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NOTE ON THE FACTORIAL MOMENTS OF THE DISTRIBUTION OF
LOCALLY MAXIMAL ELEMENTS IN A RANDOM SAMPLE

By M. O. GLasgow
University of Texas

0. Summary. The results reported by T. Austin, R. Fagen, T. Lehrer, and
W. Penney [1] are.extended to include a general recurrence relation for the
factorial moments of the distribution. This recurrence-relation is solved for the
mean and second factorial moments, and it is shown that the method applied
may also be used to obtain a general solution for any desired factorial moment
of higher order.

1. Introduction. Austin, Fagen, Lehrer, and Penney [1] have discussed the
distribution of locally maximal elements in a random sample. Among other
results, the authors defined certain elements in an ordered random sample of
n distinet real numbers to be locally k-maximal, provided such an element is the
greatest of some set of £ consecutive elements of the sample. Denoting by
Jx(n, t) the number of sequences of the first n positive integers which have
exactly ¢ elements which are locally k-maximal, and defining a generating func-
tion, vk (zx, y),

(1.1) vi(z, y) = azﬂma, Bz /al,

a recurrence relation and partial differential equation were then derived:

(12) filn+1,r+1) = 2: (Z)fk(m, Ofi(n — m,r — t), n=k—1

k=2

(1.3) /dz = yop + (1 — y)tzgo(t + 1)z’

Unless specified otherwise, the range of a summation variable may be taken as
(0, + ) in these and the subsequent sums.

The relations (1.1) and (1.3) may be employed to obtain a general recurrence
relation for the factorial moments of the distribution. Information on such
moments would be useful in any application of the distribution as a non-para-
metric test, and would generally be of value in characterizing the distribution.

2. Recurrence relation for the factorial moments of the distribution. Let
the r-th factorial of 8 be defined as 8 = B(B — 1)---(B — r + 1), with
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B® =1, 8% = B. The expected value of 8 for n and k held fixed may be de-
noted as E(8”, n) such that
(2.1) E("n) = 22 8fu(n, B)/nl.

With this notation, the defining relation (1.1) for », may be differentiated
and evaluated at y = 1, with a result

9 o = (@) o
57 33 o = 23 (@ T DESla+ 1,8)3%/(a + 1)1

=2 (a4 1)EB?, o + 1)z

(2.2)

A different representation of this same function may be obtained by differ-
entiating (1.3), making use of (1.1), (2.1), and Leibnitz’ expansion for the
derivative of a product. There results

3" v 9" _ k—2 ]
3y 0T lym1 EY [yvk + (1 -9 Z (t + 1z .

[i H vk+ (l—y)§<t+1)x]

9 ayr—l

-z {( ) B, )86, + (" 1)

B(™,8)E(3, 7)} +

(23)

2
y=1

The boundary values of the E(8%, n) include the following:
EB®n) =1,n=0
EB®,n) =0,n<0

(2.4) E@B",n) =0,r>0,n<k
EB",k) =1,r=0,1
E@B", k) =0,r>1

Upon equating the coefficients of z**%, § = —1, in relations (2.2) and (2.3),
after making some simple substitution changes on the dummy variables, there
results

(k+ 8+ 1EB”,k+ s+ 1)

(25) =2 [(:) E(B™, k+ S — MEE™,v)

+ T<T N 1> E@BY, k+ 8 — v)E(B"’H’,v)], rz0, 8= —1
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The relation (2.5) is a general recurrence relation for the factorial moments
of the distribution. Computation of these moments may be expedited by use of
the recurrence relation.

3. Solution of recurrence relation. For the special case, r = 1, the relation
(2.5) reduces to the following:

(31) (k+8+1DEBV,k+8+1)=(k+8+1)+2 BBV k+8 —t).
¢

This equation has the general solution E(8", k + 8) = (k + 28 + 1)/(k+1)

in agreement with reference [1]. The solution may be proved by induction, or by

the use of a method we shall employ for the case, r = 2.
For the special case, r = 2, relation (2.5) reduces to the form

(k+ S+ DEB® k+ 8 +1)
(3.2) =2 MEBV, k+ S — o) +2E(8®k + S — )

+2B(8®, k + 8 — 2)E(8Y, a)).

The last term in the right member contributes only if S = k. For this reason
the cases —1 < 8§ = k — 1 and S 2 & will be considered separately.
If =1 £ 8 =k — 1, then (3.2) reduces to
(k+ 8+ 1DEB®, k+ 8+1)

(33) = 2 HBEQB®, k+ 8 — ) +2E(8®, k + S — a)).

