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To do this we use the inequality established by McMillan [2],

(i) f gr = s(m + 1)27".
{m=gr<m+1]}
We confine our attention to the cylinder set Z; C @, Z; = {w; 20 = a;}. On Z;
we have
gi(w) = —logs p(xo = ai| 2, -, T).
Since p(xy = @i |z, - -+ , ) is a martingale, it follows from the convexity of
—log and inequality (i) that the sequence {g:} is a semi-martingale (see [3],
p. 295). Therefore, g, converges a.s. on Z; and hence on Q.
Furthermore, by a semi-martingale inequality, [3] p. 317, we have, on Z;,

e (4 +
<
‘[Zg (Ozg_gn gk) = e — 1 + e — 1 ‘,~Z¢ (g" ]og gﬂ)'

By using inequality (i) again, we bound the last term on the above right;

f (g log* g.) = 2 f (ga log* g.)
Z; m=0 JZ;{m< gn<mtl}

< Y s(m + 1) log (m + 1)27™,

Ma=()

Therefore [z, (supx gx) < «, by addition E(sup: gx) < =, and the theorem is
proved.

It is a pleasure to acknowledge our debt to Professor David Blackwell who
suggested to us the problem treated herein.
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A COUNTEREXAMPLE TO A THEOREM OF KOLMOGOROV"?

By Leo BrEmaN
University of California, Berkeley

1. Introduction. In 1928 Kolmogorov [1] presented the now well-known de-
generate convergence theorem (weak law of large numbers) as follows (see, for
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812 LEO BREIMAN

example, Logve [2]): let X;, X., - - - be independent random variables such that
EX, =0,k=1,2,---,and let
Xk if |X),l < n,
Xnk =
O if |Xkl . g n.
Then
1 > X .L, 0

N k=1

if and only if
@ 2 P(Xi| 2 n) =0,

@) 13 EX. -0,
n k=1
(i) L3 %X — 0.
N? k=1
Presented without proof in the same paper was a sharpened version of the above
theorem with condition (iii) replaced by
(i) L3 EX% — 0.
N kel
A proof of this last theorem was given in Gnedenko and Kolmogorov’s 1949
book and carried over into the English edition ([3], pp. 135-137). Unfortunately,
the proof contains a slight gap and the sharpened theorem is not correct. Since
it appears in several places in the literature, for example, in Logve ([2], p. 278),
and follows from Theorems 3.2 (p. 124) and 3.3 (p. 125) of Doob’s book [4] the

following simple counterexample may be of interest to the reader:
We will show that conditions (i), (ii), (iii’) are not necessary by proceeding

as follows: define the independent random variables X; , X,, --- by
PX,=0)=1,
PX, = (-1 = k7,
X = (=1)F™) ks o

P(Xk — (_1)k+1k1/2<1 _ k—2)—l) — 1 . k—2,

We verify immediately that EX; = 0, k = 1, 2, --- . Then we demonstrate
that conditions (i), (ii), (iii) above are satisfied. Finally we show that, contrary
to the theorem,

1< 2

p kg EX%y 0.
In the following proofs we take n = 4.

Proor or (i). If ¥ < n, then X, = Xi, and if k& < =, then
E*(1 — k)™ < n. Hence
if 1=k"<n,

<
P(X:l = n) = N
Xdzm =1, if n<k? and k<,
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and

SP(Xfzm) = >

k=[n3/5] k2

where [-] denotes next higher integer.
Proor or (ii).

0 if 1sk”<n
(=1D)**%"* if n<k"” and k<n

A

EXnk = [

Hence

LS Exw =1 3 (—nye

N k=1 N k=[n2/5)

We use the inequality, valid for s > 1,

1
\/g—m<2———‘fm

to get
LS px.,. 5<1"E S \/n2/5]
N k=1 "= 2nk=.1'\/E

Proor or (iii).

2
O'Xnk':

B+rQ—-r3" i 22k <n,
{k(l — )T —k if n=<#k” and k = n.
Fork = 2,
B+rkl -7 28 4 4k < 26°,
E1—EH =k =k"A - kYT < 467

Hence
1 1 (201 = 4 1 2/57\4 4
<= = Z < — )
nz; "X < Z 2k* +n2k=[§/” 5 = 5 (D' + 5 log (n) — 0

Finally, we show that 1/2° (2_i_; EX%;) - 0. We have

1 1 ¢ s 1 PP R .
Rz S PN el S K-k 2L 3k,
which completes the counterexample.

It is a pleasure to be able to acknowledge our debt to M. Logve, who brought
the question to our attention and suggested further inquiry. We are also in-
debted to R. K. N. Patell whose letter to M. Loéve was the cause of the re-
examination of this theorem.
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ON THE COMBINING OF INTERBLOCK AND INTRABLOCK ESTIMATES

By D. A. S. Fraser
University of Toronto

In a recent paper Sprott [1] has considered methods for combining interblock
and intrablock estimates of variety contrasts for incomplete block designs. The
intrablock estimates are derived from treatment contrasts obtained within
blocks. The interblock estimates presuppose that the block effects are random,
independent, and identically distributed, and they are derived from contrasts
among the block averages. Under normality the intrablock estimates are inde-
pendent of the interblock estimates.

Sprott compares two methods for producing combined estimates. The first
method, introduced by Yates [2], is the familiar method of combining by weight-
ing with the reciprocal of the variances, and is known to produce minimum
variance when two real estimates of the same quantity are combined linearly.
The second method, discussed by Rao [3] and Cochran and Cox [4], is to apply
the method of maximum likelihood to the joint density function, and the result-
ing estimate is linear in terms of the interblock and intrablock estimates. Sprott
shows that, in general, the two methods are not equivalent. The second method
is direct and has considerable theoretical weight behind its use. We are left then
with the implication that one of the methods is incorrect for obtaining good
estimates. In a sense this is not the case. Rather, one of the methods may be
tnappropriately applied. Weighting with reciprocal variances is appropriate to
combining real estimates but if applied to vector estimates it ignores any co-
variances and may not be optimum.

Suppose z = (z1, -+, z) and y = (y;, ++- , ¥») are independent estimates
of the parameter 4 = (m, ---, 7.) and have nonsingular covariance matrices
V and W respectively. Also suppose, for the moment, that z and ¥ are normal.
Then, the joint density function is a constant times

exp [—3(@ — )V (@ — ) — 3y — DW (v — )],
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