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A NOTE ON A CLASS OF PROBLEMS IN ‘NORMAL’
MULTIVARIATE ANALYSIS OF VARIANCE!

By S. N. Roy anp J. Roy

University of North Carolina

Summary. Let the columns of X(p X n) be independent non-singular p-dimen-
sional normal variates with a common variance-covariance matrix and ex-
pectations given by

&X' = Ag,

where A(n X m) is a matrix of known constants and £(m X p) is a matrix of
unknown parameters. This will be called the model. Under this model consider
the hypothesis
% : & = By,
where B(m X k) is a given matrix of constants and n(k X p) is a matrix of
unknown parameters.
It is shown that the hypothesis 3C is “completely testable’ if and only if

rank A 4 rank B — rank AB = m.

Further, if rank A < n — p, it is always possible to construct a testable hy-
pothesis 3¢* which is implied by 3C; the test-criterion proposed for 3¢* is based
on the latent roots of the matrix S,S8i* where 8; and (S; + S:) are the “error-
matrices of sums of squares and products” under the model and under 3¢, re-
spectively. It is further shown that the rank of the matrix S is min [p, rank
A — rank (AB)].

Let X(p X n) be a matrix of random variables, the columns of which are
independent p-dimensional normal variates with the same positive-definite
variance-covariance matrix Z(p X p) and with expectations given by

(1) eX' = A¢,

where A(n X m) is a matrix of known constants and £(m X p) is a matrix of
unknown parameters.

Let the rank of the matrix A be r. We shall assume that »r < min (m, n — p).
Without loss of generality, the first » columns of A may be taken to be linearly
independent and so to form a basis of A. Then [2] we can partition and factorize
A in the form:

A = [Ai(n X 1) ¢ As(n X (m — 1))]

2
(2) = I'(n X )ITi(r X 1) § Th(r X (m = 1)),
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where A; , L and T, are matrices each of rank r, T, being triangular and L semi-
orthogonal, that is

(3) LL = I(r X r).

It is well known [2] that the error-matrix of sums of squares and products is
given by

(4) S, = XEX',
where
(5) E=1— A,(A14)"41 =1 — 'L,

and that this F is an n X n matrix of rank » — r. By our assumption that r <
min (m, n — p), the matrix S, is, a.e., non-singular.
Consider, now, the hypothesis that the parameters £ can be expressed in terms
of a smaller number of parameters n(k X p) in the form
3 :¢= By k <m)
where B(m X k) is a given matrix. Under 3C the expectations are given by
(6) &X' = AB».

Let rank AB = s. Obviously s < min (r, k). Here again, without any loss of
generality, we can regard the first s columns of AB to be linearly independent.
The rank of the matrix [T; : T'2]B mustbe s [2] and it can be factorized the same
way as (2). Thus,

(7 (T3} T2B = M'(r X s)[Us(s X 8) } Us(s X (k — 8))],

where matrices M and U, are each of rank s, U; is triangular and M semi-or-
thogonal, that is,

(8) MM = I(s X s).
We thus have
(9) 4B = (ML)'[UI + U,

where LM (n X s) is seen to be semi-orthogonal. Using (5) it immediately fol-
lows that the error-matrix of sums of squares and products under the hypothe-
sis is given by

(10) X Ey X/,
where
(11) Ey =1—-LMML,

and that this Ej is an n X n matrix of rank n — s.
Let us choose a matrix N((r — s) X r) which is an orthogonal completion
of M ; that is,

(12) NN' = I((r—s) X (r—s))and NM' = 0.
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The difference of the error-matrices (10) and (5) is the hypothesis-matrix of
sums of squares and products, and is given by

(13) S, = XHX',

where

(14) H=Ey —E=LL—-LMML=LN'NL.
Using (3) it is easily checked that,

(15) EH = 0.

Thus the matrices £ and H are orthogonal and S; is, a.e., of rank =
min (p,r — s).

It will now be shown that the matrix S; is the appropriate hypothesis-matrix
of sums of squares and products for testing a hypothesis 3¢* which is testable
[2] and will be introduced presently. It will be shown that, in general, the hy-
potheses 3¢ and 3C* are not identical; though 3¢ implies 3¢*, the converse is not
generally true.

