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1. Summary. Bunches of individual customers approach a single servicing
facility according to a stationary compound Poisson process. The resulting
waiting line process is studied in continuous time by the method of the imbedded
Markov chain, cf. Kendall [7], [8], and of renewal theory, cf. Blackwell [3],
Feller [5], and Smith [9]. Busy period phenomena are discussed, ¢f. Theorem 1,
in which the transform of the joint d.f. of busy period duration and the number
of departures in that duration is expressed as the root z;(s, z) of a functional
equation, a generalization of a result of Takdcs [12]. In terms of z(s, 2) ‘“zero-
avoiding” transition probabilities are characterized. A simple model for “in-
stantaneous defeetion” is analyzed. Using renewal theory, ergodic properties
of waiting line lengths and waiting times are discussed for the ‘‘general’’ process,
in which idle and busy periods recur.

2. Mathematical formulation. In this section arrivals to, and departures from,
the system (single servicing facility plus waiting line) are characterized, and
basic random variables and probabilities associated with the resulting waiting-
line process are described.

For clarity the following terminology will be used: ‘time” will refer to an
“instant”, specified by a real parameter {(0 < ¢ < «), and is measured from
some initial instant taken as origin; the time axis will also be the range space of
certain random variables; “period” will mean a time interval, such as (i1, t).
Deviations from common terminology, as in the case of “service times”, will be
pointed out when they occur.

Arrivals. Arrivals at the system occur in accordance with a stationary com-
pound Poisson process. Such a process can be described in terms of the following
random variables:

(a) {As} is a sequence of positive independent random variables, where
(2.1) Priac 2]l =1—¢ (> 0);

A can be interpreted as the period that elapses between the times of arrival

of two successive bunches of customers.
(b) {ax} is a sequence of random variables such that

(2.2) a = i A;;

i=1

ay, can be interpreted as the random time of arrival of the kth bunch of customers.
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(e¢) {By} is a sequence of positive random variables, mutually independent
and independent of {A:}, where

(2.3) Pr[B, =j] = b; (G3=1,23,---);
B, represents the number of customers in the bunch that arrives at time oy .

For a fixed value of the real parameter {(0 < { < ) let

(2.4) A(0,t) = > B;.

I<as<t
A (0, t) is the total number of customers that arrive in the time interval (0, t).
We have from (2.1), (2.2), and (2.3),
()"

nk
n! bi

(25) Prid(0,8) = k| = ay(t) = Zi:o ey

where * denotes the convolution operation. The generating function (G.F.)
of {ar(t)} is

(2.6) a(z, t) = Igz"ak(t) = exp[—Nt{1 — b(z)}].

Thus the distribution {a,(¢)} is infinitely divisible, ¢f. Doob [4]. Note that the
numbers of arrivals in any non-overlapping time intervals are independent ran-
dom variables, each with distribution (2.5), ¢ being the length of an interval.

It will be convenient for later developments to let {8,} be a sequence such that

B.=0 (n=1,2,,1,)
(27) Ba=o m=1+1,72+2 ---,74+ By)
B = arq1 (n=i+Bk+1,i+Bk+2,"|',i+Bk+Bk+l)-

Thus B, is the time of arrival of the (bunch containing the) nth customer to
arrive; 8, = 0 is the time of ‘““arrival” of the ¢ = 0 customers present at the
initial instant. We shall assume that the customers in a bunch are assigned
numbers in the ranges given by (2.7), and that they receive service in the order
specified by those numbers.

Departures. Single customers depart from the system, with service completed,
at random times. The departure process can be described in terms of

(d) {Sa} (n =1, 2, 3,---), a sequence of mutually independent random
variables with

(2.8) Pr(S, = z] = U(zx),
where U(z) is a d.f. with U(0) = 0.
Put

(2.9) u(s) fo " dU(z)

for the Laplace-Stieltjes transform (L.S.T.) of U(z).
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The random variables of the sequence {S.} are independent of those of {A;}
and {B}. Associate S, with 8,, i.e. S, is to be interpreted as the service-time
(service period) of the nth customer to arrive, and consequently of the nth
customer to be served.

Definition (Departure Times): Let the sequence {T,}(n = 1, 2, 3, - - - ) where:

To=%=0
and
(2.10) T, = Sn + max(ﬁn ) Tn—l)

be called the sequence of departure times from the system. T, is the time of de-
parture of the nth customer to receive service after time 7, .

If, at the initial instant, 7 = 0 in (2.7), then T, = S; + B:. This fol-
lows from well-known properties of the exponential d.f. If initially 7 > 0,
and serviee of the first customer is just commencing, then T, = S, ; if service
of the first customer has proceeded for a time 2’, then the d.f. of S, is
[U(x) — (U(z))/1 — U2")].

