RESTRICTION AND SELECTION IN MULTINORMAL DISTRIBUTIONS!

By A. Crirrorp COHEN, JR.
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1. Summary. Maximum likelihood estimators of the parameters of a p-dimen-
sional multinormal population are derived in this paper which are applicable
when sample selection and observation is restricted with respect to z; but other-
wise unrestricted with respect to 2, - - - , z, . Restrictions imposed may consist
of truncation, censoring, or a selection which results in full observation of all
sample specimens with respect to x;, but eliminates certain sample specimens
from subsequent observation with respect to zs, - -, z, .

2. Introduction. Samples from a multidimensional universe are often obtained
under circumstances such that observation in certain regions of the universe is
restricted. For example, in studies of psychological traits, observation is often
limited to individuals who have passed certain admission tests or who have been
subjected to other screening processes. This situation likewise arises in connec-
tion with multivariate studies of physical characteristics in which specimens
available for observation have previously undergone some type of sorting pro-
cedure. From such samples, it is often necessary to estimate the means, variances
and correlation coefficients of the universe. Considering their most general
aspects without limitation as to type of distribution, restricted or “screened”
samples pose a broad class of estimation problems, some of which are quite
involved. The present paper is limited to samples from a p-dimensional multi-
normal distribution with probability density function

(1) @, 22, -, 2p) = (27r)—p/2 ]o‘ij]m exp I:—% g gaﬁ(xi - mi)(xj - ’m]):l ,

where the symmetric matrix ||¢”/]| of the quadratic form in the exponent is the
inverse of the variance-covariance matrix ||o,;||, and has the positive determinant
|o¥|. Maximum likelihood estimators (estimates) for parameters of (1) are ob-
tained from truncated, censored and selected samples, with x; designating the
restricted variable; that is, the variable on which screening is based. Similar
estimators obtained previously ([8], [10]) for restricted samples from a bivariate
normal distribution, follow as a special case of results obtained here. Results
obtained by Hotelling [12], Tukey [18], Pittman [16], and Chapman [5] guarantee
that both the method of moments and the method of maximum likelihood lead
to identical estimates in the case of truncated samples from multinormal dis-
tributions. Hence for truncated samples we might have employed the method
of moments. However, we elected to use the method of maximum likelihood
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732 A. CLIFFORD COHEN, JR.

as it permits a uniform treatment of all the various types of restricted samples
under consideration and it introduces no unusual algebraic difficulties.

In practical applications such as in studies of psychological traits, the screening
variable x; might actually be a composite score based on a battery of tests
rather than the score achieved on a single test. However, in this paper, we limit
our consideration to cases in which each of the component variables, including
21 ,hasaunivariate normal marginal distribution. In some applications, one or more
achievement scores might be involved which also are composite scores. For
example, x, could be such a score. Here again, however, the limitation of nor-
mality on marginal distributions holds.

Various aspects of some of the basic problems involved in the present study
have previously been investigated by Karl Pearson [15], Aitken [1], Wilks [20],
Birnbaum Paulson and Andrews [3], Votaw, Rafferty and Deemer [19], Camp-
bell [4], Des Raj [17], and the author [8], [9], [10]. A more complete bibliography
of related papers can be found in reference [7]. -

3. Estimating means, standard deviations, and correlation coefficients. For
a random sample of n (fixed) measured observations (Tix, Zea, ***, Zpa),
a =12 --- n,drawn from a population distributed according to (1), subject
to a restriction on observation of variable z;, the logarithm of the likelihood
function is

L = —(np/2) In 27 + (n/2) In |o%|

2 .
@ -1 ; 2 0 (@ia — m)(@ja — my) + In Glmy, on),
where G(m; , ou1) is a restriction function which depends upon the type of re-
striction imposed with respect to observation of z; by screening or acceptance
criteria. When G is to be interpreted with full generality, it is not only a func-
tion of m; and o1, but also of z; . By thus introducing G, much repetition in the
derivation of estimators is avoided which otherwise would arise with the various
selection criteria to be considered. Specific examples of G are given subsequently
in this paper.

