SOME CONTRIBUTIONS TO ANOVA IN ONE OR MORE
DIMENSIONS: I

By S. N. Roy AxD R. GNANADESIKAN!

University of North Carolina

0. Introduction and Summary. Two models are considered in detail which are
the Models I and II of ANOVA in the terminology of Eisenhart [2]. The present
paper, which deals with the one dimensional or univariate case, and its sequel,
which will deal with the multidimensional or multivariate case, seek to give a
unified general treatment, using matrix methods, of certain problems under the
two models of ANOVA. Section 1 of each paper, which deals with Model I, is
of the nature of a résumé giving the main results of a general treatment discussed
elsewhere [10, 11, 12] by one of the authors. Section 2 of each paper, which deals
with Model II or variance components model, is self-contained, and presents a
natural tie-up between the analyses under the two models for a k-way classifica-
tion. Results in estimation, testing of hypotheses and confidence bounds are
presented, although the main emphasis is on the results in confidence bounds
(simultaneous and/or separate) on meaningful parametric functions which are
physically natural and mathematically convenient measures of departure from
customary null hypotheses.

It will be seen that a mixed model, which would include both Models I and II
as special cases, can be defined, and the associated problems can be studied by
using methods which are, essentially, a combination of the methods given for the
separate models in Sections 1 and 2, respectively, of this paper. Since nothing
essentially new is involved in such a study, this paper does not explicitly dis-
cuss it.

Unless otherwise stated, capital letters will denote matrices and small letters
in boldface will denote column vectors. Such letters when primed denote trans-
poses. For instance, A(p X ¢) denotes a matrix with p rows and ¢ columns,
A’(q X p) denotes the transpose of 4, a(p X 1) denotes a column vector with p
elements and a’(1 X p), the transpose of a, is a row vector. In particular, I(p)
will denote the identity matrix of order p and 0(p X 1) and 0(p X ¢) will stand,
respectively, for the null vector of order p and the null matrix with p rows and
¢ columns.

1. Résumé of problems and results under the univariate Model I of ANOVA.

1.1 The Model I. Let x'(1 X n) = (a1, 22, -+, Ta) be a set of n observable
stochastic variates such that
(1.1.1) x(n X 1) = A(n X m)¥(m X 1) + e(n X 1), m<n
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where A (n X m), to be called the design matrix, is a matrix whose elements are
constants given by the design of the experiment and is of rank r < m < n and
where,

(i) &(m X 1) is a set of unknown parameters;

(ii) e(n X 1), whose elements are physically of the nature of errors, is a-
random sample from the normal population N (0, ¢°).
Under this model it is easily seen that x(n X 1) is a set of » normal independent
(and hence uncorrelated) variates with a common variance o and the respective
means given by,

(1.1.2) E(x) = A(n X m)¥(m X 1).

It may be noted that the assumption of normality in (ii) above is not necessary
for problems of linear estimation, and the results presented below on linear es-
timation are all valid merely under the assumption that e(n X 1)
(hence x(n X 1)) is a set of uncorrelated stochastic variates with a common
variance ¢”. Next, since 4 is of rank » < m < n, we can find a basis 4;(n X r)
of A, which, without any loss of generality and by renumbering the columns of
A and the elements of &, can be taken to be the first r columns of A and we may
write (1.1.2) as,

(1.1.3) E(x) = n[A; AD' ][z,] r.

rm—r{éim-—r
1

1.2 Linear estimation. We seek an unbiased minimum variance linear estimate
b’(1 X n)x(n X 1) of a given linear function ¢’(1 X m)&(m X 1) of the unknown
parameters £(m X 1). The partitioning of A into A; and A, determines the par-
titioning of & into £; and &, and the partitioning into &; and &, determines that
of ¢/ into ¢; and cp , 0 that we can rewrite ¢’£ as i1 + ¢p¥p . The main results
in linear estimation follow. [11, pp. 77-81]

(1.2.1) All the following results are invariant under the choice of a basis 4;
of A (with a consequent determination of & and c;).

