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DISTRIBUTION OF LINEAR CONTRASTS OF ORDER STATISTICS!

By JAcQuEs ST-PIERRE

Unaversity of Montreal

Introduction. Many theoretical and practical problems of statistical nature
have lead investigators to study methods capable of pooling the information con-
tained in the ordered (or ranked) sample values with some properties of the
assumed distribution of the parent population. Since, in analysis of variance
situations, contrasts between functions of observations are of utmost importance,
linear contrasts of order statistics will be considered here under the assumption
that the underlying distribution is normal.

Null distribution of linear contrasts of order statistics. Let xo, 21, , Ta
denote n» + 1 independent normal random variables with unknown means
B, M2, +* - , ko Tespectively, and with a common variance ¢® = 1 (say). Let ¢ >
Tay > -+ > @ be the ordered values. Consider the following linear contrast

n
2=2@ —CTag — T — **° —Calwm, Zci = 1;

=1
0=¢=1 2=1,---,m.

Using, as a starting point, the joint density of xq) , za), +** , T as given by
Wilks [7], and with the help of appropriate transformations, the null distribution
of z can be obtained. It takes the form of a rather messy expression containing
a n-fold iterated integral. An interesting particular case: the density of the
difference between the two largest ordered values can be obtained from the
general form. St-Pierre and Zinger [6] have tabulated the null density of v =
T — Za using a slightly different method.

It is of interest to consider the above contrast in the case of three random
variables. The density of z = 2@y — cxqy — (1 — ¢)z( , under the hypothesis
Hy: o = py = ue = 0 (say), takes the form

9(z) = 3[xr(@ — ¢ + D] exp [—2°/4(c* — ¢ + 1)]
(1) (e+1) 2/ (1~¢) [6(c2—c+1)]1/2
. f (2m)7* exp (—¢*/2) dt.
(2¢—1) 2/ [6(c2—c+1)]1/2

With the help of [3], [4], and [5], g(2) can be tabulated. Values of g(z) are given

in Table I for several values of the parameter c.
From the general form (1), several densities can be derived as particular cases.
For instance, the value ¢ = 0 leads to the density of the range as given by McKay
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TasLE I

Values of g(2), for various values of the constant ¢, where

z2 =20 — crgy — (1 — )ry

1265

3¢ 0 0.1 0.2 04 0.6 08 0.9 1.0
0.0 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 .00000 | 0.84628
0.2 .10917 .12101 .13709 .17898 . 26659 .49282 .73839 | .78334
0.4 .21095 .23318 .26050 .33877 .47562 .70969 75554 | .70763:
0.6 | .29932 . 32877 .36410 .45941 .59859 .71048 .67281 | .62378
0.8 .36927 .40194 .43988 .53834 .64049 .63299 .68344 | 53652
1.0 | .41774 . 44958 . 48459 .55897 .60386 .54116 .49344 | 45022
1.2 | .44376 .47102 .49861 .54388 .53555 .45020 .40687 | .36855
1.4 .44833 .46822 .48548 .49838 .45187 .36497 .32709 | .29429
1.6 | .43408 .44502 .45086 .43473 .36725 .28832 .25636 | .22920:
1.8 | .40476 .40647 .| .40149 .36270 .28937 .22196 .19588 | .17410:
2.0 .36474 .35800 .34410 .29160 .22168 .16649 .14590 | .12896
2.2 | .31842 .30485 . 28468 .22659 .16529 12170 .10593 | .09315
2.4 | .26981 .25145 .23115 .17064 .12000 .08668 .07497 | .06560
2.6 | .22221 .20121 .17665 .12479 .08484 .06016 .05171 | .04504
2.8 | .17809 .15639 .13290 .08871 .05840 .04068 .03477 | .03016:
3.0 .13903 .11819 .09715 .06135 .03918 .02679 .02278 | .01968
3.2 | .10580 .08692 .06904 .04130 .02556 .01720 .01455 | .01252
3.4 | .07853 . 06225 .04775 .02707 .01625 .01076 .00905 | .00777
3.6 | .05690 .04345 .03215 .01727 .01006 . 00656 .00548 | .00469
3.8 | .04026 .02975 .02109 .01073 .00606 .00389 .00327 | .00277
4.0 | .02782 .01971 .01348 .00650 .00356 .00225 .00188 | .00159

and Pearson [2]; while the value ¢ = 0.5 leads to the density of » = z) — (x@) +
Zay + Z@)/3 as given by McKay [1]. The complexity of the expression for g(z)
increases rapidly with the number of variables; consequently, we will limit our

presentation to the above mentioned case.