Definition (Number of Customers in the System): The random variable N(T%),
(hereafter denoted by N(T,)), defined as

(211) N(TYH) =i+ A, T,) —n, whereTo=t = 0and N(T,) =,

is the number of customers in the system at the time of the nth departure (service
completion) after time & . Initially Ty = &, and N(Ty) = i(¢ = 0, 1, --- ).
For a fixed time, say ¢ -+ ¢, the random variable

Nt +1t) =0+ Alb, Ta) + A(Tw, t) — n

(2.12) .
if nefn|te <Th Sto+t < Tapf

is the number of customers in the system at time &, + i. We have
N + t) = N(T.) + A(T., t)

(2.13) '
if nefn|to < Tw b+t < Tunl;

clearly N(T,) and N(¢) are non-negative integer-valued random variables,
and N(?¢) is continuous on the right.
Definition (Number of Departures). The random variable M (¢) defined by

(214) M(h+t)=n if Lt <Ti=Zt+t<Tun, where Ty =t ,

is the number of customers who have departed (received service) in the period
(b, b+ 1t).

Definition (Idle Period): An idle period is a time interval (T, , Bn+1), where
Bn+1 > T . The length of an idle period is the random variable 71 = Bn41 — T .
Let &, = 0in (2.11). Then since B, < T, from (2.10), N(¢) > 0 for ¢ such that
B =t < T, and N(t) = Ofor (T, <t < Bnt1), i.e. there are no customers.
in the system during an idle period, and it is preceded (and followed) by periods



MARKOV CHAIN ANALYSIS 701

during which customers are always present, or “busy periods” (definition next).
From familiar properties of the exponential d.f. and from (2.1), we have

Prir 2] =1I(z) =1 — ™

If (T, Bas1) and (Tm, Bmi1)(n # m) ‘are any two idle periods, their lengths
are independent random variables, each with d.f. I(z).

Definition (Busy Period): A busy period is a time interval (8, , Toyr) (r =
0,1,2 --.) such that

(2.15i) (i) ﬁn > Tn—l
(ii) For each T satisfying (8, < T: £ Tnyr) We have
(2.1511) T,' = Si + T,'_l

(2-15ili) (ill) Tn+r+l = Sn+r+l + ﬂn+r+1 > Sn+r+l + Tn+r
The length of a busy period is the random variable
T = Tn+,- - ﬁn .

Put &, = 0 in (2.11) and let the conditions (2.15) hold. Then N(¢) = 0 for ¢
satisfying (Tn_y = t < Ba), and N(¢) > O for ¢ satisfying (8, < t < T.yr).
That is, customers are always present in the system during a busy period, and
busy periods are preceded and followed by idle periods. It will be shown later
that, under some circumstances, busy periods are prolonged indefinitely with
positive probability.

Suppose (Bn, Twir) and (Bm, Bmtg)(m > n + r) are any two (non-over-
lapping) busy periods. Then it follows from the assumed arrival and departure
processes that their lengths are independent random variables.

Definition. (State of the System): The pair of random variables [N(T,), T,)
will be called the state of the system at the time of the nth departure. In words, the
state of the system is the number of customers left behind by the nth departing
customer, and the time at which this departure takes place.

Remark: {{[N(T,.), T.)} forms an imbedded Markov chain. {{N(T,), T.]} is
essentially the imbedded Markov chain of Kendall [7], [8], but is a somewhat
more comprehensive description of the system. Referring to (2.5), (2.8), and
(2.11), and recalling the independence of arrivals and departures, the one-step
transition probabilities for the chain are, when the initial state ¢ > 0,

(2.16) P(t) = Py(t) = PrtIN(Tnn) = i + hy Tura S o+ t| N(T2)
2,14
= 7:, T,. = to}

e i=1,2,3, -
(217) = ]o- aa(t') dU(Y), ( = _1’0,172,...)

These transition probabilities are stationary; they do not apply when
N(T,) = 0, for when this event occurs the system remains idle until a new
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bunch of customers arrives and service of the n + 1st customer can begin (see
(2.15)). We shall therefore first (Section 3) study the chain during a busy
period, obtaining an expression for the n-step zero-avoiding transition probabilities,

PP (t) = PrIN(T,) =5, Ta S to+ t, N(T:) > 0(k = 1,2, --- ,n) |
N(To) =14, To = &)

PrN(T.) =5, T S th+ L, NWE) >0 = < Ta) |

N(To) =1, To = o

In words, P{}’(¢) is the probability that the number of customers in the system
passes from 7 > 0 at time ¢ to j > 0 immediately after the nth departure, the
latter occurring before time &, + ¢, without having passed to zero in the meantime.
Equivalently, the transition occurs ‘““during a busy period”’. We call the process
whose transition probabilities are (2.18) the busy-period process. An expression
for the probabilities (2.18) are derived in Section 3. Making use of this, an ex-
pression for the joint probability distribution of N(¢ + &) and M (&, + ¢) is
obtained. An explicit expression for the d.f. of the duration of a busy period
results as a by-produoct.

In general, transition from N (&) = 7 > 0to N(& + ¢) = 7 > 0 can occur
with N(#) = 0, where ¢’ satisfies (y < t' < t), i.e. transitions may occur with
intermediate passages to zero. We call the process that permits such transitions
the general process, and discuss it further in Section 5 and 6, using methods of
renewal theory. In Section 7 the d.f. of waiting times (waiting period durations,
in our terminology) in the general process is discussed.

