THE RELATIONSHIP ALGEBRA OF AN EXPERIMENTAL
DESIGN

By A. T. James

Division of Mathematical Statistics, C.S.I R.O.

0. Summary. Important properties of an experimental design, including the
analysis of variance appropriate to it, are revealed by analysing the structure
of an algebra generated by the relationships between the experimental units
of the design. As an illustration, the relationship algebra of balanced incom-
plete blocks is analysed in detail.

1. Introduction. An experimental design consists of a set of N experimental
units, which we shall call plots, classified into subsets in various ways. They
may be classified according to their position, as for example blocks in a ran-
domized block, rows and columns in a latin square, or the classification may
be based upon the treatments applied to the plots, or some other characteristics
which certain plots share.

Define a relationship, R, between the plots as a set of ordered pairs (7, j) of
them. If the ordered pair (7, j) of plots belongs to R, we say that plot 7 is re-
lated to plot j by the relationship R. In a randomized block design, for ex-
ample, one may define that two plots in the same block bear the relationship,
B, to each other, whilst two plots in different blocks do not. Likewise, a rela-
tionship T, meaning “same treatment’ can be defined.

A relationship R among a set of N plots can be expressed as an N X N ma-
trix of 0’s and 1’s:

1 if 7 is related to j by the relationship R

ry =
0 otherwise.

The relationship matriz (r;;) will also be denoted by the letter R.

There are two relationships which appear in any design: (1) the identity re-
lationship of each plot to itself and (2) the universal relationship which relates
each plot to every plot in the design. The identity relationship corresponds to
the matrix I and the universal relationship to a matrix G, all of whose elements

are unity.
" The matrix product RS of two relationship matrices B and S, gives a matrix
whose elements have values 0, 1, 2, 3, --- . It can be interpreted in terms of
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derived relations. The (7, k)-th element of RS is the number, p, of ways one
can combine a relation (7, ) of R with a relation (j, k) of S to connect 7 and k.

More generally, the (7, u)-th element of a product RST --- Z is the number
of paths leading from the 7th plot to the uth plot via each of the relations R,
S, T, ---, Z successively.

cf. Kendall [2], pp. 49, et seq.

Under the operations of matrix multiplication, matrix addition and scalar
multiplication, the relationship matrices generate an associative algebra, which
we shall call the “relationship algebra of the experimental design.”

From the relationship matrices and all their products, a set of linearly in-
dependent matrices, R, S, T, ---, Z, can be chosen such that all the matrices
of the algebra can be expressed as linear combinations,

AR + uS + -

of them. The set R, S, T, --- , Z, is called a “basis” of the algebra. Since the
product of any two matrices of the algebra can be calculated from the products
of the basis matrices, a multiplication table for the basis matrices summarizes
the algebra.

For example, the relationship algebra of a randomized block has 4 basis
matrices I, B, T, G whose elements are

(1 ifi=j
8 =

0 otherwise,

1 if 7 and j are in the same block
bij =

0 otherwise,
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1 if 7 and 7 have the same treatment

bij =
0 otherwise,
gis = L.
The multiplication table is

I B T @G

B tB G tG b blocks

T G bT bG ttreatments
G G G UG.

Each basis matrix is written, once in the first row and once in the first column.
The product of the matrix at the beginning of a row, with the matrix at the
top of a column is written down in that row and that column.

The algebra is the direct product of two subalgebras:

IBXI T
B B T bT.

For an n X n latin square, the multiplication table of the basis matrices is

I R ¢ T @
R nR G G n@G
¢C @G nC G nG
T G G aT nG
G nG nG nG 7n'G.

R, C, T, are the relations, same row, same column, and same treatment respec-
tively.

Balanced incomplete blocks have an interesting algebra. The two relations,
same block B, same treatment 7', satisfy the equation

1) TBT = NG + (r — N)T,"

which reflects the requirement of balance, namely, that each pair of treatments
occur together in A blocks. r is the number of replicates and & the number of
plots per block.

-One can verify Eq. (1) by counting the number of paths from plot % to plot j
using the relations 7', B and T successively. If 7 and j have different treatments
there are exactly A blocks containing both these treatments, through which
.the connection can be established. Therefore there are A paths and the (ij)-th
element of TBT is \. If 7 and j have the same treatment, the number of paths
is clearly  and the (4j)-th element of TBT has this value. Thus Eq. (1) holds.