Let the rank of the matrix B be . Then we can find a matrix C((m — t) X m)
of rank (m — t) such that

(16) CB = 0.
Since the row-vectors of C generate the vectorspace completely orthogonal to

that generated by the column-vectors of B, it follows that, if C* is any other
matrix such that

(17) C*B = 0,

we can factorize C* in the form

(18) C* = DC.
Define the matrix C*((r — s) X m) by

(19) C* = N[T: : T3],

with T;, T, defined by (2) and N defined by (12). Notice that this C* is of
rank » — s. Then

C*B = N[T1 : Ts]B = NM'[U, ; U] = 0,

because of (12). Thus, for the matrix C*, the relation (17) holds and eonse-
quently a matrix D.exists which satisfies (18).

It is easily seen that on elimination of n by pre-multiplication by C the hy-
pothesis 3¢ may be expressed in the equivalent form

(20) ¥ :Ct=0.
Pre-multiplication by D gives,
(21) I*:C¥=0.

Note that D is a matrix of the form (r — s) X (m — t) of rank (r — s).
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Obviously 3¢ implies 3¢* but the converse is not true unless D is a non-singular
matrix of form (m — t) X (m — t). A necessary and sufficient condition for
this is that »r — s = m — ¢ or, in words, that

(22) rank (A) + rank (B) — rank (AB) = m.
Now partition C* in the form C* = [C; : C,], where

(23) Ci = NTiand C; = NT;,

so that

(24) C: = CiTT'T: .

Note that (23) is precisely the condition that the hypothesis 3¢* is testable [2].
The hypothesis-matrix of sums of squares and products for testing 3¢* (which
is testable) computed directly from the formula given in [2] turns out to be

(25) S* = XH*X',
where
H* = A;(A14,)7ClC1(A14:) 71 Ch(A14,) 24,

= LTTCC(T: T e e 'L (using (2))
= I/N'(NN')'NL’ (using (23))
= L'N'NL (using (12))
=H (from (14)).

Thus, we have
(26) S*=8,.

An important special case is where we have n > m > k and rank 4 = m
and rank B = k. In this case, rank AB = k. Consequently the condition (22)
is satisfied and the hypotheses 3¢ and 3C* are identical.

The statistical criterion for testing the hypothesis 3¢* would be based on the
latent roots of the matrix S,S7", the particular critical region proposed here
[1, 2] being given by

(27) Crax[S2S7'] = Na(t*, 1 — 8,0 — 1),

where Crmax[S2S7'] denotes the largest characteristic root of the matrix [SS1']
all of whose roots are non-negative and, a.e., t* roots are positive, {¥ = min
(p, r — s), and N (t*, r — s, n — r) is a constant, depending upon ¢* r — s,
n — r and the size of the critical region «, which can be obtained, since the dis-
tribution is known and the percentage points are being tabulated.

If p = 1 we have the univariate problem, in which case (27) is replaced by a
B-critical region or, after a little transformation, by an F-critical region.
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NOTE ON AN APPLICATION OF THE SCHUMANN-BRADLEY
TABLE

Irwin D. J. Bross
Cornell University M edical College

Summary. In a recent paper [1] Schumann and Bradley present a table of
the ratio of central variance ratios for use in comparing the sensitivity of experi-
ments. The purpose of this note is to point out some other applications of the
Schumann-Bradley Table I [1] which stem from a variance components model.

Model. The model employed in [1] is a ‘“‘fixed effects” analysis of variance
schema (henceforth abbreviated FEM). In this note a “random effects’’ model
(REM) will be used. Let s2; and s;; be the mean squares for “error” and “treat-
ments’’ in the ith experiment (¢ = 1, 2). Let n.; and n.; be the respective de-
grees of freedom, let o2; and o7; be the variance components, and let K; be a de-
sign constant. Finally let xﬁi and xfi be central chi-squares with n.; and n,;
degrees of freedom respectively. Then the usual REM is

2 2 2 2 2 2y 2
(1.01) NeiSei = OeiXei miSt: = (o0 + Kiori)xii

Let F; be the ratio of the mean squares and let F,; be a central F ratio with
degrees of freedom corresponding to F; (i.e., i, n.:). Then for independent
mean squares,

2 2
(1.02) Fi= (‘ifii’«> Fa.

Oei

Let w be the ratio of F, to F, let w. be the ratio of central variance ratios
(i‘e'y FCI/FCQ), and ]e(’,

) _on+ Kioh e
(1.03) T At K
then

(1.04) w = Y, .

For the special case (Co) where the two experiments have the same structure
(i.e., Na = N, Mg = np, Ki = K,;) equation (1.04) leads immediately to
exact significance tests based on Schumann-Bradley Table I [1]. In the nota-
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