(2.18)

li

3. The busy period. In (2.18) & can be interpreted as the instant at which
a busy period commences, and T = { as the time at which service of the first
customer to receive service during the period begins. Because the transition
probabilities (2.17) and (2.18) are stationary, we shall consider ¢ to be time
measured from £, in this section. Since U(0) = 0

(3.1) P{P0-) =0 (n = 0)
and
(3.2) PR(t) = 6:U(t),

the Kronecker delta multiplied by the unit step at ¢ = 0. Prescription of other
initial conditions is straightforward.

To derive the transition probabilities (2.18) observe that N(T,41) =7 > 1
if N(T,) = j — hand exactly & + 1 customers arrive at the system in (T , Tri1).
Thus by direct enumeration the P{}(f) satisfy the forward Chapman-
Kolmogorov equations

j—1

(3.3) PGH0(t) = hf__jl fo t PIa(t — ) ana () dU(E)
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-1
(34) = 2 P{Lu(t)»Pa(t).
h=-—1

To obtain a formal solution to (3.4), first introduce the Laplace-Stieltjes
transforms (L.S.T.)

PP (s) = fo e P (1)

and

(35) m(s) = f: e dPi(t)
converging at least for s > 0, and the generating function
(3.6) Guslzs 9) = 32" P(5)

the latter converging at least for | 2| < 1. Then (3.4) becomes, using familiar
properties of the L.S.T. and G.F.,

j—1

(3.7) Gij(z;8) — 8 = thIGi,j—h(z§ 8)pa(s).
Next introduce the generating function
(338) gi(2, 73 8) = 2 2%Gii(2; 5)

Jj=

again assumed to converge at least for | | < 1. After some simple manipulations
we have
' — 2Ga(2; 8)poi(s)

1 — zn(s, )

(3.9) gi(z,z;8) = z

where the function 7 (s, ) is the generating function of the transforms of the
one-step probabilities,

x(s,z) = é 2 pals) = %f: exp [— st — M{1 — b(z)}] dU(L),

(3.10)
- %u[s+ M1 — b(2)}]

where u(s) is the L.S.T. (2.9). Formula (3.9) depends upon the unknown func-
tion Gi1(z ; s) which must now be determined. To do this we make use of the

result of
LemMA 3.1. For s > 0 and 0 < 2z < 1 there exists a unique root, 0 < z1(s, 2) < 1

of the equation
(3.11) z = zuls + M1 — b(x)}].
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Proor: For fixed s > 0,0 <z =1, Ii(x,2s) = 2uls + M1 — b(x)}]isa

convex continuous function of z. Furthermore,
0< 11(0, A 8) < 11(1, 2, 8) <1

Therefore there is exactly one root in the interval (0, 1).

Now if gi(2, x; s) is to generate (transforms of) probabilities, it must be
bounded at least for all 0 £ 2 < 1. Since Lemma, 3.1 shows that the denominator
of (3.9) has a zero in this interval, we determine the numerator so as to keep
the expression bounded. Thus we have

(3.12) 2Ga(z; 8)p-1(s) = zi(s, 2)

and substituting this into (3.9) completely determines g:(z, x; s). For a similar
argument see Bailey [1] and Benes [2].

The expression (3.12) has an interesting probabilistic interpretation in its
own right. Let 75 be a random variable such that

(3.13) 7'1('::) = iTm - TO. (iy m > 0)

where N(T,) = 7 and N(T,) = 0 for the first time thereafter. Putting this more
informally, 7$ is the length of a busy period that begins with exactly ¢ cus-
tomers present, the first just commencing service, and ends with the departure
of the mth customer to receive service. Let M = 1 be a random variable de-
noting the number of customers discharged by the server during a busy period
that begins with ¢ customers present. If we let

Fu(t;3) = Pr[r < t, M® = m | N(To) = 1),
then, because of independence,
(3.14) Fo(t; ) = PEV()*Poa(2).
If we now introduce the L.S.T. and G.F. we obtain from (3.14)

, (i) = [ €™ X 2" dFa(t;i) = 26z 8)pa(s)
(3.15) £.(5;9) o ngl ! L
= 71(8,2)
We have proved '
TuroreM 1. The G.F. of the L.S.T. of the joint distribution of busy period dura-
tion and the corresponding number of departures in that duration is given by

fi(830) = 3(s, 2)

where zi(s, 2) s the root of (3.11) discussed'in Lemma 3.1.

In Theorem 1 it is assumed that the busy period begins with a single customer
in the system. If it begins with ¢ = 1 present, the appropriate transform is z1(s, 2);
if it begins with the entry of a bunch of customers the transform is blxs(s, 2),
b(z) being the G.F. of bunch size.

An explicit solution of (3.12) will now be given as
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THEOREM 2. For s > 0 and | z | < 1 the root z:(s, z) can be written as

0 o —\¢ m—1 n
(3162)  m(se) =3 & )f e 3 (W7 (”) bEE, U™ (1)

m=1 m n=o0
consequently
L ()\t) nk *
(3.16b) Fut;1) = f D) B, dU™ ()
n=0

Proor: Since u[s + M1 — b(x)}] is an analytic function of z at least for
| | < 1 we can apply Lagrange’s Theorem for series reversion [13] to (3.11);
making use of the fact that

u"ls + N1 — b(2)}] = ‘/o-w exp [— st — {1 — b(2)}] dU™(t)

and expanding around the origin in powers of z gives (3.16). Observe that
F.(t; 1) can be interpreted as the d.f. of the first-passage time (period) to zero
from an arbitrary instant at which one customer is present, the latter just com-
mencing service, and the number of customers receiving service in that time
(period).

