of the analysis of variance for nested classifications. The ml estimator
of u is the sample mean, and for a fixed sample size n its distribution is of the
same family as x, with the same u but with X\ replaced by An. The distribution
of the ml estimator of the reciprocal of \ is of the chi-square type. The prob-
ability distribution of 1/x, and the estimation of certain functions of the param-
eters in heterogeneous data, are also considered.

1. Introduction. The name “Inverse Gaussian” has been suggested [1] for
the members of a certain family of continuous probability density functions in
which the variate takes positive values only. The family is generated by vary-
ing the values of two real positive parameters, which may be any independent
pair from a, A\, u, ¢, where 3¢ = u = M\/¢. The density function for the posi-
tive values of the variate may accordingly be written in the forms

(1a) fi(z; @, \) = exp { —aAz + N(2a)"* — N/2z}[\/2m2’]2

(1b) fow; 1, N) = exp {—N@ — w)*/2u"}[\/272"]",

(10) fulw; u, ¢) = exp{—g +¢ — gg} (ug/ 2w,
(1) e 9,0 = exp{ =% + 6 — 2 pj2mape
f4 T, d)) = €exp 'ﬁ + ¢ % T .

Each of these forms is convenient or suggestive for some purpose.
The relationships

(2) f2(x7 ) >‘) = F—f3(x/l‘; 1’ d’) = >‘_l 4(.’5/)\,4), 1)
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INVERSE GAUSSIAN DISTRIBUTIONS. 1. 363

are useful in computing numerical values of the probability density. The cumu-
lative probability function depends essentially on only two variables, which
might be chosen to be z/u and ¢. The case p = 1 could therefore be adopted
as a standard form. Curves of the density functiens for A = ¢ = 1,4, 1, 2, 4,
8, 16, 32, with u = 1, are shown in Fig. 1. In some physical applications it is
more natural to hold A constant, and Fig. 2 shows the density curves for A = 1
with u = 4, 1, and }, i.e, for ¢ = 1, 1, and 4 respectively.

Since it will be found useful to consider also some functions of the same alge-
braic form but with complex values for some of the parameters, it may be noted
that the integrals of functions such as (1) over the interval (0, «) can be shown
to be unity, provided that the real parts of X and of the mutually equal quan-
tities e\ and iAu? are positive. For reference we reproduce an equation for a
modified Bessel function of the second kind,

v © 22 dt
@) K@ =302 [ exp{—t ‘az}tm’

given by Watson ([2], p. 183), under the condition that the real part of 2 is
positive, together with the result

4) Kun(z) = € *(r/22)",

also given by Watson (2], p. 80).

E(x)

Fic. 1. Probability density curves for an Inverse Gaussian variate with u = 1 for 8
values of \ or ¢.
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The Inverse Gaussian family of distributions arises in a problem of Brownian
motion (cf. [1], [3]), though then a further parameter appears in the physical
formulation. The numerical value of this parameter can however normally be
regarded as known, and it merely modifies the values of the parameters given
in the expressions (1) above. Both X and u are of the same physical dimensions
as the random variable z itself. A change of scale of z, such as may be due to
a change in measuring unit or, approximately, to changes in temperature or
some other factor, produces another member of the family, in which A and u
have been multiplied by the same factor as x. The ratio ¢ is invariant under
such a change.
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F1ag. 2. Probability density curves for an Inverse Gaussian variate with A = 1 for 3
values of u or ¢.
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The same family appears also as a limiting form for the distribution of the
final sample size in a special case of Wald’s sequential likelihood ratio test [4].
Some properties of this family were studied in a degree thesis [5], where the
Brownian motion problem was found to have an important part in the inter-
pretation of some experimental work. The present paper establishes some of
those exact properties in a more formal way, though using essentially the same
methods as in the thesis. Some new results are included, and some further ones
will be given in another paper. Not all these results are of quantitative im-
portance in the original physical problem, and those which are not are pre-
sented here for their theoretical interest. The formulae (1) will be regarded as
given, in that no derivations will be offered here. The uniqueness of certain
Laplace transforms will be an important factor in some of the proofs. The
form (1a) is of the kind adopted in an earlier published paper [6], in which
similar methods were used.