For an unrestricted sample, G(m;, on) = 1, and maximum likelihood esti-
mates of parameters m; and ¢ are obtained by equating to zero, the partial
derivatives of L with respect to these parameters and solving the resulting
system of equations. (Cf. for example Mood [14], pp. 186-188.) In the cases
involving restricted or screened samples, we follow a similar procedure. How-
ever, in order to avoid certain complications which restrictions on z, introduce
into derivatives with respect to ¢/, we employ derivatives with respect to oy and
pi, . According to the notation employed here, o;; = 0:0;0:; and o1y = o7 , where
pi; is the coefficient of correlation between z; and z; .

Considering first the means, we have
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oL i
(a) a =n Z 1 CIO + G
my t=1 ml
®) oL
where

4) Ciy= Z (Tia — me)(Tja — mj)/n and Co = Z (Zia — mi)/n.

On setting dL/dm, = 0, (r = 2) and dividing by Cy, we obtain the system
of p — 1 equations:

d .
(5) Z O'NCiO/CIO = 0, r =2, 3, cee D

t=1

On solution, these yield the result

(6) CiO/CIO = Ali/All 5

where A;is the cofactor of |o¥|. Since ||o*|| = |loi;|| ™", then ¢i; = Ai;/ o] and
A = ai;]0”|. On substituting this result into (6), we have

(7 Ca/Cro = [o3: |6"|]/ont |67]] = ovi/on .

After making the further substitution ¢1; = g10:p15, it follows from (7) that

(8) Cio = pri(oi / 1)Cho .

We turn now to the variances and to the correlation coefficients. Since C;; = Cji
.. .y ] J
and ¢’ = ¢’*, we need only the derivatives

oL _ _n [y _ 3 g by LG
® dou 2‘711{1 J=El 7 CU} + G dou’
(b) 430‘3.' - 20'“{1 J—Zl U CUJ’ § = 2) 3’ y Dy

p . 3
(9) (C) aL = —no,0, {O_rs _ ZCH O_'Lro_zs

3prs im1
- Zf’:f. 22 Ciflo™e” + oo (1 — & )+U"0"'5§"}]},
r= 1)2) MY 178 = 2)3: e, P r<s,

where 67 is a generalized form of Kronecker’s delta such that it has the value
1if ¢"¢* = ¢”¢*, but otherwise it has the value zero.

We equate to zero, the (p — 1) derivatives dL/da,, of (9b) and the p(p — 1)/2
derivatives dL/dp.s of (9¢) to form a total of (p — 1)(p + 2)/2 equations that
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are linear in C;;(z £ 7). These we now write as

p .
Zawois—l"—“(), s=273y"';p:

=1

d s . . . .
(10) Z C” a_zra_zs + Z'f;ll Z]P=2 C'ij[tr”a” + o_na_Js(l _ 5:;) + 0’“0'”52;

7=l <j
- =0, r=12---,p—1;8s=2,---,p;r <s.
As a solution of this system of equations, we obtain C;; in terms of Cy; as
(11) Ci; = 04; + (o1,01j/01)(Crfonn — 1), T =7,

which can be verified by direct substitution back into the equations of (10).
As a special case of (11), we have

(11a) Cii = (o1.,/01)Cu .
Returning now to the definitions for C;; and Cy as given in (4), we can write

Cij — CaCio = 2(Tia — m)(@ja — mj)/n
- [; (Tra — mi)/n][;(xfa — m;)/n]

= [DsiaTia/n — miEi — m&; + mam;)
a

— [&Z; — m&; — m&; -+ mamy)
and thus
(12) Cij — CaClio = 2 Tialia/n — &Fj, a = 1,2, .-+ n,

where & = Y Tia/n.
a

With restricted sample standard deviations written as §; and restricted sample
correlation coefficients written as 7;; where

§; = [g :vf,,/n — < i Tia /n>2:|”2

(13) - -7
iy = Ln ;xiaxja - ; Tia 2; xja:l/nzéigj,
Eq. (12) becomes
(14) Cij — CuCjo = 788, .
Since o;; = o,0;0:;, Egs. (8) and (11) parmit us to write
(15) Cij — CiuCio = aioilpi; — Npripajl,
where

(16) AN=1—35/01.
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Equating the right side of (14) to the right side of (15), we have
(17) 7i;88; = oioilpi; — Npupas).