Expansion (3.16a), together with (3.11), can be used to verify that the root
x1(s, 2) is the transform of a bivariate d.f. With the aid of this fact it can be
shown by direct series expansion that the functions whose transforms are given
by (3.9) and (3.12) are the transition probabilities of a Markov process. The
uniqueness of the solutions to (3.4) is guaranteed by properties of the transforms.
We state

TueoreM 3. The G.F. of the L.S.T. of the transition probabilities P} (t) is
given by (3.9) in terms of the root x:1(s, z2) of Lemma 3.1:

Finally, we can obtain an expression for the joint d.f. of N(¢), the number
of customers present in the system at a fixed time ¢ measured from the beginning
of a busy period, and M (%), the number of customers who have been serviced

by that time. Let
P{P(t) = Pr[N(¢t) = j, To £t < Topi,
N@)>0(0=t=t)|N(To) =3, To=0],
=PrN(¢) =5, M(@) =mn,
N{)>0(0=t =¢t)|N(To) =0, To=0]

(3.17)

be that joint distribution. For the marginal d.f. of N(¢) alone, with the condi-
tion that N(#') > 0 (0 = ¢ = t), we write

P;(t) =PrN(t) =j, N()>0(0=¢=t)|N(To) =71,
(3.18) Ty = 0]



706 DONALD P. GAVER, JR.

then, by simple enumeration and independence,

(3.19) P (1) =‘§; PE (D1 — U(t)}a,—in(t)]

Summation on 7 gives a corresponding expression for (3.18).
Now introduce the Laplace transform of P{}(t),

piP(s) = l P (t) dt

and the G.F. with respect to n and j, denoting the result by g.(2, z; 7). Then a
few manipulations, using (3.19) and the properties of transforms of convolu-
tions, show that

N 1 — ufs + X — Ab(2)]
(3.20) gi(z,x;8) = gv(“”s){ s+ A — \b(z) }

the transform of P,;(¢) is obtained by letting z tend to one in (3.20).

4. Busy periods with instantaneous defections. The functional equation for
the joint distribution (3.11) of busy period length and number of departures
will now be derived directly, and certain ergodic properties of the process de-
duced. Our method is basically the same as that used by Takées [12] for deriving
the marginal distributions of this joint distribution when arrivals are Poisson.
We shall, however, generalize the arrival process slightly to allow for “instantane-
ous defection”. By instantaneous defection we shall mean that when a customer
arrives and finds that he cannot be served immediately he joins the queue with
binomial probability p, independent of the state of the system, and departs im-
mediately without waiting for service with probability ¢ = 1 — p. Such an
assumption is reasonable when the arriving customer can only discover whether
or not he must wait, and not how long. This state of affairs is not uncommon in
actual congestion situations. We wish to find the joint distribution of a busy
period length, the number of discharged customers, and the number of defecting
customers in the busy period.

Let A,(¢) be the number of customers who arrive in a time interval of length
t who wait, and A.(¢) the number who arrive but immediately defect. Then by
our assumption about the defection process

Pr [Al(t) =5 ,Az(t) = ks l A(t) = k] = (’I;) pkquﬂ.

Since A(t) has distribution {a:(¢)}, we have for the joint distribution of waiting
and defecting arrivals

(41) Goura(t) = as(t) (’,z) M bt o = .

The generating function of this joint distribution is, from (2.6),
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(4.2) a(ar, 23 t) = ;Zo E A2, (1) = a(pa + g2, 1)
1= 2”'

Let us define the random variables 7% , M{”, and M5’ just as we did 75’
and M¥: 75} is the length of a busy period that begins with ¢ customers present
and ends with the discharge of the myst customer to receive service, M1® is the
number of customers receiving service, and M:” the number who come to the
system but immediately defect.

Let

(4.3) Foym(t) = Pr{rS) =t, MP =m, ML = my)

We can now write down directly the equations to be satisfied by F, m,(t).
Suppose that at some initial instant the system is in the state [N (T,) = ¢, T = 0],
i.e. © = 1 customers are present and one has just commenced service. Then
in order to pass to the zero state after exactly m; + 1 eustomers depart, the last
departure occurring at some time not later than ¢, the system must (a) pass from
[N(To) =12, To = 0] to [N(Ty) = j, T, = t'], where ¢ < t, and then (b) from
[IN(T,) = j, T» = '] to [N(Tw,) = 0, T, < {]. These events are independ-
ent. Furthermore, the events of passing from [N(Tx) = j, T = 0] to
[IN(Teym) =J — 1, Tegm < t] (F > 1) for the first time are independent, with
the same probability, and do not depend upon j and k. Introduction of the de-
fections does not materially alter the above observations. The following equa-

tions result:

Fons® = [ tona(s) dU(2)