2. Basic characteristics.
The shape of the distribution depends on ¢ only. The distribution is uni-
modal, with its mode at

The ratio Zmede/n converges to 1 when ¢ is increased to infinity; while the ratio
Zmode/N converges to 4+ when ¢ decreases to zero. The density at the mode is
least when ¢ = 2, if u is fixed. The mode then occurs at z = 3u and the den-
sity there is [8/mu’e]'* = 0.96788u~".

It is convenient to introduce the logarithm of the Laplace transform E(e™**)
of the probability density of the variate, which is in a sense a cumulant-gener-
ating function (cgf). We denote the relevant function operator by L, with the
variate symbol as a subscript and the other variables in parentheses Thus,
from form (1a),

(6) L.t;p,\) =In e“’“’""’[o ¢ TN Goln /2ma]

(7) = AM2a)? — A2 <a + i)m + In f i f (a: adl 7\) dz
X b P \” \’ :

If ¢ is imaginary, or, if real or complex, if its real part exceeds —aA, the in-
tegral in (7) is unity. Hence

(8a) L.t g, \) = )\{(20‘)112 _ oii2 <a n %)”2}

i3]
()
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i)

This cgf. is unique to the density function (1).
The cumulants can be obtained from the power series expansion of L.(¢; s, A).
They are:

Kl = p = M—lj K2 = ”8)\—1 = A2¢_3;

k= 3uNT" =N, ko= 15\ = 15\,
and, in general, when r = 2,

kp = 135 -+ (21. — 3)”21-—1#_,-
= N'(@r — 3)l/¢" 2% r — 2)L.

Thus p is the population mean and is primarily a measure of location, while A
is an inverse measure of relative dispersion, being the ratio of «} to ., or

)

1 ke

(10) N

K
Also, ¢ = «i/k . The Fisherian shape coefficients, or standardized cumulants, are
—3/2 —1/2 —2 —1
71=K3Kz,= ’, ')’2=K4K2=15¢,

(11)
Yr = Kegoka Tt =1.3-5 -+ (2r + 1)¢”"%

The fractional coefficient of variation is v_1 = x1 %3 = ¢ % so that v, =
31, 72 = 15y;, and so on. Evidently the distribution becomes more and
more nearly normal when ¢ is increased. This parameter ¢ might be called the
normality parameter or the shape parameter.

In the probability density curves shown in Fig. 1, v; ranges from 6 down to
0.53, and vy, ranges from 60 down to 0.47. The approach to normality in the
neighbourhood of = pu is evident from these curves. However, some important
aspects of the distributions, such as the standardized cumulants, depend pri-
marily on the behaviour of the functions at very large values of the variate,
whereas the diagrams are necessarily bounded.

The positive integral moments about zero are obtainable either from (9) or
by direct integration, using (3) and a further result given by Watson ([2], Eq.
(12), p. 80). They are:’

p1 =, up = pd 4+ w27,
ps = u* + 3N+ 3\,
(12) pe = gt 4 6\ 4+ 15u°A77 + 154N,

. -1+
pr = WK, 1p(9)Kya(¢) = o =sl(r — 1 — 8)!1(29)*°

The negative integral moments are given in (33).
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It follows from the form of (8) that the distribution of the arithmetic mean
of a fixed number n of independent values from (1) is a member of the same
family, with the same a and u, but with A replaced by An and ¢ replaced by
¢n. More generally, suppose that we have a set of populations in which y; and
A; are the values of the parameters in the i-th population, and that, although
the values of these parameters are unknown, the values of a; = Qp}")\,- are
known, C being a constant whose value is not necessarily known. The distribu-
tion of the linear function D i (a;z:) is then of the same form as (1), with
p=C2tu¢i, N = C( ¢, & = D i16:. Because of this additive prop-
erty of the normality parameter, the linear function will have a more nearly
normal distribution than any of its components.

3. Estimation of parameters. Suppose that z; is an observation on a dis-
tribution of the form (1b), with parameter values u and \;, where \; = Aow;
for 7 = 1 to N, w; being positive and known, but neither of the common values
of u and Ao being known. For example, x; might be the arithmetic mean of w;
values from a distribution with parameter values u and \,. With these N pairs of
valaes of z; and w; as data, the estimates of 4 and A\, which jointly maximize the
likelihood function are given by

(13) f=a =X (i) / > @),
1 1 & 1 1
(g t=vnu(i-2)

These estimates can never be negative so long as the observations are necessarily
non-negative. For (14) this follows from the concavity of the function z™*. With
every w; equal to unity, these estimates were given by Schrédinger [3], who called
them “wahrscheinlichste.”