We let 7 = 7, and since 7;; = 1 and p;; = 1, it follows from (17) that

(18) O'j = 87/(1 pi]')\), j = 2, 3, cee L, D
Let 7 = 1, eliminate o; between (17) and (18), and we have
(19) py = T;/V1 — N1 — 7), i=23--,p.

Use (18) to write first o; and then o, . Substitute these results into (17) and
simplify to obtain

(20) pi; = FiiV (1 — p2N) (1 — pIN) + pu pij A

withe,j=23,---,p, ¢ <J.

Estimates 7, and 6, are yet to be determined,-but Egs. (8), (18), (19) and
(20) enable us to express estimators for the remaining parameters of (1) in
terms of these two as

A

My = & — 71;(8;/5) (@ — ),

Vh—xa—n»
J 1_)\

Fij — NFy — FijFig)
VI =31 = AL — A1 = &)

withi =1,2,---,p—1,7=2,3 ---,p, %<4 and\ = 1 — 5/41. Since
by definition, 7;; = 1, the last equation of (21), in agreement with (19), simplifies
to

(22) by = fi/V1 = A1 — 7),

when ¢ = 1. Here and throughout this paper, the maximum likelihood symbol
(") serves to distinguish estimates from the parameters estimated.

Although the derivations were somewhat more laborious, the above results
were given earlier in [9]. Estimators for restricted samples from a bivariate
normal population as given in [8] and [10] now follow as a special case of (21)
and (22) withj = p = 2.

To estimate m; and o1, we substltute (7) into (3a) and (11a) into (9a), equate
to zero, and thereby obtain

A
gy

Il
o

(21)

A JR—
Pi; =

2.‘&_01020“ o+ 2 9&:0)

n omy nG omy
) 2011 0L C 2011 0G
ou 9L _ Cu~ as g 4 200G _
—7{—%—1‘1_0’11;60’ 1+nG6<ru

Since i 0*"om; = 8:; (cf., for example, [14], p. 179), where §;; = 1,if ¢ = j,
and &;; = 0, if 7 X 7, it follows that »_7 ¢'’e1; = 1, and with the deﬁmng rela~
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tions for Cyo and Cy; as given by (4), this result enables us to write

z J11 aG _
ag:l (xla ml)/n + ‘ﬁa 5‘1‘"—1 = 0,
@) 2 G
S 2 o 0 _
a;l(xla"ml)/n"a’u[l —;L‘@(%Tlil =0

The required estimates 7 and é; are the values found on solving this pair of
equations. The restriction function, G(m; , ¢u) which depends upon the nature
of the restrictions imposed on x; must be specified before Eqs. (24) are completely
determined, but it is to be noted that regardless of G, they involve only the
x1-marginal distribution and are independent of the remaining variables.

Truncated and censored samples. When samples under consideration have been
truncated or censored with respect to z; , estimating Eqs. (24) reduce to forms
identical with those obtained previously in reference [7] in connection with
various types of truncated and censored samples from univariate normal popu-
lations. They can be solved as therein described for the univariate cases. For
example, when x; is singly truncated on the left at a fixed terminal xy,, then
G(my, ou) = Ho(§)]", where Io(§) = [T o(t) dt, o(t) = [(2m)"]" exp (=¢/2),
and ¢ = (z;0 — my1)/a1 . In this case, estimating Eqgs. (24) reduce to

1 [ 1 £:| _ n ; (21 — xm)z

(a') TT 7 — £ n 27
“ L7 : [Z (210 — xlﬁ)]
(25) o=t
(b) 6, = a; (210 — xlo)/n(z - E),
(C) m = Ty — 31&,
where
(26) 20 = o@/1® = exp (~£/2) / [ exp (~¢/2) .