Non-null distribution of linear contrasts of order statistics. Here again, and for
the same reasons, only the case of three variables will be presented. In order to-
get the non-null distribution of 2 = z — cxqy — (1 — ¢)x the joint density

of xw , a) and xe must be used as a starting point. It is of the form

1 —u'u]
9o ,r0 , o) = Cn) exp[ 5 af

where
Mo Zo
p=lml, X=|m
M2 T2

Mig

) Bi = | i

iy

o[ ] £ ey (3

and D_* stands for the summation over all the permutations 4y , 4, , % of the num-
bers 0, 1 and 2. Introducing the contrast z with the appropriate transformation
and integregating out the extra variables, one gets, after a few simplifications,
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the following expression for the non-null density of z:

19 = Vv = o~ g e 1)

- - 2712)] [ (y1 + 27v9)° ] )
@) . P [4(c2 —Z+ 0P| BE—cF D
) Z f[(c+1>z—<1—c)(n+2~,2>1/[(1—c)<e(c2—c+1>>1/21 J ’
{

2m) ™V exp (—£/2) dt

(2e—1)z—(y1+272)1/[6(c2—c+1)) 1/2

where y1 = ui, — cpiy — (1 = Opiy ,v2 = —(1 — Quip + pi; — cuiy,and M =
o + w1+ we . It is easy to see, looking at (2), how much more complicated an
expression for f(z) can become in the case of several variables.

Many particular cases of interest have been consideréd, using expression (2)
as a starting point. Only two cases are reported here. The first one corresponds to
the hypothesis Hytpo = 8, iy = pp = 0, 6 > 0. Denoting by f(z | H,) the density
of z under the hypothesis H, , one gets

flz| H) =

T P At et a0l

where ¢; , g» and g; are functions of z and of the parameters é and ¢ given by
gi1(z; 8, ¢) = exp [— (82" — 66z — (2c — 1)’%6°)/12(¢" — ¢ + DIL(z; 5, ¢),
g2(2; 8, ¢) = exp [— (32" + 6c6z — (2 — ¢)%)/12(¢" — ¢ + DI(z; 3, ¢),
95(2; 8, ¢) = exp [— (328 + 6(1 — ¢)oz — (1 + ¢)*8°)/12(¢ — ¢ + 1)]I:(2; 6, c).

The functions I, , I, , and I; are given by

[e+Dz—(1—c) 2c~1)3] 9 (c+)s—(1~c) 2~ )8 .
7= i-om—ctDr’z exp (—1/2) dt 7, = (A=obler—c+D112 exp (—1/2)
1= ] @—Dz—@e—1)s 2m)1e ’ 27 ) @—1z—2—0s 2m
[6(c2—c+1)Jt/2 [6(c2—c+1)]1/2

dt

(e+1)z+(1+4c)(1—c)é 5
[, = [@-obE—FDiT exp (—t/2) it
35 | @e=1)s+(1+e)s (2m)17 :
[6(c2—c+1)]1/2

Table II contains the values of f(z | H;), in the case § = 1, for several values of
the parameter c.

The case of equal spacing of the true means, i.e., the one corresponding to the
hypothesis Hotpo = 26, y1 = 8, yo = 0, yields a slightly more complicated ex-
pression for f(z | H,). Table III contains some values of f(z | Hs), in the particular
case & = 1, for a few values of the parameter c.
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TasLe 11
Values of the density of 2 = x@ — cxqy — (1 — ¢)x ) under the hypothesis
H12#0=5= Lim=p=20