The Inverse Gaussian family is one for which the weighted sample mean z, =
4 (13) is a sufficient statistic (in Fisher’s sense) for estimating the common
population mean . Further, the cumulant-generating function of &, with fixed
values of u, Ao, N and the weights wy, - -- wx, differs from (8) only in that
A -becomes No 2 i1 w;. (To see this, take C = /Ao iw1 w; in the result at
the end of Section 2.) The probability density function of £ therefore is

(15) Fa(lts 1y ND_is W), 0<fi< o,

In the terminology of a previous paper [6], the family (1) is a Laplacian one
with a as primary parameter and X as secondary parameter. Hence & has a La-
placian form of probability density function. This enables the conditional
moments and cumulants and other properties of other statistics, with a fixed
value of £, to be found by using the uniqueness of the Laplace transforms which
appear in their mathematical formulations. A number of exact results have
been found for the Inverse Gaussian distributions in this way, and we shall
now proceed to develop one of the more surprising of them.
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4. Distribution of the ml estimator of the secondary parameter. With the
same data and the same fixed quantities as were introduced in Section 3 in dis-
cussing the distribution of the maximum likelihood (ml) estimator of u, the
Laplace transform of the probability density function of 1/}, is

(16) E(¢*™) = f f e“"qul F2(Xs; u, Nows) dX;.

all X;>0

This certainly exists when the real part of ¢ is not negative. On substituting from
(1) and (15) and writing > 3=y w; = W for brevity, we get

E(e—t/xo l My kD) wy y wh'; N) j fz(#, M, )‘0 W) f f —(H')‘ole)Ao

(17) i constant
ﬁ3/2 (Ag)w—l)ﬂ N w}lz dX.'

wir =i X3

The multiple integral in the final integrand on the right of (17) does not contain

# or a. From the Laplacian form of f;(fi; u, AW) and the uniqueness of the La-

place transforms to which it gives rise, it follows (cf. [6]) that the partial deriva--
tive, with respect to £, of this multiple integral is equal to the Laplace transform

of the conditional density of 1/}, . This statement may be justified by reference

either to Lerch’s theorem ([7], p. 52; [8], p. 61) or to an equally applicable set of

theorems (cf. [9], p. 38). The proof can legitimately involve « taking complex

values with positive real parts. Therefore

(18) a“ f f “('+)‘0N/2)’on3/2W‘—1/2()\ /2 )(N—l)/2II (X—3I2 1/2 dX;)

ﬁ constant

= E(e—‘n\olﬂr; )\o, Wy, *-- wNjN)’

which is the conditional moment-generating function of 1/, with 4 fixed. To
evaluate this integral, first take ¢ = 0, which gives

(19) f f —)\oNI2lon8I2 H (X5 g4X,) = Wi (21,,)("_1),2
=1 f 1/2y \ Ao
lleonsta,nt H ( )

tm=

By substituting Ay + 2¢/N for Ao on both sides of (19), the left-hand side of
(18) is found almost immediately to be

)Y 2t \W-nr2
. (20) E(™ | f; No, Wr, - - wy, N) = (1 + )

This is a Laplace transform of a density function of the chi-square type, with
N-1 degrees of freedom. In fact, it shows that

2
1 _ X141

1) o NN
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and thus that
(22) i w; (l — l_) - quv—nu.).

=1 T Ao

This result can be used to obtain confidence intervals for Ay . By substituting
for the probability elements of 4 'and A, in the joint probability element of the N
observations, it can be shown also that 2 and )\, are jointly sufficient estimators
of p and Ao . Further,

1 & 1 1

(23) reize(a-2)

is an unbiased estimator of 1/A . Its distribution is of exactly the same type as
that of the usual unbiased quadratic estimator of the variance of a Gaussian
distribution, although it cannot be expressed precisely as a sum of squares of
Gaussian variates with zero means. The conditional distribution of (23) is neces-
sarily independent of n, because of the sufficiency of 4, but it is also independent
of 4, thus affording the possibility of an analogue of the analysis of variance,
using the existing tables of x* and F for significance tests and so forth. In the
Brownian motion problem p and A are concerned with rather different physical
properties of the experimental system, which do however occur together in some
physical formulae. It is therefore convenient that estimators have been found
which are both independently distributed and jointly sufficient.