The necessary and sufficient condition on ¢ that an unbiased linear estimate
a’x of ¢’£ exists (in which case ¢’£ will be said to be estimable and the correspond-
ing condition will be said to be the estimability condition) is that,

(1.2.2) co = cr(ArAr) " Ardp,
or, in other words, that cp should be related to c; through the same matrix post-
factor through which A4, is related to A; .
Another way to express (1.2.2) would be to say that
(1.2.21) Rank [éll} = Rank [4],

which means that (1.2.2) is a convenient mathematical test for (1.2.21)
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The unbiased minimum variance linear estimate of an estémable ¢'§ is given by

(1.2.3) cr(A1A;) " Alx.
The variance of this linear estimate is given by
(1.2.4) cr(4r4n) e,
An unbiased estimate of ¢* is given by
(1.25) X'[I(n) — A;(A1A) " A7x / (n — 7).
(1.2.6) The least squares linear estimate of an esttmable linear funection ¢’

is the same as the unbiased minimum variance estimate given by (1.2.3).

1.3 Testing of linear hypotheses. The problem is to test, in terms of the cus-
tomary F-test, which has a number of well-known good properties, the linear
hypothesis

(1.31) Ho:C(s X m)¥(m X 1), or, slC; C» 1[& r =0
rm—r7r & ]jm —7r
1
against the alternative,

Hy:[C, Cy) [EI:l =n(s X 1) #0 (say),
£

where C(s X m) is a matrix given by the hypothesis and is called the hypothesis
matrix and n is an arbitrary unspecified nonnull vector. Also rank
(C) = s £ r £ m < n. In the discussion in [11, 12] a more general C is intro-
duced, but in almost all problems of practical interest €' oceurs in the relatively
simpler form considered above. The main results follow [11, pp. 81-83b].
(1.3.2) All the following results are invariant under the choice of a basis A,
of A (with a consequent determination of §; and C,).

A sufficient set of conditions (which under certain further restrictions would
also be necessary) for the existence of a similar region test for (1.3.1) is given by

(1.3.3) 02 = CI(A;AI)_IA;AD y

or, in. other words, C, should be related to C; through the same matrix post-
factor through which 4, is related to 4, . In such a case, the hypothesis (1.3.1)
will be said to be testable and the condition (1.3.3) will be called the testability
condition. The testability condition (1.3.3)'is a close analogue of the estimability
condition (1.2.2), and can also be expressed in a form similar to (1.2.21).

The F-statistic for (1.3.1), having, under Hy, the central F-distribution with
degrees of freedom s and (n — r), is given by

X A:(A7 AT ClC (AT A) T C T Cu( A A M AT x/ s
X[I(n) — A(A7A) ALk /(n — )

(1.34)

- (say),
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to indicate that the numerator multiplied by s/¢° has the x’-distribution with
degrees of freedom s, being a central or non-central X according as H, or H, is
true, and that the denominator multiplied by (n — 7) / ¢" has an independent
central x’-distribution with degrees of freedom (n — r), no matter whether H,
is true or not.

The quadratic form in the numerator of (1.3.4) is sometimes referred to as the
sum of squares due to the hypothesis (1.3.1), and the quadratic form in the
denominator is called the sum of squares due to error.

