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PROBABILITIES OF HYPOTHESES AND INFORMATION-STATISTICS
IN SAMPLING FROM EXPONENTIAL-CLASS
POPULATIONS

By MorToN KUPPERMAN

The George Washington University

1. Summary. This paper is concerned with inequalities connecting probabilities
of hypotheses using Bayes’ theorem (a posteriori probabilities), a priori prob-
abilities, and Kullback-Leibler information-statistics in sampling from popu-
lations belonging to the exponential class of populations. As a corollary, it is
shown that if it is known that the a priori probabilities are all equal, the choice
of the hypothesis with the minimum Kullback-Leibler information-statistic is
the same as the choice of the hypothesis with the maximum a posteriori prob-
ability, and conversely.

2. Introduction. Suppose that an event E can occur only if one of the set of r
exhaustive and incompatible (mutually exclusive) events H,, H,,---, H,
occurs. The a priori probabilities of these latter events (which we may call
hypotheses) are denoted by a;, oz, -+, a respectively, where a, > 0 and
D m=1am = 1. The conditional probabilities for E to occur, assuming the
occurrence of H,, , are denoted by p(E | H,), m = 1,2, --- , r. The a posteriori
probabilities of H,., given that E has occurred, are denoted by p(H.|ZE).
Bayes’ theorem (see, for example, Uspensky [16]) states that

amp(E | Hm)
; a;p(E | Hj)

p(HmIE)= , form =1,2,---,r

A discrete multivariate and multiparameter population will be said to belong
to the exponential class of populations (cf. Blackwell and Girshick [1] and
Girshick and Savage [5]) if its probability distribution can be represented by

h
p(x, ) = ¢(8) r(x) exp {Zl $:(6) t,(X)} )
where x is the row vector x = (21, 22, -+, T), 0 is the row vector 6 = (8,
Oz, ---, 6:), q(6) and r(x) are nonnegative functions of 8 and x respectively,
and the parameter space is assumed to be an open convex set in an A-dimensional
Euclidean space. We have k variates and h parameters, with the number of
products in the exponent of ¢ being h. Examples of discrete populations of the
expopential class are the binomial distribution with the single parameter p,

Received September 25, 1956; revised November 2, 1957.
571

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. MIKOIRS ®

5 ()

v

e 2

WWw.jstor.org



572 MORTON KUPPERMAN

the Poisson distribution, the geometric distribution, the multinomial distribu-
tion, and the multivariate Poisson distribution.

Now consider r populations of the exponential class, each of the same. func-
tional form but differing only in their parameters. Let the probabilities be given
by p(x, 0,,) > 0, where D xp(x, 0,,) = 1form = 1,2, - -+, r. Suppose that we
have a single random sample of N independent observations from one of these r
populations (we do not know which population) and we wish to decide, on the
basis of the sample values, which of the r populations is the most likely source
of the sample. We shall use the term “most likely”” in the sense of “having the
largest a posteriori probability”’ and we shall assume that the a priori prob-
abilities a, are already known.

Let E denote the random sample andlet 8 = (6, - - - , 6) denote the maxi-
mum-likelihood estimate of 6.

3. Inequalities. The information measure I(1:2) was introduced by Kullback
and Leibler [12] as a generalization to the abstract case of a definition of infor-
mation independently introduced in 1948 by Shannon [15] and by Wiener [17].
(See also Kullback [9], [10], and [11] for uses in statistics of I(1:2). I(1:2) has
recently been termed ‘‘Kullback-Leibler information number” (Chernoff [3])
and “K-L information number’” (Bradt and Karlin [2]).)

We obtain for two discrete populations of the exponential class

p(x, 61)
p(x, 62)

Q(01) { _ } . { X }
q(ez) -+ ;[ 5:(0y) 5:(0,) E; <t:(x) ]:

where the probabilities for the first population are given by »(x, 6;), the prob-
abilities for the second population are given by p(x, 6,), and E; denotes ex-
pected values with respect to the first population. The logarithms are natural
logarithms.

We now define the Kullback-Leibler information-statistic for a random
sample of N independent observations from the mth population as

= VT plx, 9 1og 25 Y, 9
p( X, 0n)

croe gl e Blfew - (sl ]

In I(1:2), which is a functional of the vectors 6; and 6. only, 6; has been replaced
by the maximum-likelihood estimate & and 8, has been replaced by the set of
parameters 0., of the hypothetical mth population. The sum has been multiplied
by W since the information measure for N independent observations is N times
the information measure for a single observation.