(44)
Fm1+1 mg(t) = Z Z f A, , kz(‘r) dU(T)*lemz—kz(t)
k=0 k9=0
Introducing the G.F.
(4.5) m;ng 2025 F ) mo(t)

convergent at least for |z, |22| < 1, and the L.S.T.
(4'6) le.zz(s) = j; e_” dt F(zl y %2 ;t)’

we obtain, using (4.2) and (3.10) and the properties of generating functions,
the functional equation

(4.7) for2a(8) = 21uls + N + No{pfey.0(8) + q2o}]

For s > 0, |a1] < 1, |2e] = 1 equation (4.7) has a single root less than unity.
This root is the transform of the joint d.f. (4.3). An explicit solution can be
given to (4.7) using a Lagrange expansion, but we shall content ourselves with
the information obtainable directly from (4.7).
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Assume that the service times have expectations
(484) mi = [ ¢ dU), i=1,2,
0

and let > = my — mi . Let
(4.8b) 8; = E[B, i=12 -,

denote the expectations of the bunch-size. It is convenient to define p = Noym, ,
the traffic intensity parameter.
Then

a
dx

(b) f1a(0) =1, pp =1
(e) fia(0) =e< 1, pp> 1

Proor: Direct differentiation establishes (a). Using Abel’s theorem, f;,1(0)
satisfies (4.7) with s = 0, 2z, = 2, = 1. Then, using (a) and the continuity and
convexity of ulA — Ab(pzx + ¢)], (b) and (c) follow.

THEOREM 4. When pp < 1, busy periods end in finite time with probability one.
When po > 1, busy periods last indefinitely long with probability 1 — e, where €
18 the root (less than unity) of .

(4.9) z = ulh — Nbo(pz + )], 0=sp=1

In many practical situations busy periods alternate with idle periods; from
Section 2 the latter are independent, exponentially distributed random variables.
We call this the “general” process, and discuss it further in Section 5. Several
properties of such processes are apparent from Theorem 4. Since, when pp < 1,
return to N = 0 from any state will always occur in finite time, this event is
“persistent”” in the language of recurrent events [6]. It follows from the theory
of recurrent events that N = j will occur infinitely often in any realization of the
general process. When p > 1 return to N = 0 is “transient”, and the event that
N = j, j finite, will occur only finitely many times during a process realization;
eventually the number of customers in the system grows indefinitely.

From (4.9) we can deduce other properties of “transient’ systems, i.e. those
for which pp > 1. Suppose two queueing systems are confronted with identical
arrival patterns but have different service time distributions, U,(¢) and Us(?).
Suppose further that pos = pps > 1. Then, if the L.S.T.’s of U,4(t) and Usx(¢)
satisfy

LeEMMA 4.1 (a) uh — Ab(pzx + @)1 | 2=1 = Do

uaN — No(pz + )] > us\ — No(px + 9)],

for all z in the interval (0, 1) we observe immediately that ex > es . Hence,
at least in some cases, the relative tendency for busy periods of systems to be
indefinitely prolonged when traffic intensity exceeds unity can be deduced di-
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rectly from the L.S.T.’s of the respective service time distributions. As an ex-
ample, if U,(¢) = 1 — ¢*, and Uz(t) is the distribution of “constant” service
times, both having unit means, we see from their transforms that e. > ez,
and can conclude that a saturated (pp > 1) “exponential” system is likely to
have a greater number of finite busy periods before becoming permanently busy
than is a saturated “constant” system with the same mean service time and
arrival process.

Returning now to (4.7), we discuss the moments of busy period length, 7,
and of the number of discharges, M, during a busy period, when we suppose no
defections occur (p = 1). Thus, first setting z; = 1 in (4.7) we have

E[l-Y] = N R p<1,
N (1 —
(410) 21—(I— ’z)a /8,
) _ O pPM2\ 02/ 01
Var ] =

‘We observe that mean busy period length depends only upon the mean number of
arrivals in a unit time interval and mean service time, while the variance of busy
period length in general depends upon the second moment §; of the distribution
{b;} as well as mean and variances of arrivals and service times.
The moments of the distribution of the number of customers discharged during
a busy period are, similarly,
1

—p

(4.11) 3 e
Var [M?¥] = ’ (%21t2)3(n—{%>

Again, the mean number of discharges depends only on mean arrivals and the
mean service time. The variance depends upon second moments, both of arrivals
and of service times, in much the same way as did Var [+].

The expected number of defections (p < 1) during a busy period comesdirectly
from (4.7) by differentiation. We have

EMP] = —=p pp <1
1 —pp
The corresponding expected number of discharges following service is
1
Wy _ - <
E[M:”] = p pp <1

We can thus conclude that busy periods end in finite time and the expected
number of defecting customers equals or exceeds the expected number actually
served if, and only if,

(412) ——=p<-.
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In order for this to be true, at least half of the arriving eustomers must defect,
on the average.

6. The general process. The formulation of Section 2 implies that transitions
between states may occur with the intervention of one or more idle periods.
We call the process permitting such transitions the general process, and in this
section relate it to the busy period process discussed earlier.

In a realization of the general process new busy periods begin at the sequence
of random times (0 < t; < t; < t; - - - ), where time is measured from an arbi-
trary initial instant. We shall call t, the time of the beginning of the kth busy
pertod. From (2.15) we have that

tk [ {61& l Bn > Tn—l}
Definition. The interval (ti—y, t;) will be called a (the kth) renewal period.