Under H, the above F-statistic has a non-central F-distribution with degrees
of freedom s and (n — r) and a non-centrality parameter 8°/o” where,

(1.3.5) 8* = w[Cy(A1A) 7' Ci M,

which, being a positive definite quadratic form, is zero if, and only if, n = 0,
i.e., only under H, . )
Suppose we have two different hypotheses Hy and Ho, given by

Hy:slCu Cre ][fl] r =0(s: X 1)

rm—r |&]|m—r
1

and
Hy:5Co1 Coe ]l:&:] r =0(se X 1)

rm-—r7r|&|m-—r
1

against respective alternatives, H; and H, like the one indicated under (1.3.1),
and suppose that rank [Cy; Ci] = s1, rank [Cy C] = s such that s; + s, <
r £ m < n. Then for Hy and Hy, we shall have respectively
F, = azxf /81 d F, = azxg /82
Tad/e=n M T B =)

where the denominator in F; and F, (the same for both) is the same as that of
(1.3.4), and the respective numerators are obtained by substituting Cy; and Cx
for C; in the numerator of (1.3.4). x; and x3 are each distributed independently
of xs , but we might seek to know the condition for x; and x3 to be distributed
independently. The independence of x; and X3 , although it would not by any
means imply the independence of F; and F. , would nevertheless simplify the dis-
tribution problem connected with the simultaneous testing of Hy, and Hg and
the associated simultaneous confidence interval estimation. In this situation we
would say that F; and F. are quasi-independent and Hy, and Hy, are testable in
a quasi-independent manner. The necessary and sufficient condition for this is
that

(1.3.6) Cu(A1An)7'Co = 0(s1 X s2).
This could be casily generalized to & hypotheses,

Ho;’:Si[Cu C 3 r = O(Si X 1) (’L = 1, Y k),
r (m—=r)&](m—r)
1
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whererank [Cy; Cis] = s;suchthat D 5,8, £ r < m < n. A set of necessary and
sufficient conditions for these k hypotheses to be testable in a quasi-independent
manner is given by,

(1.3.7) Ca(AiA)TCH = 0(s: X 8;5), (i%j=1,---,k).

1.4 The associated confidence bounds. We observe from (1.3.1) that n(0)
représents a deviation from the null hypothesis H,. The main results follow
[11, 12].

With a joint confidence coefficient = 1 — a, for a preassigned «, we have the
following simultaneous confidence bounds:

(14.1) [ — [sFa(S, n—r) :l < 047 AD7'Ci M}t

g Xo
(n—r)

2 2 4
< [T + I:sFa(S, n—r) (n” for)] ,
where o’x” and ¢’xi (both independent of ¢°) are just the quantities defined in
(1.3.4), and F,(s, n — r) is the upper a-point of the central F-distribution with
degrees of freedom s and (n — r);

(14.2) [x ") — [sF (s,n — r) r)

< {M”'[ci”(A}A,)“‘ POy

(2 x|
= X1 + [sF’(sn—r) J

X @=7
fori = 1,2, -+, k, where n®®, C{” and o’x'"* denote, respectively, the vector
n with the 7th component left out, the matrix C; with the ¢th row left out and the
o’x” defined in (1.3.4) with C{°(s — 1 X r) in place of C1(s X r); and likewise

2 2 3
2 G.9)2E _ _ 7 Xo
(14.3) [e*x™?7] [sFa(s, n —r) o r)]
< {n(i.j)l[Ciz J)(AI AI)—IC{i.J)Irln(i.i)}%

N 2 2
vzx“""2]%+ [sFa(s, n=r) a0 7 X r)]

fore=j5=1,2 , 8, where n*? C{*"” and ¢’x"*"?" denote respectively, the
vector n with the ’Lth and ]th components left out, the matrix C; with the 7th and
Jjth rows left out and the ¢°x” defined in (1.3.4) with C{"”(5 — 2 X r) in place
of Ci(s X r); and so on, till we come down to just any single element of n, a

A

single row of C; and a consequent truncation on x°. Notice that there are <i)
statements like (1.4.2), (;) statements like (1.4.3) and so on till we finally

come down to <s _'S: 1), or (i) statements at the end. Thus the total number
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of confidence statements like these would be 2° — 1. We observe, from these
simultaneous confidence bounds, that we obtain confidence bounds not only on
parametric functions which measure departure from the whole set of s linear
hypotheses in Hy but also on parametric functions which measure departures
from all possible subsets of the s linear hypotheses in Hy .