On subtracting from this equation the similar equation resulting when S is
replaced by S8 — 1, and making use of the general solution for the mean, a
difference equation results,

B@<k+s+1ww@k+s+1»—@+s+2ww%k+&

' =4k + 28+ 1)/(k + 1).
This difference equation may be solved by making the substitution,
EB® k+71)=(k+r+ 1)H(k + r), with boundary value H(k)= 0. The
solution is

EB? k+S+1)
s ‘
(3.5) =4(k+S+2)Z (k'+ 2t 4+ 1) , 0<S
k+1) SHE+t+DEk+t+2)
If Sz k,set S =k + m, m = 0. The recurrence relation (3.2) takes the form

(3.6) (2k+ m+ EB®, 2k + m+ 1) = X HEBY, 2% + m — a)

a

k- 1.

A

+2E(8?, 2k + m — a) +2E(8”, 2k + m — «)E(8Y, a)].

On subtracting from this equation the similar equation with m replaced by m — 1
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and making use of the general solution for the mean, the following difference
equation results:

(2k +m + 1)EB®, 2k +m + 1) — (2k + m + 2)E(82, 2k + m)

=4k +2m + 1)/(k + 1) + 2 2 [EB, )E(BY, 2k +m — a)

(3.7) «
—EBY, a)E(B®, 2k +m — 1 — a)]

=4k +4m + 1)/(k + 1) +4m(m — 1)/(k + 1)* +2, m = 0.

This difference equation may be solved by placing E B®, 2 + r) =
(2k + r + 1)H(2k + r), with the boundary value,

H(2k) = B(8%,2k)/(2k + 1) = o i 0 g T gk:j?kt‘i ¥9-

The resulting solution to (3.7) is
EB®, 2+ m+1) = (2k + m + 2)

3.8 m | 4(3k + 4S + 1) | 48(S — 1)
8=0 @k + S+ 1)k + 8 + 2

for m = 0.

These results were verified by the use of the numerical examples included in
reference [1]. For larger values of the arguments, computation of the values of the
finite sums in the expressions for E(8®, r) may be expedited by expanding the
summands into partial fraction form, resulting in expressions which could be
evaluated by the use of tables of the logarithmic derivative of the Gamma
function, according to methods discussed in references 2] and [3].

Similarly, a solution of (2.5) for E(8”, k + m) for general r may be obtained
in terms of the factorial moments of all orders <r — 1. Such a solution is

EB” k+m+ 1)

B9 _ htm+o [H(lc) + 82:: Poy(k, 8)/(k + 8 + 1)(k + S + 2)],
where
Pk, 8) = g Z <;> E@B™,v) BN, E+ S — )
—BEB®,k+ 8 —1— )]
G0l (1) B e ks - )

—E@EME+ 58— 1 — v]},
(3.11) H(k) = 1/(k+1),r = 1;HE) =0, r > L.
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THE LIMITING JOINT DISTRIBUTION OF THE LARGEST AND
SMALLEST SAMPLE SPACINGS?

By LioNEL WEIss
Cornell University

1. Introduction and summary. X,, X,,---, X, are independent chance
variables, each with the same distribution. This common distribution assigns
all the probability to the closed interval [0, 1], and has a density function f(x)
whose graph consists of any finite number of horizontal line segments. That is,
there are H non-degenerate subintervals

I, 1y, - ,1Ig, L =00,2),1,=[a1,2), -, In = [2g, 1],

and for each z in I;, f(z) = a;. We assume that a; is positive for all j. Let
2o denote zero, and zz denote unity. M will denote min; a; , B will denote
2 (27 — 2jm1),
jiaj=M
and S shall denote [3f*(z) de = D jm1 a3 (2; — 2j1).

Let Y1 £ Y, £ --- £ Y, denote the ordered values of X, ---, X, , and
deﬁne W1 = Y], W2 = Y2 - Yl, teey Wn = Y,, - Y,,_l, W")H =1 - Yn,
U = min (Wy, -+, Wop), Vo = max (Wy, ---, Woi1). In (1] it is shown
that if f(z) is the uniform density function over [0, 1], then

log(n+4+1) — logv
n+1
for any positive numbers u, v. It is easy to see that the convergence must be

uniform over any bounded rectangle in the space of u and v. In this paper it
is shown that if f(x) is of the type described above, then

. . U log (n + 1) -l—logM—logv]
hm P {Dn > m‘z y Vn < M(n + 1)

limP[Un>G—L_:f—l)é, V. < ]=exp{—<u+v>},

>0

n-—>00

= exp {—(Su + Bv)},
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