s¢ 0 0.1 0.2 0.4 0.6 0.8 0.9 1.0
0.0 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.69550
0.2 | .07843 | .08707 | .09783 | .12088 | .19255 | .36249 | .58377 | .65223
0.4 | .I5340 | .16984 | .19015 | .24916 | .35644 | .56737 | .63842 | .60265
0.6 | .22160 | .2443¢ | 27187 | .34847 | .47043 | .60539 | .58628 | .54862
0.8 | .28049 | .30717 | .33879 | .42129 | .52678 | .56566 | .52858 | .49195
1.0 | .32764 | .35584 | .38797 | .46387 | .53322 | .50692 | .46915 | .43436
1.2 .36168 | .38868 | .41801 | .47716 | .51027 | .44557 | .40085 | .37744
1.4 .38200 | .40550 | .42004 | .46589 | .45370 | .38510 | .35211 | .32259
1.6 | .38882 | .40689 | .42265 | .43486 | .39556 | .32714 | .20733 | .27098
1.8 | .38314 | .39449 | .40156 | .39238 | .33636 | .27203 | .24660 | .22357
2.0 | .36658 | .37079 | .36036 | .34034 | .27999 | .22364 | .20067 | .18002
2.2| .34126 | .33851 | .32048 | .28770 | .22839 | .17958 | .16014 | .14373
2.4| .30054 | .30284 | .28546 | .23706 | .18255 | .14116 | .12632 | .11184
2.6 | .27387 | .26024 |, .24117 | .19065 | .14288 — — —
2.8 | .23387 | .21939 | .19834 | .14980 — - — —
3.0 .19953 | .18083 | .15882 — — — — —
3.2 .16449 | .14500 | — — — — - -
3.4 | .13286 | — | — - — — - =

TasrLe III

Values of the density of z = x@ — cxay — (1 — ¢) Ty under the hypothesis Hy:pp =
23,[.1.1 = 5,#2 = 0;6 =1

0.1 0.2 0.4 0.6 08 0.9 1.0

1
&
(=1

0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | .54317
.04056 .03960 .05069 .06759 .10137 .20168 .38016 | .52172
.08109 .09037 .10133 . 13497 .20146 .37844 .51800 | .49788
12140 .13481 .15152 .20107 .29509 . 47802 .50288 | .47151
.16106 .17860 .20039 .26360 .37311 .49628 47401 | .44252
.19934 . 22058 . 24647 .31926 .42638 .47505 44270 | .41092
.23518 .25927 .28808 .36377 .45112 .44210 .40851 | .37691
.26731 .29305 .32298 .39430 .44918 .40526 37182 | .34096
20437 | 32027 .34906 .40863 .42718 .36591 .33331 | .30372
.31476 .33859 .36482 .40664 .39249 .32495 .20381 | .26501
. 32837 .34951 .36940 . 38986 .35119 .28344 .256435 | .22887
.33363 .35004 .36285 .36159 .30690 .23920 .21601 | .19316
.33070 .34123 .34610 .32502 .26260 .19934 17977 | 115978
.31996 .32398 .32083 .28390 .21793 — — —
.30177 .29972 . 28027 24141 — — — —
.27902 .27019 .25383 — — — — —
.26165 . .23777 — — — — — —
.22185 l
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ADMISSIBLE ONE-SIDED TESTS FOR THE MEAN OF A
RECTANGULAR DISTRIBUTION!

By J. W. Pratr
Harvard Unaversity

1: Theorem. Suppose we have a sample of n > 1 independent observations from
a uniform distribution with unknown mean 6 and known range R. Suppose we wish
to test Ho:6 < 0, against H,:0 > 6. Then an essentially complete class of admis-
sible tests is the class I of all tests of the following type. Let u be the minimum ob-
servation, v the maximum. Let g(u) be a nonincreasing function of u such that
g(u) = 6+ LR for u < 6y — 1R. Accept Ho if and only if v < g(u).

2. Discussion. The two-sided problem has been treated by Allan Birnbaum
[1]. He showed that, for testing Ho:0 = 6, against H 110 = 6 , an essentially
complete class of admissible tests is the class of all tests of the following type.
Let v(u) be a nondecreasing function of u. Accept H, if and only if v > v(u) and
6o — 3R <u <v <6+ 3R

Birnbaum [1] also noted that there is a uniformly most powerful size « test
of He:0 = 6, against H,:0 > 6, , namely that accepting Hoif 6 — iR < u <
6+ & — &R and v < 6, + LR. This corresponds in our notation to

6o + LR foru < 6 + (2 — o"™R,
g(u) =

6p — 3R (say) otherwise.
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