2. Univariate Variance Components.

2.1 The Model IT of ANOVA. Let x'(1 X n) = (21, a2, --* , Za) be a set of
n observable stochastic variates such that
(2.1.1) x(n X 1) =A4A(n X m)Em X 1) +eln X 1), m<mn,
= n[Al Ay - Ak] &
My Mo -+ Myl & M2
-&u_|my
1

k
+ e,zl m; = m, (say),

where A(n X m), to be called the design matrix, is a matrix whose elements are
constants given by the design of the experiment and is of rank » < m < n, and
where

(i) &(m; X 1) is a random sample of size m; from the normal population
N(pi,o0) fori =1,2, -+, k and e(n X 1) and &’s (forz = 1,2, -+, k)
are mutually independent;

(ii) e(n X 1), whose elements are physically of the nature of errors, is a ran-
dom sample from N (0, ¢°).

Under this model it is seen that x(n X 1) is m-variate normal

NE(x), Z(n Xn)],

where
(2.1.2) E(x)(n Xn) =4 (nX m)"m : 1]m1,
M2 1 |m,
Lo - i
1
1(m; X 1) denoting a vector of m; uniti’es (¢=1,---,k), and
(2.1.3) s(n X n) = E(xx') — E(x)E(X)
=An Xm)[oiI(m) 0  --- 0 JA'(m Xn)+ I(n)
L 0 0 - oxd(m)

k
= Z a?A,- A:- + azl(n).
=1
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As in section 1.1, it is to be observed that for purposes of point estimation the
assumption of normality of the distributions made in (i) and (ii) of the Model IT
is not necessary. In fact, this assumption is even, probably, not as realistic in
practice as the assumption of sampling from finite populations with certain
known probabilities, which will be discussed in later papers. The assumption of
normality, however, simplifies the distribution problems connected with testing
of hypotheses (simultaneous and/or separate) and confidence interval es-
timation.

We shall consider, in greater detail, that restricted type of k-way classification
for which the design matrix A(n X m) is such that each row of the submatrix
Ai(n X m;)(¢ = 1,2, ---, k) has one and only one non-zero element which is
equal to unity and rank (A) = m — & + 1. [Notice that in general for such
A, rank (A) £ (m — k + 1).] It can be seen that the usual complete and in-
complete connected designs are included in this general case. For one thing, these
designs are relatively simple to discuss from the standpoint of either-testing of
hypotheses or confidence interval estimation under Model II and, for another
thing, this discussion will prepare the ground for the relatively more difficult
problem of unconnected designs which will be discussed in subsequent papers.

Our objectives are: (i) to estimate any estémable linear function of u, us,
-+ e and to test testable linear hypotheses on uy, pa, -+, we ; (ii) to obtain
estimates of, and test hypotheses on, the variance components o3, o5, ---,
ok, o ; and (iii) to obtain confidence bounds on the parameters or certain
parametric functions [e.g., ratios like o7/0’] which are meaningful measures of
departure from certain customary null hypotheses.

2.2 Linear estimation and testing of linear hypotheses. Using a result given in
[11] we can establish the following lemma [3, pp. 59-63].

Lemma 1: For the restricted k-way classtfication defined above, the necessary and
sufficient condition for the estimability of ¢'(1 X m) E(§)(m X 1), a linear

Sunction of py, -+, wk, t8 that coefficient of wy = coefficient of us = .-+ = co-
efficient of ws .

This lemma establishes that, for the restricted k-way classification defined above,
the only independent linear function of w;, ---, w which is estémable and hy-

potheses on which are testable is the’sum pu = [u; + w2 + --- + wl, all other
such functions being merely multiples of u.