With this equation one can work out the multiplication table (Table 1).

As would be expected, the algebra of relationships corresponds to the nu-
merical operations involved in the analysis of the design. If the observations
21, %, -+, Ty taken on the N plots respectively, are written as a column vec-
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TABLE 1
I G B T BT TB BTB
Q NG kG rGQ krG krG kG
B kG kB BT kBT BTB kBTB

T rG@ TB rT ANG + (r — N)T| rTB MG 4+ (r — N)TB

BT | krG | BTB | rBT AkG rBTB \2G
4+ (r — N)BT 4+ (r — \)BTB

TB | krG | kTB | \G MG MG \k2G
+ (r—=NT + (r — NkT| + (r — N)TB, + (r — NkTB

BTB| kG | kBTB! \kG \k2G \2G \3G
+ (r = N)BT| + (r — NkBT| + (r — N\)BTB| + (r — N\)kBTB.

tor z, then multiplication by the relationship matrices gives linear transforma-
tions of z; e.g., for a block design, the transformation

r — Bz

is the operation of replacing each value z; by the total for the block in which
the 7th plot occurs. Similarly, viewed in this way, the matrices T and G are
operators which replace each observation x; by the treatment total or the grand
total respectively.

When the relationship matrices are thus considered as operators, their prod-
ucts are often obvious—e.g., for the randomized block, clearly,

BT = TB = (.

2. Structure of the relationship algebra. If j bears the same relation to 7 as
7 bears to j, as will usually be the case, the relationship matrices will be sym-
metric. Note, however, that their products will not necessarily be so; as can
be seen in the case of balanced incomplete blocks where

(TBY = B'T" = BT # TB.

The fact that the algebra can be generated by symmetric matrices has a very
important implication in its mathematical analysis.

Let B be the vector space of column vectors, z. A subspace %, is invariant
under the relationship algebra ¥; ie., AB, € By, if and only if it is invariant
under the relationship matrices which generate %. But these are symmetric;
hence the orthogonal complement, B of B,, is also invariant under them.
Hence B; is invariant under %; ie., A is a completely reducible set of linear
transformations of 2B. Therefore A is a semi-simple algebra. According to a
theorem of Wedderburn, a semi-simple algebra is isomorphic to a direct sum of
complete matrix algebras’ (see Van der Waerden [3], Chap. XVI).

Hence, an algebra generated by symmetric relations is isomorphic fo a direct
sum of complete matriz algebras.

2 It may be necessary to extend the field of scalars from the real numbers to the complex
numbers.
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Ezxample 1. The randomized block. As one can see by inspection of the multi-
plication table, the algebra is commutative. Now the algebra of all 2 X 2 ma-
trices or of matrices of higher crder is not commutative. Hence the algebra of
the randomized block cannot be isomorphic to a direct sum of matrix algebras
which contains one of these. Thus it must be isomorphic to a direct sum of
1 X 1 matrix algebras; i.e., the algebra of the randomized block is isomorphic
to the algebra of all diagonal 4 X 4 matrices,

*

*

Example 2. The latin square. As the algebra is commutative and 5-dimen-
sional, it is isomorphic to the algebra of all diagonal 5 X 5 matrices.

Ezxample 3. Balanced incomplete blocks. The algebra is 7-dimensional and non-
commutative. Since it is noncommutative, the direct sum of complete matrix
algebras to which it is isomorphic must include a complete matrix algebra of
order at least 2 X 2, but not more than 2 X 2, because a complete 3 X 3
matrix algebra is 9-dimensional and our algebra has only 7 dimensions. Hence
the algebra of balanced incomplete blocks is isomorphic to the algebra of all
matrices of the form

3. Analysis of the relationship algebra. A direct sum of k¥ matrix algebras
can be decomposed into its & component parts; e.g., for k = 2,

E I Y EEERE ] 000
* k% * %k 000
* x % =% * % +(0 0 0
* % 0o o
* ok 0 0

Each part, e.g., the set of all matrices of the form

is a minimum two-sided ideal. The product of two matrices belonging to different
parts is clearly zero; i.e., the different parts annihilate each other. Correspond-