The random variable rz(k) = ti — ti—; is the length of the kth renewal period.
In the general process

(5.1) e(k) = 7(k) + (k) k=2

where 7(k) is the length of the busy period that immediately follows the arrival
at t:1, and 7,(k) is the length of the idle period immediately following the
latter busy period, and preceding the arrival at t. . We have, from Section 2,

(5.2) Prlr(k) < 2] = 1— exp (—Az).

Since the busy periods beginning at t.(k = 1) each commence with the arrival
of a bunch of customers, the latter having bunch size distribution {b;}, we have
from Section 3,

00

(5.3) F(t) = Prlr(k) = 1] = ZlbiF(t; i),
where
(5.4) F(t;3) = Prr? <4 = Z:F,,,(t; 7).

From Section 2 and the above {r;(k)}(k = 2) is a sequence of independent
random variables, each having the exponential d.f. (5.2), and {#(k)} (k = 2) isa
sequence of independent random variables with d.f. (5.3). It follows from (5.1)
that the sequence {7z(k)}(k = 2) of renewal periods form a sequence of inde-
pendent, identically distributed random variables with d.f.

(5.5) R(t) = Pr[ra(k) £ t] = F(t)+I(?).

Such a sequence of random variables is called a renewal process, cf. Blackwell
[3], Feller [5], Smith [9], [10]. We can therefore state

THEOREM 5. The sequence of renewal periods {rr(k)}(k = 2) constitutes a re-
newal process.
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Note that because of the imposition of initial conditions, the d.f. of 7z(1) = ti,
the time of the beginning of the first busy period, is

R(t;%) = Pr[r$) < 8] = F(t;1)+I(2), t>0
= I(¢), i=0

where we take the initial state to be [N(To) = ¢, Ty = 0] when ¢ > 0 and a
service is beginning at Ty = 0. From the above considerations the d.f. of t;,
the time to the beginning of the kth busy period, is given by

r(t;4) = Prite S t|N(To) =4, To=0]

= R(t; i)»R**(1) (k 2 2;i > 0),
and, when N(T,) = 0, by
(6.8) re(t; 0) = I()»R*V*(2) (k= 1;4 = 0),

and we adopt the usual convention that R*(t) = Uy(t), the unit step at the
origin. We shall call r,(¢; ) the renewal distribution.

Now in order to obtain the probability that N(f) = j > 0 in the general
process, given that at t = O[N(To) = 7, To = 0](z > 0) i.e. initially there are
¢ customers in the system, and one is just commencing service, then either
(a) N(t) =7 >0and N(#') > 0(0 = t' £ 1), i.e. that at time ¢ the number
of customers present is j and the first busy period has not terminated, or
(b) N(t) =3 > 0and N(¢) = O at least once in (0 < ¢’ < ¢);i.e. that at time
¢t the number of customers present is j and at least one busy period has elapsed.
The probability of the event (a) is P;;(¢), as given by (3.18). The probability
of the event (b) is easily seen to be

(5.6)

(5.7)

(59) 3B (wnalt; ) (i 2 1),
where
(5.10) Bi(1) = 3 bRy,

Summing the probabilities of the mutually exclusive events (a) and (b) we
obtain
THEOREM 6. Let

(5.11) Q:j(t) = Pr[N(t) = j|N(To) =4, To=0]

be the distribution of N(t) in the general process described. Then Q,;(t) vs expres-
sible in terms of P;;(t), the d.f. of N(t) for the busy period process, and the renewal
distribution r(t; 1): when ¢ > 0

(5.12) Qu(®) = Pult) + 3, B, (wna(t; ) iz 1),
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and

(5.13) Qu(t) = F(¢;9)+[1 — I(?)] + g?F(t)*ll — I()]wre(t; 9)

when © = 0
(5.14) Qui(®) = 3 Pi(1)wma(t; 0)
and

G15)  Qu(d) = [1 = IO + 3 F)sll — I(0)Jars(s; 0).

Lastly we sketch the derivation of the joint distribution of the random vari-
ables N(t) and M (t) in the general process. Observe that the joint d.f. of 7z(k),
the kth (k = 2) renewal period, and M (k), the number of customers receiving
service in 7x(k), is given by

(5.16) Ru(t) = Prlra(k) S 4, M() = nl = 3 bFalt; 4100,

It follows from independence considerations that the joint d.f. of t;, the time
to the beginning of the kth busy period, and M (t:), the number of service com-
pletions in that time, is given by

(5.17) r$™ (55 9) = Ru(t; 5)%RE*(2) (h=2;i>0),
and, when N(7,) = 0, by
(5.18) i (4;0) = I()*RIV*(2), (k2 1;4=0).

The convolution operation is to be understood as applying to both n and ¢.
Next let

(519) QiP(t) = PrIN(t) =j, M(t) =n|N(To) =34, To=0]

be the joint distribution of N(¢) and M (¢). Then, by an argument analogous
to that giving Theorem 6, we obtain

(5.20) QM) =PV + gP}")(t)*r;ﬁ")(t; 7) (> 0),

where again convolution applies to both n and ¢. The marginal distribution of
M (t) alone is obtained by summing on j and adding QP (t). We observe that it
is only necessary to omit the summation on k£ in (5.20) to obtain the joint
distribution of N(t), M(t), and K(t), where the latter is a random variable
denoting the number of busy periods that have terminated in time ¢.