2.3 Estimation of the variance components. We shall seek (k + 1) quadratic
forms, ¢; = X'Qx’'(z = 0, 1, --- , k), of the cbservations to be utilized inthe
point estimation of, testing of hypotheses on and the confidence interval estima-
tion of the variance components. We shall impose on the ¢.’s the followirig re-
strictions, which will be justified presently:

(2.3.1) g: , of rank n;, is distributed as )\ixf,.l.), where xtx; denotes the cen-
tral x* variate with degrees of freedom n; and where X\, = E(g;/n.)
(¢=0,1,---,k). '

(2.3.2) ¢:’s are mutually independent.

LemMa 2: If x(n X 1) s distributed as N[E(x), Z(n X n)] and ¢; = X'Qx
(i=0,1,---,k) is a quadratic form of rank n;, (D ieon: < n), then, a set of
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necessary and sufficient conditions for qo, q1, - -+ , g o satisfy the above restrictions
8 given by
(a) QiEQ’i = )‘iQi) i = 0; 1, e 7ky

(/3) E(X’)QiE(X) = 0) 1= 07 17 ) k)
(’Y)Q,EQJ:O(an), 'L#J=0’17)k’

where (a) ensures x’-distributions (in general non-central), (8) ensures the cen-
trality of the x"-distributions and (v) which actually ensures pair-wise independence
but is easily checked to ensure mutual independence of the distributions as well in
this case. For a proof of this lemma see [1, 6).

Lemma 3: If Ex(p X 1)y(1 X p)] = & X p) then E(x'Qy), where
Q(p X p) is symmetric, is tr &Q where “tr A’ denotes the trace (the sum of the
diagonal elements) of the square matriz A.

Proor:
P
E(x'Qy) = E[,Elqijxwf], if Q(p X p) = ((gi5)),
1,)m=
p .
= ,]Z_lmféii, if &(p X p) = ((&))),
p .
= 2y €iif5i, sice qi; = Qji,
7,7=1
= tr &Q

COROLLARY: For the Model 11 of ANOV A, we have
(233) M=E (&) = %E(x’ Q:x)

n;

1% tr {[Z + E(x)E(X)]Q:}, where

E(x) and 2 are defined in (2.1.2)
and (2.1.3),

= L r2 Qi+ EQ)QE(),  since
tr (AB) = tr (BA) and tr (scalar)
= scalar ([11], p. 4-1),

= i—itr zQ,, if g; satisfies (8) of
Lemma 2,

= 7—}1[]2:1 oitrd; A; Qi + UztrQi],

using (2.1.3).
This holds fort = 0, 1, - -+ , k.
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Next, suppose that in Lemma 2 =(n X n) is unknown, and we require, as a
further condition on the ¢.’s, that g0, ¢1, - - -, g satisfy («) and (y) of Lemma
2 for all symmetric positive definite matrices Z(n X 7). Under Model II, this
means that, for all 61, - - - , o} and o”, we require the quadratic forms go, - - - , g«
to satisfy («) and (v) in addition to (8). Using (2.1.3) and (2.3.3), this means
that, for Model 11, («) and (y) reduce respectively to

eaaie=|Ludaia]ei=12 ok
(234) - ' (6=0,1,---,k),
Q= [l tr Qi] Q
Uz
and
QA 41Q; = 0(n X n),l=1, - ,k;}
(2.3.5) r(E#£j=0,1,--- k).
QQ; = 0(n X n)

Before we proceed further we shall justify the restrictions (2.3.1) and (2.3.2).
These restrictions provide a set of sufficient (though not necessary) conditions
for ensuring certain good properties of the solutions to the problems of point
estimation, testing of hypotheses and confidence interval estimation.