The Kullback-Leibler information-statistic for samples from discrete popula-

I(1:2) = Z p(x, 6;) log ——2—
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tions of the exponential class (as well as for samples from more general statistical
populations, discrete or continuous, univariate or multivariate, uniparameter or
multiparameter) has useful applications in mathematical statistics. If we set up a
null Liypothesis that the given sample of N independent observations was ran-
domly drawn from the specified mth population, then it can be shown that 21,
as defined above is asymptotically distributed as chi-square with h degrees of
freedom when the null hypothesis is true (Kupperman [13], [14]).

We shall now show that the following inequality relationships exist connecting
the a posteriori probabilities, the a priori probabilities, and the Kullback-Leibler
information-statistics:

THEOREM. For two discrete populations H,, and H, of the exponential class we
have p(Hn | E) = p(H, | E) if and only if I, < I, + log (am/an) , with both rela-
tions being equalities or strict inequalities simultaneously.

Proor. From p(H, | E) = p(H,| E) we obtain, using Bayes’ theorem and
simplifying, .

[q(6.)]™" exp { - f: 2 5:(0m) ts(Xj)}

=1 =1
N h a
= [Q(on)]—N exp {—z; El si(en) t; (XJ)} ‘ f)
je=1 t= n
where X; is the value of the jth observation onx,j = 1,2, .-+, N. Now it can
be shown (Kupperman [14]) that for populations of this class we have identically

()2 v

(The discrete populations of the exponential class now being considered belong
to the class of distributions admitting sufficient estimates of the parameters 6;
these are distributions of the Koopman-Pitman type.) Hence by multiplying
both sides of the inequality by the positive quantity

@ op N 2 50 ‘(E{“(")})e-@.}

and taking logarithms, we obtain
In £ 1.+ log 2=,
(273

Since the steps of the proof are all reversible, the theorem is proved. The follow-
ing corollary is an immediate consequence of this theorem:

CoROLLARY. If the a priori probabilities are all equal, the choice of the hypothesis
(or hypotheses) with the minimum Kullback-Leibler information-statistic s the
same as the choice of the hypothesis (or hypotheses) with the maximum a posteriors
probability, and conversely.

4. Continuous exponential-class populations. Although the preceding two
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gections are concerned with discrete populations, it may be remarked that the
theorem and corollary may easily be extended to samples from continuous popu-
lations of the exponential class (such as the univariate normal distribution, the
chi-square distribution, and the multivariate normal distribution with £ means
and k(k 4+ 1)/2 parameters in the variance-covariance matrix). We make use
of Bayes’ theorem for continuous distributions (Kolmogorov [8], p. 46), use the
likelihood of the observed sample instead of the probability of the observed
sample, and follow the same steps as in the proof in the discrete case. The state-
ments concerning (E{t:(x)})e-4 and the asymptotic distribution of 2I,, remain
valid for continuous as well as discrete distributions of the exponential class.

6. Application. The theorem and the corollary are applicable to preblems in
which the a priori probabilities can be expressed in exact numerical form and
thus the application of Bayes’ theorem is legitimate, as, for example, in Men-
delian hypotheses (see David [4], Chapter VIII).

In connection with the theorem and corollary, it may be remarked that the
statements hold true if common logarithms (or logarithms to any base) are used
in place of natural logarithms. This point is of importance, for in practical work
common logarithms are more frequently used. However, in connection with
the approximation of the large-sample distribution of 2I by a chi-square dis-
tribution, it is important that natural logarithms be used, or that if common
logarithms have been used 27 be multiplied by log, 10, or 2.30259 approximately.

In conclusion, it may be remarked that if we were to use the corollary and
decide always to accept the hypothesis for which I is the minimum without
regard to the a priori probabilities involved, then we are in effect tacitly assum-
ing that the a priori probabilities are equal, which is Bayes’ postulate (as dis-
tinguished from Bayes’ theorem).

The connection between information theory and inverse probability has been
noted by Good [7], who is also concerned with the terminology and notation of
information theory, particularly as it is applicable to communication theory.
Reference should also be made to Good [6] for an informative discussion on
Bayes’ theorem and inverse probability.

6. Acknowledgment. The author wishes to thank Professor S. Kullback and
the referees for suggesting the generalization incorporated in the results of this
paper, which were derived originally for the special case of multinomial sampling.
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ON THE DISTRIBUTION OF 2 X 2 RANDOM NORMAL
DETERMINANTS!

By W. L. NicHOLSON?

Princeton University

1. Summary. The c.d.f. of a 2 X 2 random determinant with mutually in-
dependent normally distributed entries is derived as an infinite series. Error
functions that bound the tail of this series facilitate numerical calculation. Con-
ditions are imposed on four variable quadratic forms for this distribution to
apply. A normal approximation to the distribution is suggested.

2. Introduction. Let X;, X,, X; and X, be mutually independent random
variables, each normally distributed, with means u;, g2, u3 and g, , and com-
mon variance ¢". Let D be the random determinant,

X1 X

D=1xx,

= X1X4 - Xsz.
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