6. Ergodic properties of the general process. We shall now investigate the
ergodic properties of the random variable N (¢) in the general process with the aid
of a result in renewal theory.
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Definition: The expression

(61) P(t59) = 3 L t54)
k=2 dt
will be called the renewal density.

In words, v'(t; 2) dt + o(dt) is the probability that a busy period begins in
the time interval (¢, ¢ + dt). We observe that r’(Z; ) exists for all ¢ since R(t)
is convolution of F(t) with I(t), the latter being absolutely continuous.

Under broad conditions the renewal density converges to a constant as { — .
We make use of a result of W. L. Smith [9], [10]. For similar results cf. Feller
[5], and Blackwell [3].

Turorem 7 (W. L. Smith): If

(1) The renewal periods {rr(k)} are non-negative and El[rz(k)] £ o,

(i1) dlzgt) & Lyys for some 8 > 0,
(i) @%E—tl tends to zero as t tends to infinity,
then
TP, |
(6.2) 1‘112 r(t;2) = ek

Referring to the definition of renewal periods, the expression (5.5), and Theorem
4, it is easy to verify that the conditions of Theorem 7 are satisfied. From (5.1),
(5.2), (5.3), (4.10), and Theorem 4,

_ 1
(6.3) Bl = S =%

= o0 pzl.

) =

We have, then,
TaeoreM 8: The renewal density r'(t) tends to a constant as t tends to infinity:

lim 7(t;2) = N1 — p), p<l1

t>0
(6.4) =0, P21

Now from Theorem 6, Theorem 8, (6.1), and a simple lemma (cf. Smith [10],
p. 14) we have ‘

TaEOREM 9: The distribution of N(t) in the general process tends to a limst
independent of the initial conditions as t tends to infinsty:

lim Qu(t) =1 — p, p <1
(6.5) t->0
=0, P21,
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- -1 ["p
66 lim Qu(t) = 5~ fo P;(t) i, p <1,

v
[y

=0, P
We put
g = ltmg Q:;(t).

When p < 1 the generating function of {g;} is obtained from (6.5), (6.6), the
developments of Section 3, and (6.3). Letting s tend to zero in (3.20), referring
to (3.9), and recalling that #:(0, 1) = 1(p < 1), there results the following ex-
pression for g(z), the generating function of {g;} :

The classical Pollaczek-Khintchine-Kendall formula for pure Poisson single
arrivals, cf. Kendall [7], [8], comes from (6.7) by setting b(z) = z. Formula
(6.7) can also be derived using the matrix methods of Kendall. From (6.7) it
can be verified that {¢;} forms a bona-fide probability distribution when p < 1;
we shall term this distribution the long-run distribution of N (¢).

Moments of the distribution {q,} are available by differentiating (6.7). Thus
for example

For a fixed value of p the effect of a departure from pure Poisson arrivals is to
increase the average number of customers waiting. This increase is more pro-
nounced for p close to unity than for p small.

Expression (6.7) can be expanded to yield the probabilities ¢; explicitly. A
useful approximation to these probabilities can frequently be obtained by
making use of

LeMwMa 6.1: Suppose p < 1. If, for complex x, b(x) and u[\{1 — b(x)}] converge

or 1 < |z| < L, L real and greater than unity, then

(6.9) z— uM1l —bx)}]=0

has two real roots: ;1 = 1 and x, > 1. The magnitudes of z; and z. are smaller
than those of any other roots of (6.9). Note that the assumption that
u\{1 — b(z)}] converges for 1 < [¢| < L impliesthat1 — U(t) = o(e*")(t — =),
where ¢ is real and negative, cf. Widder [14]. This assumption is seldom restrictive
in practice.

Proor: For x < L, u[\M1 — b(z)}] is a continuous convex function of z.
Clearly x; = 1 satisfies (6.9), and

& U1 = b@) e = p < 1.
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Thus there exists exactly one more real root z; > 1. On -the circle C;:
[z] = 22 — € > 1, M1 — b(z)}] < |z|, so by Rouché’s theorem there is exactly
one root of (6.9) inside C; . This must be 2; = 1. Since e can be made arbitrarily
small, there are no complex roots of smaller magnitude than xz,, and there is
only the root z; on |x| = z, . Both «, and z, are simple.