From the standpoint of point estimation, we have the following lemma:

LemMA 4: Under Model I1, if qo, q1, * -+, qx are (k + 1) quadratic forms, of
ranksmg ,n1, - -+ , N respectively, satisfying (2.3.1) and (2.3.2) and \; = E(q: /n:),
then, the unbiased estimate with uniformly least variance of the estimable linear func-
tion Z',Lo I:\: 1s given by Z’E,o lig: /n: and this estimate is a unique (except on a
set measure zero) function of qo, q1, -+ , q& . This lemma is essentially the same
as the result given by the authors of [4] and the proof follows from a theorem
of Lehmann and Scheffé [5] when we notice that, under Model II, if go, - -+ , g
satisfy (2.3.1) and (2.3.2) then ¢, - - -, gx from a set of sufficient statistics for
No, M, e, M (also for ¢%, o1, -+ -, ok), and that they can also be shown to
satisfy the completeness condition of Lehmann and Scheffé (5].

It may be noted that Lemma 4 holds, not only for a linear function of A/s,
but also, in general, for any real valued estimable function f(ho, Ay, -+, Me).

Next, from the standpoint of testing of hypotheses, we observe that hy-
potheses on variance components are usually composite and that a legitimate
quest might be to obtain similar region tests for these hypotheses. From the
properties of sufficiency and completeness mentioned above for go, g1, -, g
satisfying (2.3.1) and (2.3.2), it follows, from another theorem of Lehmann
and Scheffé [5], that the class of all similar tests of hypotheses on the o”’s will be
of Neyman structure, or Neyman mechanism regions [8], with respect to
Qo,q1, "5 Qe

Finally, if the quadratic forms go, g1, - , ¢x satisfy these restrictions then,
as will be seen later in this paper, we can obtain simultaneous confidence inter-
valson o1, 05, -+, 0r, o and on ratios like o /o* without running into intrac-
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table distribution problems or nuisance parameters, although it is not said that
this would be impossible except under these restrictions.

We shall now proceed to obtain a set of quadratic forms g0, g1, - - - , g for the
restricted k-way classification and present a tie-up between the analysis under
Model I, considered under Section 1, and the analysis under Model II.

2.4 Tie-up between the analysis under Models I and II for the restricted k-way
classification. We recall from Section 1.3 that, under Model I, we can obtain k
sums of squares due to the k testable hypotheses of equality of the elements of
£,(¢=1,2, -+ ,k), which can, by analogy with (1.3.1), be written as

where 7 = rank (4)

=_(m—k+l)
k
d m=
(24.1) and . m ;m
10 --- 0 —1
=(m—-1)]olo|---l0 1 -+ 0 —=1{0|---]|0 |¥
00 1 =1
m1m2... m; PR My

so that rank (C;) = (m; — 1)(z = 1,2, ---, k). It is easily verified that, if
{: = (¢a, &2, **, £m,), then, the hypothesis & = -+ = &, is exactly
equivalent to (2.4.1). As in Section 1.3, we obtain k sums of squares due to the
k hypotheses Ho; , Hop , + + - , Hat , Viz.,

(2.4.2) X' A (A1A) T CH[Ca(ATA) T CHT Cu(ArA L) " Arx

fori = 1,2, .-+, k with (m; — 1)(= n:, say) degrees of freedom. We further
have the sum of squares due to error,

(2.4.3) X'[I(n) — A;(A1A;) Ak

with degrees of freedom = n — r = (n — m + k — 1)(=n¢, say). Notice
that D ieomi = (n — 1) < n.

Now, under Model 11, in the notation of section 2.3, we take qo to be the sum
of squares due to the error given by (2.4.3) and ¢;, for< = 1,2, ---, k, to be
the sums of squares due to the hypothesis given by (2.4.2). If then we apply the
conditions (a), (8) and (v) of Lemma 2 to this set of quadratic forms, we can
verify that go, ¢1, - -+, g all satisfy (8) so that centrality of the distribution
(if it is x” at all) is assured for each ¢.(z = 0, 1, - -+, k). Using the fact that
the matrices of these quadratic forms are all idempotent, and by repeated appli-
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cation of Lemma 3, we can also obtain that