The statistic (14) appears also in the likelihood ratio test of the hypothesis
that the population means are equal against the alternative hypothesis that they
may have any values independently of one another, the values for the means
not being specified, while the value of the secondary parameter is supposed known.
The logarithm of the ratio of the maximum likelihoods under these two hypothe-
ses is —\oN/2\o, so that the result (21) is a case where the well-known approxi-
mate general result ([9], p. 151) holds exactly. Moreover, the statistic Ao de-
pends essentially on the difference between the ml estimator of the reciprocal of
the hypothetically common value for  and the ml estimator of the weighted
mean of the reciprocals of the means under the assumption of their complete in-
dependence. Both these considerations indicate that Ao will tend to be increased
by real differences between the population means, and that it therefore measures
the combined effect of the dispersion in homogeneous samples and the hetero-
geneity of the means.

‘6. An analogue of the analysis of variance for nested classifications. The
algebraic aspect of the analysis of variance for nested classifications may be
generalized, for two classifications (which is a sufficiently general case), to

I:v-=1 :=1 (i) — (. )}
(24)
= Zw:l J— ll’(xu) - \P(x, + Zt=l n; ‘P(xz) - 'll’(x)}
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Here x;; is the observed value of the variate in the j-th subclass of the ¢-th major
class, and n; is the number of subclasses in this major class, while there are N
major classes. The values of z;, and z.. are means of some kind of the values of
z;;, and y(z) is some suitable function of x. The sums might be regarded as de-
pending on the differences between different kinds of means, in that they could be
rewritten as

{£ 55 v - m..)}

(25) ng
1 & i_zlil'(xij) 1 &
= ;’ni i V()| + {; Z; [niy(z:)] — 'P(x..)} )

where n. = i~ n;. That is to say, if we temporarily use M to stand for the
operation of taking the relevant mean involved in z;, and z.., and A to stand
for the operation of taking the weighted arithmetic mean, the identity (25) can
be written

(26) AAg —yMM; = A(Ajy —¥M;) + (A — MM ;,

operating on z;; . Certain restrictions on ¥ and M are necessary to ensure that
these differences, which are essentially measures of dispersion, shall never
change sign. In the analysis of variance, the means entailed by M are arithmet-
ical, while ¢(z) = °. If the variates have independent Gaussian distributions
with both means and variances equal within any major group, the two major
sums on the right side of (24) have independent distributions. This independence
does not generally occur in other circumstances, but it is available to some ex-
tent with the Inverse Gaussian distribution. For this, according to Section 4,
we again take the means M to be arithmetical, but take y(z) = z
From the results obtained in Section 4, we see that the statistic

o 1 1 ng
(@7) S(E-2)-F

is distributed as x*/\; with n; — 1 degrees of freedom and independently of

Ti., = D11 (x:5)/n: . Hence
£5(2-1)
i=1 j=1 \Tsj X;.

is distributed as x°/A with n, — N degrees of freedom and independently of the

values of z;.. (This distribution would remain true even if the expectations
N

E(z:) varied with 4.) In particular, if .. = > i_; (n&..)/n:, that double sum
is distributed independently of

u 1 1

Z n\———9,

=1 X3, Z..
which is itself distributed as x*/A with (N — 1) degrees of freedom.
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The algebraic identity (24) thus becomes

N .n.' 1 1 N 1 1
@ LE(E-H-EC-YHzn(E-D)

i=1 j=1 \Tij . i=1 j=1 . {1 ..
If all the observations come independently from the same Inverse Gaussian dis-
tribution, the three major sums in (28) are each distributed as x*/A, the chi-
squares having respectively n. — 1, n. — N, and N — 1 degrees of freedom.
Thus 1/X can be estimated by dividing any of the three sums in (28) by the cor-
responding number of degrees of freedom. The two sums on the right of (28)
have independent distributions and therefore their ratio is distributed as

(N — DF/(n. — N),

where F has N — 1 and n. — N degrees of freedom. Hence the analogy with
the analysis of variance is very close. For example, a significance test of the dif-
ferences between the N values of z;. may be made by using the first major sum
on the right of (28) as the analogue of the sum of squares for error. Some illus-
trations of the use of these formulae will be published separately for some elec-
trophoretic data on individual colloid particles and for some purely empirical
trials on more general data.