Equation (25a) can be solved for 2, so that é¢; and 7, follow in turn from
(25b) and (25c¢). For further details, reference is again made to [7]. Whenever
my; and ¢; are known a priori, the remaining parameters can be estimated from
(21) with \ = 1 — s}/4% replaced by \. = 1 — si/o1 and 7, replaced by the
known value of m; .

Selected samples. When sampling procedure is such that a total of N unre-
stricted observations are made with respect to z; although as a result of selection
or screening, there may be only n(< N) observations of 2z, - -+, &, , then

G(my, on) = (\/ 2#011)"—N exp [ - Z:‘j (210 — m1)2/2¢711],

and Egs. (24) lead to the familiar estimates
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N N
(27 m = ; /N = &, & = ; (21 — &)°/N.

Regardless of how the selection which determines subsequent observation with
respect to x,, - - - , 7, is made, 77, and é; are given by (27) while the other esti-
mates are given by (21) where Z;, §;, and 7;; are computed from observations
of the n “selected’”” members of the sample.

Unrestricted samples. When no sample restrictions are imposed, and no se-
lection is made, then not only is @ = 1, but N = n, A = 0, and the required
estmates follow from (27) and (21) as

a

(28) ﬁzj=£j, g = 8, Pij = Tij, ’I,,] = 1, 2,"'1},

which, as already mentioned, are well known for this case. The bars (7) are
omitted over r,; and s; in (28) since here the computations are based on the
complete rather than a restricted sample.

4. Reliability of estimates. Asymptotic variances and covariances of estimates
given in the preceding section can, of course, be obtained from the likelihood
information matrices with elements which are expected values of the second
partial derivatives of the likelihood function L. These variances and covariances
are of the order of 1/n, but exact expressions for them are too unwieldy to be of
much practical value. For parameters of the restricted variable, in this case
z1 , asymptotic variances and covariances given in [7] for truncated and censored
samples from univariate normal distributions are applicable when restrictions
are of these types. When a selection based on 2; is made which does not restrict
observation of z; itself, then complete sample variances

V(i) = oi/N,
V(6y) = o3i/2N,

are applicable as are various exact small sample results based on the z; marginal
distribution. If the restrictions involved have not been unduly severe, that is,
if only minor portions of the tails of the «; distribution have been affected, then
asymptotic variances and covariances for complete (unrestricted) samples from
a multinormal distribution will afford reasonably satisfactory approximations to
the desired values. (Cf. Kendall [13], Vol. 11, third edition, p. 38.)

5. Practical applications. The practical application of estimators obtained in
this paper is illustrated with a sample given by Baten [2], and attributed by
him to H. C. Carver. The basic sample consists of weight, height, shoulder, chest,
waist, and hip measurements on 119 individuals. We designate these variates
in the order listed as z:, 2, , 23, 24, @5 , and ¢ respectively. Baten’s data include
120 sets of measurements, but it was necessary to eliminate the last one because
of a typographical error. As given by Baten, the sample was considered to be
complete, but for purposes of the illustrations here, it is arbitrarily truncated
with respect to weight (z;) at 119.5 pounds. Thereby eleven sets of measurements
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are eliminated. Estimates of the population parameters are then computed con-
sidering the sample as truncated with n = 108, and as censored with n = 108
and n; = 11. A complete summary of estimates calculated for each of these two
cases is included in Table 2 along with corresponding estimates computed from
the complete sample. As can be observed from this table, estimates based on the
truncated and censored samples are in close agreement with those computed
from the complete sample. The computing procedures employed are illustrated
below.

Truncated sample—number missing observations unknown. For this case, the
sample data are summarized in Table 1.

To estimate parameters of z; , we may follow the procedure described in [7]
and first solve equation (25a), which for this example is

1 1 ¢ | _ 108(64,169.00)
7 _ é[ZA“— i g] = —@s0L0F 1.308928.
Thereby, we obtain = —1.379, and from (25b) we computed 6; = 13.7697, and
from (25¢) 7u = 119.5 — (13.7697)(—1.379) = 138.4884. Tables [11] were
employed to reduce the computing effort which otherwise would have been
required.