(2.4.4) ’ X = o’ A = vio: + 7, for: =1,2,---,k,
where

b — 2 sum of all the elements in and below the diagonal |
v (7714' - 1)

of the symmetric matrix [Ca(A4; A Ap)TCH™Y

Thus [1/v.]{q:/n;: — qo/no] will be an unbiased estimate of o7 , while go/n0 will be
an unbiased estimate of ¢, so that, if these particular o, ¢1, - - - , g satisfy (a)
and (y) of Lemma 2 as Well then, by Lemma 4, these estimates will also have
uniformly least variance in the class of unbiased estimates. It is easily verified
that go always satisfies («) and (v) of Lemma 2, so that, the error sum of squares
obtamed under Model I is always under Models I and II, distributed as o x(no) ,
where x{.,) is the central x* variate with ne(=n — m 4+ k — 1) degrees of
freedom, independently of g1, ¢z, - - - , ¢ and therefore, always provides (when
divided by 7o) an unbiased estimate, with uniformly least variance, of ¢°. Next,
applying the conditions (a) and (y) of Lemma 2 to ¢; (s = 1,2, ---, k) and
simplifying the conditions, we get them respectively in the forms

CalA)A)7Cl = i— U(ms — 1) + J(mr =1 X my = 1)),
for 1=1,2,---,k,

(2.4.5)

where J (p X ¢) stands for a matrix all of whose elements are equal to unity,
and

(2.4.6) Ca(A7A)7'Cl = O(mi — 1 X m; — 1)
forz ¢ j = 1,2, ---, k. Note that (2.4.5) and (2.4.6) are independent of the
unknown variance components a3 , - - - , o7 and o°.

The conditions (2.4.5) and (2.4.6) are both satisfied by the usual complete
designs like Randomized Block, Latin Square, Factorial designs under a strictly
additive model with no interactions. However, the incomplete designs, like Bal-
anced Incomplete Block designs, do not, in general, satisfy (2.4.6) while they do
satisfy (2.4.5). Thus the restrictions (2.3.1) and (2.3.2), taken together, are not
too restrictive in that the usual complete designs have sums of squares like
(2.4.2) which are useful in the analysis (to answer customary questions) under
both Models I and II. However, they are restrictive in that the incomplete de-
signs do not have sums of squares like (2.4.2) that can be used directly and con-
veniently in the analyses of both the models.

In Sections 2.5 and 2.6, we shall discuss some simple situations by assuming
that the k-way classification under consideration has sums of squares like (2.4.2)
which satisfy both (2.4.5) and (2.4.6), thus rendering relatively easy simul-
taneous testing and simultaneous confidence interval estimation of ¢3/6", - - -,
ok/a”. If, however, (2.4.6) were not satisfied but merely (2.4.5) as, for éxample,
in incomplete block designs, then simultaneous testing or simultaneous interval
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estimation would be far more difficult (and will be discussed in later papers) but
the separate tests and separate confidence interval estimation can be obtained in
exactly the same way as in the following discussion. Problems involving inter-
actions in factorial designs will also be discussed-in later communications.

2.5 Tests of hypotheses on the variance components. The usual hypotheses tested
are Ho;:o: = 0 against respective alternatives Hy;io: > O for¢ = 1,2, -+, k.
Working in terms of the sums of squares (2.4.2), (2.4.3), it can be seen from
(2.4.4) that these hypotheses are equivalent to Ho::A; = Ao against Hy;ih; > Ao
fori = 1,2, ---, k. For each 4, therefore, under Model II, we can test Ho;
against Hi; by taking as the critical region the region defined by

(25.1) Fi= L% 5 Fo(ng, m)

qo/
where F;, under H 0 , has a central F-distribution with degrees of freedom n;
and n, and F, (n;, ny) is the upper 100a% point of the central F-distribution
with degrees of freedom 7n; and no . From (1.3.4), notice that the critical regions
(2.5.1) for the individual hypotheses Ho;, under Model II, are identical with
those obtained for the individual hypotheses (2.4.1) under Model I.