This “analysis of reciprocals” by (28) is invariant under changes of scale of
the observations, but not under more general linear transformations, whereas
the analysis of variance is thus invariant. It should also be noted that the ob-
vious parallel with the algebraic identity for the main effects and interactions in
the analysis of variance for crossed classifications does not give independent
components. An interaction term, such as

N n

1 1

Sa(E-2 -4 )
i=1 j=1 \Zij -7/[. X 5 Z..

in a commonly used notation, does not have a distribution of the chi-square type,

since it has a finite probability of taking a negative value, and therefore this

analogue of the analysis of variance is restricted to nested classifications.

6. Distribution of the reciprocal of an Inverse Gaussian variate. For some
purposes it is convenient to work with the reciprocal of the Inverse Gaussian
variate z, which will be denoted by y. For example, the analysis discussed in
Section 5 can be expressed simply in terms of this variable. The weighted arith-
metic means ;. , z.. of the values of z;; are replaced by their reciprocals, which
are the weighted harmonic means §.., §.. of the values of y,;. The analysis of
the values of y:;, corresponding to the algebraic identity (24) or (26), with
¥(y) = y and M the harmonic mean, thus becomes

D (g — g..)

(29)
=D ) i (Wi — i) + o= ni(@i — ..
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These sums of course have the same chi-square types of distribution as the ex-
pressions in terms of x;;, 2., and z.., to which they are equal. However, this
analysis (29) is sufficiently easy to compute to be considered as a further prac-
tical analogue of the analysis of variance for certain purposes.

Some of the useful properties of the variate y follow in an obvious way from
those of z, hardly justifying giving any special consideration to the family of dis-
tributions of y. However, the latter has some interesting features and a short
account is therefore in order. Some of the results will be expressed in terms of
z, since that variate is the primary object of this study.

The probability density function of ¥ may be written

A A
(30) exp{-gy—l-; 22f[)‘/2y”2 0<y<m
(31) = wyfa(y; 1 M) = Wufs(uy; 1, ¢) = Wyfeluy; ¢, ).
The mode is at
' 1/2 1
ymode='—[ 1+ (14 4¢)"] = {<+ ) _2_;},

The probability density at the mode is
p{ll + (1 4 4¢")")/4x}" exp (¢ — (@" + )},

which approaches u/(2me)"? = 0.241971u as its limit when ¢ or A decreases to
zero with a fixed value of u.

Fig. 3 shows some examples of (30) plotted for A =0, 1, 1, 4, 16, 32, with
u=1 for0 <y <3, correspondmg to § <z < ». The d]ﬁ’eren(,e between
Figs. 1 and 3 for small values of \ is rather striking.

Fig. 4 shows density curves from (30) in a form comparable with Fig. 2, having
A= 1withpg=4% 1,4 for 0 < y < 7. Thus the harmonic sample mean is a
sufficient statistic for discriminating between the distributions of the family to
which the curves in Fig. 4 belong, while the arithmetic mean is the correspond-
ing statistic for Fig. 2 (cf. Section 3). Some consequences of using the arithmetic
mean of observed values of y to estimate 1/u instead of using the harmonic mean
are discussed in Section 7.

The moments about zero of y, which are the moments about zero of negative
order for the Inverse Gaussian variate z, may be found by direct integration,
using (3), or from other results. They may be found from those of z of positive
order by using the relationship

El(x/w)"] = El(=/w)™,

from which, in a notation applying to the variate z,
2r+1

(32) Blr = prp/H

Thus the moments of all positive and negative orders exist for an Inverse Gaus-
sian variate (and for its reciprocal), in contrast to the situation with some other
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superficially similar distributions, such as the chi-square type. For reference,
we have

I-'Ll = F-l + A—l’
#'-3 = u—z + 3”—1>\—1 + 3)\—2’
we = p" + 6 4+ 157N 4 1507
(33) pa =t 4+ 100727 + 45,;5\"’ + 105572 + 10507,
PP ( .
wle=(2)) Z s), | (26)
— -'l‘ (7' + 8)' -8

The family (30) is of the Laplacian form as regards the variate y. Thus its
cgf. can be found by a process of substituting alternative values for the parame-
ters in the integral of (30), in a similar way to that used for deriving the cor-
respanding function (8) for z. The result is that the logarithm of the Laplace
transform of the density function of y is

(34) Ly(t; ¢, N) = (1 — (1 + 2"H") — 3In(1 + 207).
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It is curious that the form of this function (34) shows that the distribution of y
is the same as that of the convolution or composition of an Inverse Gaussian
distribution (with the same value of ¢ but with u replaced by 1/u) with an in-
dependent distribution of x*/A, this x* having one degree of freedom.