From Eq. (16), we compute A = 1 — §1/61 = 1 — (11.8419/13.7697)* =
0.2604, and the remaining estimates are obtained from Eqs. (21). For illustration,
specimen computations are given below.

e = 67.9241 — 0.4701(2.4008/11.8419)(21.3056 — 18.9884) = 67.7033,

A 1 — 0.2604(1 — 0.47012)
= 2.4 =2 .
o, = 2.4008 /‘/ 1 — 02604 2 4923,
prz = 04701/4/1 — (0.2604)(1 — 0.47012) = 0.5265,
R 0.2361 — 0.2604[0.2361 — (0.4701)(0.4326)]
P = = (.2872.
V1 — 0.2604(1 — 0.47012)][1 — 0.2604(1 — 0.43262)]
TABLE 1
Summary of Sample Data
n = 108 Truncation at z; = 119.5 lbs.
#; = 140.8056 5 = 11.8419 fiz = 0.4701 Fos = —0.1389
8, = 2.4008 Fi1z = 0.4326 Fas =  0.3019
I, = 67.9241 53 = 0.7103 714 = 0.6501 faa = 0.5904
I3 = 16.4500 54 = 1.5373 715 = 0.4415 735 = 0.1852
%y = 35.4537 3 = 1.6375 716 = 0.7873 736 =  0.4059
Ty = 28.1574 §s = 13746 To3 = 02361 T4 = 04931
Ze = 35.5808 fae = 0.1194 Tse = 0.5491
76 = 0.4310

(2 — 20) = 2301.0 21 (@1e — 0)? = 64169.00
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TABLE 2
Summary of Estimates
Estimates Based on Restricted Sample
Parameters Eéf)i;;f:tse%ﬁglgn Truncated Censored
Number Missing Number Missing
Observations Unknown Observations Known

£ —1.379 —1.342
m 138.2353 138.4884 138.2382
Mme 67.6664 67.7033 67.6794
ms 16.3672 16.3899 16.3834
my 35.1899 35.2581 35.2370
ms 27.9252 28.0159 28.0007
me 35.3513 35.3780 35.3549
o1 13.9421 13.7607 13.9629
o2 2.5330 2.4923 2.5021
o3 0.7417 0.7333 0.7358
oy 1.7280 1.6477 1.6557
o5 1.7857 1.6927 1.6987
o6 1.5235 1.5172 1.5318
P12 0.5239 0.5265 0.5318
P13 0.5446 0.4872 0.4924
P14 0.7339 0.7053 0.7037
P15 0.5566 0.4966 0.5018
P16 0.8369 0.8294 0.8330
P23 0.2996 0.2872 0.2992
P24 0.2406 0.2040 0.2114
P25 —0.0120 —0.0613 —0.0536
P26 0.3732 0.3772 0.3842
P34 0.6193 0.6229 0.6265
P35 0.3193 0.2365 0.2416
Pis 0.4908 0.4615 0.4667
Pas 0.5943 0.5362 0.5404
P46 0.6569 0.6166 0.6220
P56 0.5344 0.4849 0.4902
A 0.2604 0.2806
Sample size n = 119 n = 108 n = 108
! n = 11

Censored sample—number of missing (unmeasured) observations known. The
sample data remain unchanged from the previous case except for the additional
information that n; = 11. To estimate parameters of z,, we determine £ by
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solving
L [J_ _ g} _- ; (e = o 1308928
Y —¢lY —¢ [é (xla_xm)]z . )
where

Y = %[exp (—=8/2)/(V2r — f: exp (—1°/2) dt):I = %Z(—g),

in the same manner as for the truncated case, and this time find § = —1.342.
Subsequently we compute 6, = D 1 (21a — zw)/n(Y — £), = 13.9629. We
then calculate 7, = 119.5 — (13.9629)(—1.342) = 138.2382. Using (16), we
have A\ = 1 — (11.8419/13.9629)" = 0.2806. For further details, reference is
again made to [7]. With 7, and ¢, thus determined, these values along with the
original sample data are substituted into (21) to obtain estimates of the re-
maining parameters.