The critical regions under Models I and II have an identical nature even
when we consider the simultaneous hypotheses Hyot = 0f = --- =01 =0
agamst the alternative H;: at least one a'. > 0, which is equivalent to considering
Hoh/ho = -+ = M/ho = 1 against Hi: at least one A;/Ao > 1. The critical
region of the simultaneous test obtained by the heuristic union-intersection
principle [9] is,

(252) F1>a1, F2>(12, ey, Fk>ak,

where F; = (qi/n:) / (go/m), Fi’s are, in the terminology of section 1.3, quasi-
independent variance ratios and a;’s are such that the region (2.5.2) is of size «
for a preassigned «. It is easily seen that the critical region (2.5.2) is identical
with that of the simultaneous ANOVA test of Ghosh for Model I [7].

2.6 Simultaneous confidence statements. When the ¢.’s, given by (2.4.2), (2.4. 3),
satisfy the restrictions (2 3.1) and (2.3.2) we can find constants xla,(n,) = xh,,

(say) and xZa,(n,) xza, (say) forj =0, 1, , k, such that the simultaneous
statements,
(26.1)  Xiap S @0/M0 S Xoapr Xiey S @/M S Xbay, 05 Xiag S G/ M S Xoe

have a joint confidence coefficient (1 — a) = Hf'=0 (1 — «;), where
P(Xia,’ = X%n,') = Xga,') = (1 - ai)

and x(n ;» denotes the central x” variate with n; degrees of freedom, (j =0, 1, - - -,
k). By inverting the statements (2.6.1), we obtain, with a joint confidence
coefficient (1 — «), the simultaneous confidence statements,

(262) G1oao Sk = C2aoQ0 C1a\ 1 =M= C2a Q1 cee

Clapfk = M = CoarQr »
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where ¢ia; = [xga,,.]—1 and cza; = [x";m,‘]g1 forj =0, 1, ---, k. Recalling (2.4.4),
we can obtain the following set of simultaneous confidence interval statements,
which are implied by (2.6.2), on the variance components:

1 1
Clag @ £ 0 £ Cong o = [ 1 = Cay 0] = o < o3y @1 — C1ao 0],
1 1
(2.6.3)

) — [clak Qx — Coay QO] = 0'13 = l [CZak Gk — Ciaq QO]-
Vi Vi

Since (2.6.2) implies (2.6.3) it follows that the confidence coefficient associated
with the statements (2.6.3) is 2 (1 — «). In order to be non-trivial, of course,
the constants cia; , c2o; (for j = 0, 1, - -+, k) must be such that all the bounds
in (2.6.3) are non-negative.

As a simple extension we can also obtain simultaneous confidence interval
statements on u = u; + w2 + -+ + ur and the variance components.

Next we shall obtain simultaneous confidence bounds on the ratios ai/a,
o3/a’, -+, oi/o". When the ¢/’s satisfy the restrictions (2.3.1) and (2.3.2) then,
fori =1,2,---, k, F; = (gi/n;) / (qo/noh) are quasi-independent in the
sense of section 1.3, each having a central F-distribution with degrees of freedom
n; and no . The joint distribution of these quasi-independent F’s is known [7, 3]
and we can determine constants F, , Fi, for 2 = 1, 2, .-+, k, such that the
simultaneous statements,

(2.6.4) leég—ll/—rll—)\lé/Flz,"',Fklé-qi/n—k)‘—kéFlcz,
(Io/no o CIo/no No

have a joint probability = (1 — a), for a preassigned «. Recalling (2.4.4), we
can invert (2.6.4) to obtain the simultaneous confidence interval statements,

}_[n"@_ :lg”_igl[n"_q}_ ],
nimF T T nilmFuq
l[w"° @—1Jsﬂfsl[ Mo Q‘—IJ,
vi L Fre o T 2T vl Fuq

with a joint confidence coefficient = (1 — a). Here, again, for non-triviality
the bounds should-all be non-negative.

(2.6.5)
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