The first two cumulants of y are

1 1 1 2
(35) Kl(y) = ; + =, k(y) = )\—“ + XN

Thus A" is the bias in using y (or ™) as an estimator of u~*. The variate y
itself may be the harmonic sample mean of values of a similar variate, or the
reciprocal of the weighted arithmetic sample mean of values of Inverse Gaussian
variates as in Section 3. The mean squared error in using y as an estimator of

s

(36) Elly — w1 = (¢ + 30"
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with X = 1 for 3 valtes of u or ¢.
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The first two Fisherian shape coefficients of y are

@37 1) = (36 + 8)(¢ + 2)™",

(38) 7(y) = 3(56 + 16)(@ + 2)~"
The fractional coefficient of variation is

(39) Y@ =+ )7 + 2)

The values of 47}, 71, and v, are smaller than the values of the corresponding
characteristics of z. When ¢ is increased, both these and the shape coefficients of
higher order approach zero as their limit, so that the distribution of y then ap-
proaches normality.

7. Estimation of the arithmetic mean reciprocal of expectations of Inverse
Gaussian variates. In the physical experiments which led to this research, it
was desired to estimate the arithmetical mean reciprocal of the population
means of four distributions which might reasonably be treated as Inverse Gaus-
sian. The four means were not individually of special interest, their inequality
being due to an artifact of the measuring technique. The secondary parameter
X could be considered to be constant in any one experiment. This estimation
problem may be discussed in the following more general terms:

Suppose that we have N populations of the kind (30), the ¢-th having parame-
ter values u;, A\; = Aow;, and one observation y; from each population. Write
g =i (w.y;)/Z’f,,l (w;). It follows from the form of (34) that the distribu-
tion of 7 is the same as that of the simple arithmetic mean of N values of y taken
from one distribution whose parameter values are

p* =200 ()20t (wi/s), N = i (wi)/N.

We may also write ¢* = A*/u*. The distribution of 7 is the convolution of an
Inverse Gaussian distribution, whose parameters in the form (1b) have the values
1/u*, A*N, with an independent distribution of x*/A*N, this chi-square having
N degrees of freedom. Because this belongs to a different Laplacian family it
will not be studied in detail here. The results needed at present can be obtained

from those already found.

From (35),
(40) E@) = 1+ 1/¢%)/u*,
and
(41) E((§ — 1/u®’] = (¢* + 2 + N)/A¥N.

If the N values of u; were all equal, the harmonic sample mean

§ = 2 i (w)/ 2 (wify))



376 M. C. K. TWEEDIE

would be a moreé precise estimator of the common value. The formula (36) would
then give

(42) El(§ — 1/p)] = @* + 3/N)/A\*N,

which is less than (41) except in the trivial case of N = 1. The efficiency of 7,
in these circumstances, can be measured by the ratio of the mean squared errors
(42) and (41), or by the ratio, to N, of the modified value for N which needs to
be substituted (without changing \* and ¢*) in (42) to give a mean squared
error for § equal to (41). The former measure of efficiency is easier to calculate,
but is slightly less than the latter. However, the difference is less than one per
cent if ¢* > 18.7. '

Reverting to the estimation of u* when the values of y; may be unequal, we
may attempt to improve the estimator § by adjusting it for the bias. When the
N values of y; are the harmonic sample means of the reciprocals of Inverse
Gaussian variates, or the reciprocals of arithmetic sample means of Inverse
Gaussian variates, separate estimates of the values of A; can be obtained from the
variation exhibited within the samples, by using the appropriate form of (27).
If the i-th sample contains n; observations,

41 2
Ao = X (=1 d.y/Aonaw; ,

this distribution being independent of y;. On weighting these estimators suit-
ably and on writing X =1 (n; — 1) = D, we have, as an unbiased estimator of
o' of minimum variance,

> Atnaws)/D = X(p d.ty/AeD.

Thus, for an unbiased estimator of 1/u*, we get

(43) y = 2?;1 wi(y: — N /MD)/ZLl (ws).
Then
(44) El(y' — 1/u*)] = (¢* + 2 + 2N/D)/\*N.

This mean squared error will always be less than that (41) of 7 if D > 2, which
will be true of most experiments. However, unless ¢* is close to or less than unity,
which seems unlikely to occur, the statistical superiority of 3’ over 7 is of very
minor importance. .
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