*
*
*

-

*
*
*

*
*
*

00
0 0]
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ingly, the relationship algebra ¥, being isomorphic to a direct sum of & com-
plete matrix algebras, can be expressed as a direct sum of minimum two-sided
ideals which annihilate each other:

2) A=W 4+ L+ - + L%

i.e. any element of ¥ can be expressed uniquely as a sum of elements belonging
respectively to %, , --- , %z .
In particular, the identity element can be so expressed

(3) I=E1+E2+”'+Ek,

and the components E; will be idempotent. Writing the corresponding quadratic
forms, we have the decomposition of the sum of squares for the analysis of vari-
ance

4) > 1i =2z = 2B + By + -+ + 2B

So far, the decomposition is unique. If one of the ideals—e.g., A—is isomor-
phic to an r X r matrix algebra, then z’Eiz can be further decomposed into r
parts, each on the same number of degrees of freedom, but the decomposition
is not unique. The example of balanced incomplete blocks will illustrate this.

4. The analysis of the relationship algebra of the balanced incomplete block
design. The algebra can be analysed by the standard procedures. For purposes
of illustration the method is given in detail.

The problem is to decompose the algebra into its minimum two-sided ideals
and to find the corresponding principal idempotents. These are the unit elements
of the ideals. Since. as we have seen, our algebra is isomorphic to the direct
sum of three 1 X 1 matrix algebras and a 2 X 2 matrix algebra, there must be
three 1-dimensional two-sided ideals and one 4-dimensional two-sided ideal,
which are respectively isomorphic to the matrix algebras. E; , E,, E; , E4 will
denote the respective principal idempotents. Our first step is to pick out these
ideals.

The multiples of G' form a 1-dimensional two-sided ideal whose idempotent

is B = 1171 G. The corresponding sum of squares, z’Ez is just the correction fac-

tor, (grand total)?/nN. Let us consider the algebra modulo G. We can take care of
G later on by replacing all sums of squares by the corresponding sums of squares
about the mean. There is now a 6-dimensional algebra to be analysed. Its multi-
plication table is obtained by putting G = 0 in the original multiplication table.
We must look for some more two-sided ideals.

The linear combinations of the basis elements containing T'—namely, T, BT,
TB, BTB—form a two-sided ideal, because all multiples of these elements
again contain 7. This must be the 4-dimensional ideal that we are seeking. The
principal idempotent, E,, of this ideal corresponds to the unit element of the
2 X 2 matrix algebra to which the ideal is isomorphic.

One can set up such a correspondence by finding the left-regular representation
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—namely by considering how T, BT, TB, BTB are transformed by left multi-
plication by each of them in turn.

[T BT TB BTB] —1- [1° TBT T°B TBTB

(r 0 0
0 0
r (r—=2MN1|
0 0 0 0

The row [T BT TB BTB] is written formally as a row vector, even though the
elements belong to an algebra instead of being numbers. This “vector” and the
matrix are to be multiplied by row-column multiplication. Similarly,

r -\
0 0
=[T BT TB BTB] 0 0

0000
T BT TB BTB] -Z. [T BT TB BTB](I)ggg
“lo o 1t &

Each 4 X 4 maitrix is the direct sum of two identical 2 X 2 matrices, as is to
be expected in a regular representation. Hence we can set up an isomorphism
between the ideal and the 2 X 2 matrices:

r r—2\
TH[O 0 ]

Although B does not belong to the ideal, we can calculate the matrices isomor-
phic to the elements BT, TB, BTB, which do belong to the ideal, by using the

map
00
B——)I:l k]
Thus
sro|0 0 ]
|r r—A
[r — N k(r — )
TB=| 0 ]
0 0
BTBH_r—)\ k('r—)\)]'

To find the principal idempotent E; of the ideal, we must express the matrix
corresponding to it, namely the unit matrix, in terms of these matrices:

[1 0]_ 1
0 1] (k—Dr+2x

R il e NN LN B il
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Hence,
E, = (kT + r(r — \)'BTB — BT — TB)/((k — 1)r + ) mod G.