Although not complete in all details, the above calculations serve to indicate
the general manner in which results of this paper are applicable in practical
problems. To a certain extent, they also serve to indicate the degree of agree-
ment to be expected among corresponding estimates based on truncated, censored
and complete (unrestricted) samples.

REFERENCES

[1] A. C. ArrkeN, ‘“Note on selection from a multivariate normal population,” Proc.
Math. Soc., Vol. 4 (1934), pp. 106-10.

[2] W. D. BaTeN, Mathematical Statistics, John Wiley & Sons (1938), p. 193.

[3] Z. W. BirNBaUM, E. PavuLsoN, anp F. C. ANDREWS, ‘“On the effect of selection per-
formed on some coordinates of a multi-dimensional population,” Psychometrika,
Vol. 15 (1950), pp. 191-204.

[4] Francis L. CamPBELL, ““A study of truncated bivariate normal distributions,’’ Doc-
toral Dissertation, University of Michigan (June, 1945).

[5] Dougras G. CuarmaN, ‘“‘Sufficient statistics for selected distributions,’”’ University
of Washington Publication in Mathematics, Vol. 3 (1952), pp. 59-64.

[6] A. C. CoHEN, JR., “On estimating the mean and standard deviation of truncated nor-
mal distributions,” J. Amer. Stat. Assn., Vol. 44 (1949), pp. 518-25.

[7]1 A. C. CorEN, Jr., “Estimating the mean and variance of normal populations from
singly truncated and doubly truncated samples,”” Ann. Math. Stat., Vol. 21 (1950),
pp. 557-69. '

[8] A.C. CoHEN, Jr., “Estimation in truncated bivariate normal distributions,’’ University
of Georgia, Mathematical Technical Report No. 2, Contract DA-01-009-ORD-
288, (June, 1953).

[9] A. C. CorEN, JRr., “Estimation in truncated multivariate normal distributions,’’ Uni-
versity of Georgia Mathematical Technical Report No. 3, Contract DA-01-009-
ORD-288 (August, 1953).

[10] A. C. CoHEN, Jr., ‘“Restriction and selection in samples from bivariate normal dis-
tributions,” J. Amer. Stat. Assn., Vol. 50 (1955), pp. 884-93.



MULTINORMAL DISTRIBUTIONS 741

[11] A. C. CoHEN, JR., AND JouN WooDpWARD, ‘“Tables of Pearson-Lee-Fisher functions of
singly truncated normal distributions,’’ Biometrics, Vol. 9 (1953), pp. 489-97.

[12] HaroLp HoTELLING, ‘‘Fitting generalized truncated normal distributions,’”” Abstracts
of Madison meeting, Ann. Math. Stat., Vol. 19 (1948), p. 596.

[13] Maurice G. KEnpALL, The Advanced Theory of Statistics, 3d ed., Vol. 2, Charles Griffin
and Co., Ltd., London, 1951, pp. 37-38.

[14] A. M. Moovo, Introduction to the Theory of Statistics, McGraw Hill Book Co., 1950,
pp. 165-191.

[15] KARL PrARsON, “‘On the influence of natural selection on the variability and correla-
tion of organs,” Philos. Trans. Roy. Soc. London, Ser. A, Vol. 200 (1903), pp. 1-66.

[16] E. J. G. PrrmaN, ‘‘Sufficient statistics and intrinsic accuracy,” Proc. Cambridge Philos.

" Soc., Vol. 32 (1936), p. 567.

[17] Des RayJ, ““On estimating the parameters of bivariate normal populations from doubly
and singly, linearly truncated samples,’”’ Sankhya, Vol. 12 (1953), pp. 277-90.

[18] Joun W. Tukkey, ‘“Sufficiency, truncation and selection,” Ann. Math. Stat., Vol. 20
(1949), pp. 309-11.

[19] D. F. Voraw, JR., J. A. RAFFERTY, AND W. L. DEEMER, ‘‘Estimation of parameters in
a truncated trivariate normal distribution,’’ Psychometrika, Vol. 15 (1950), pp.
339-47.

[20] S. 8. WiLks, “On estimates from fragmentary data,”” Ann. Math. Stat. Vol. 3 (1932),
pp. 163-96.