Having dealt with the 1-dimensional ideal generated by G and the 4-dimen-
sional ideal, we now have to find the idempotents of the other two 1-dimensional
ideals. We can obtain an algebra isomorphic to the direct sum of these two-
sided ideals by taking the whole algebra modulo G, 7. If weputG = 0, 7 = 0,
the multiplication table reduces to

I B
B kB.

This 2-dimensional algebra splits into two 1-dimensional ideals whose idem-
potents are kB and I — k'B. But, modulo G, T, the algebra is generated
by the two idempotents E, and E; ; hence we can put

E,=Fk'B
mod G, T'.
Es=1-k"'B
Dropping the modulo 7', we may write
]C—IB = E2 + F 2
mod G,

I —k'B=E,+ F;

where F; and F; are the components of kB and I — k™'B belonging to the
4-dimensional two-sided ideal, which was mapped on zero when we worked
modulo T by putting 7 = 0. Thus, modulo G,

Fy; = F:E, = k'BE, = [k(r — \)]"'BTB,
Fy = F3E, = (I — k'B)E, = [(k — 1)r + M\ "'(kT + k'BTB — BT — TB)
= k((k — 1)7** + M) T — K'BT)(T — k™'TB),
since E.E,; = 0 and E;E, = 0. Therefore,
E:=Fk'B — F,=k"'B — [k(r — \)]'BTB
Es=U—-k"'B)—F;=I—FE,— E,

Now we have the principal idempotents of all the ideals.
At the same time, we obtain a further decomposition of E; :

E = (k"B + (I — k"'B))E,
= (B2 + F)E, + (E; + F3)E,
=F,+ F;.
Fs and F; are idempotents but not principal idempotents, because, unlike E,,

they do not correspond to the unit matrix, [(1) (1)] , of the 2 X 2 matrix algebra,

mod G.
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TABLE 2

Blocks (ignoring treatments)

Treatment cOMPONENt . ..... ..ottt [k(r — \)]'BTB

Remainder. ......... ... .. i kB — [k(r — N)]"'BTB

Total . .o e kB
Treatments (eliminating blocks)........... k[(k — 1)r2 + AT — E'BT)(T — k'TB)
Intra-block €FTOr. ... ... e by difference
B 0 - ) 1

but, in the appropriaie isomorphism, they correspond to the idempotent matrices
[(1) 8] and [g (1)] respectively. This part of the decomposition is not unique,
but nevertheless it is appropriate, as may be seen by putting the usual inter-
pretations on the quantities.
The idempotents may be arranged as in Table 2, all of them modulo G.
The quadratic forms, of which the idempotents are the matrices, are the sums
of squares in the usual analysis of variance as given in Fisher and Yates [1].

5. Conclusion. Whilst it is too early to see the full implications of the rela-
tionship algebra, the following points may be noted:

1. Anyone investigating or proposing a new experimental design can throw
considerable light upon it by enumerating the basic relationships set up by the
design, and analysing the algebra they generate.

2. The relationship algebra leads to a simple and natural notation for the
component sums of squares appearing in an analysis of variance. The sums of
squares are specified by their matrices. The table above for balanced incomplete
blocks, illustrates this point.

3. The analysis of variance corresponding to the analysis of the algebra into
its minimum two-sided ideals, is unique. If the minimum two-sided ideals are
one dimensional, no further decomposition is possible. More precisely, the re-
lationships which have generated the algebra will not resolve the sums of squares
beyond this point.

All minimum two-sided ideals are one dimensional if and only if the algebra
is commutative. Designs possessing such an algebra have a unique analysis
whose components are automatically orthogonal. The randomized block and
latin square are of this type.

4. When the algebra contains a minimum two-sided ideal isomorphic with
an m X m matrix algebra, the sums of squares corresponding to that two-sided
ideal can be decomposed into m components each on the same number of de-
grees of freedom; but the decomposition is not unique. However, the system
of possible decompositions is delimited by the fact that a transformation from
one decomposition to another, induces an automorphism of the algebra. This
point deserves a more detailed treatment than I can give at the moment.

5. For certain designs, the relationship algebra is the commutator algebra
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of the representation of a group expressing the symmetry of the experimental
design. Such will be the subject of a further paper.

6. Acknowledgment. The idea of classifying the pairs of plots according to
the relationships between them was suggested to the author by Wilkinson [4],
who introduced it in connection with his work on missing values.
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