Now from (6.7) and familiar properties of generating functions,

(6.10) S g = IQ(:v)
n=0  7=0 -
and
S 14 glw) |
(6.11) 2% = Rld T — & s

Applying the Cauchy Integral Formula, we have

, _gqw)
% 21r1, ¢ @ — wyw w)w’“rl

where C is a circle in the x~plane, centered at the origin and with radius less
than unity. Enlarge the contour C to C,, a circle with center the origin and
radius 2, + &, where § > 0 is chosen so that z; < x; + & < |3, 3 being the
third root of (6.9), if it exists, in order of increasing magnitude. This circle
surrounds the simple poles of the integrand at z; = 1 and ., so

S~ 1 q(w) dw
(6.12) ]Z(:) g =1 re 4+ o o —(—l—:W

+1
L

where 7. is the residue of ¢(z) / ((1 — z)x evaluated at ¢ = x, :

-1 1
(6.13) r=(1-p) '{u'ml — (@) N @) + 1}7 ’

since ¢(z) is bounded on C; , we have finally

id 1
jgo(b’ =1 —7'2+0<———-—-—(Z2+6)”)-

We state this result as
TueoreM 10. If b(z), and u[]M1 — b(z)}] converge for |x| < L, where L > 1,
then

w -1 1
(614) 3, g~ (1—0p) {u'[m = bz | (z2) + 1} X

J=n

where 3 s the second real root of (6.9) in order of increasing magnitude.

In other words, the long-run probability distribution of long waiting lines is
asymptotic to the geometric. From (6.14) it is apparent that in order to reduce
the probability of long lines, z. should be increased, if this is possible in practice.
Because of the convexity of u[N{1 — b(x)}], 2 is increased if u[A{1 — b(z)}]is
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decreased for each = 1. On the basis of these observations we can state the
following simple result:

Taeorem 11. 4 and B are two waiting-line systems. A is characterized by an
arrival process with parameter N4, generating function ba(x), and service time

df. Ua(t); B, by Ms, bs(z), and Us(t). Then if, for all z = 1,
uaMafl — ba(2)}] < usAs{l — ba(x)}],

the long-run probability of long waiting lines, as given asymptotically by (6.14),
s smaller for system A than for B.

Although the criterion given by Theorem 11 is crude it allows some interesting
comparisons to be made. For example, if two systems have identical distributions
of arrivals in any time interval (Ay = Az ; ba(z) = bz(x)), and the same mean
service time (e.g. of unit length), but U,(t) = 1 — e, while Ux(¢) is a de-
generate d.f. concentrating at unity, the probability of lines exceeding n in
length is greater for system A than B, asymptotically as n tends to infinity. This
result is not surprising when we compare the corresponding means and other
moments of long-run line length. Similarly, if the kth member of a (hypothetical)
sequence of systems has service time d.f. with LST [u(s/k)]*(k = 1,2, 3, --+),
and each member of the sequence has identically distributed: arrivals during
a time interval, then the probability of lines longer than n decreases as k increases,
asymptotically as n approaches infinity. These results can be compared to those
of Smith [11].

7. Waiting times. Suppose a customer arrives at the system (line plus server)
at time ¢ = 0. “First-come, first served” dictates the order of service. Then
in order to reach the server he must wait a time equal to the unelapsed service
time of the customer currently being served, plus the service times of those
customers ahead of him in line.

Let X(#) be the unelapsed service time of the customer occupying the server
at time ¢. Then, given that the last previous departure from the system occurred
att — 7, ‘

Ulr + a) = Ulr)
(7.1) Pr(X(t) = o] = 1= 00 .

Referring to Section 3, in particular to the developments leading to (3.17)~
(3.19), we can derive an expression for the joint d.f. of N(¢) and X(t) at time ¢
after the beginning of a busy period. The result is easily seen to be

Pij(a,t) = Pr{0 < X(t) = o, N(t) =
N@#)>00=t st)|N(To) =43, To=0]

(7.2)
= 2 Pu(OHUC + @) — Ulas(0)

We again find the introduction of transforms useful. It can be verified that

_ u(s) — u(¢)

@z [ [ e aiu+ o - viya =49 =00,
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assumed to converge at least for {, s = 0. Since the first moment of U(#) is
assumed finite, the limit of (7.3) exists when { — s tends to zero. Let

(74) (¢, s) = fo fo e 4, Piy(a, t) dt
and
(7.5) gi(z;¢,8) = j;xjpn(s“, s)

Transforming throughout (7.2), we obtain, using (2.2), (7.3), and the familiar
properties of L.S.T.’s and G.F.’s of convolutions,

uls + M1 — b(2)}] — u(y)
C—s—=M1—0bx)} ~

where g.(z; s) is given by (3.9), (3.10,) and (3.12) after setting z = 1.
The total unelapsed service time at ¢, W (¢), is X (¢) plus the sum of the service
times of the N(¢) — 1 customers in line:

Pi(a,t) = Pr[0 < W(t) £ q,
N({)>00=t =t)|N(To) =1, To = 0]

- g foa UYP*(a — y)d,Pii(y, t).

(76) gi(x; ¢, 8) = gi(z; 8)

(7.7)

An expression for the transform

(7.8) p:(¢, 8) =ff e e d.Pi(a, t) dt
0 0

comes directly from (7.6). After transformation with respect to o (L.S.T.) and
t(L. T.), the right hand side of (7.7) is seen to be the generating function
gi(z; ¢, s) with x replaced by w(¢), the whole then divided by u(¢). After a little
simplification we have

()] — [ea(s; 1)
s — ¢+ A1 = b{u®)}]”

The transform of the more involved joint d.f. of M (¢), the number of customers
who have received service by time ¢; N(¢), the number present in the system
at t; and W(t), for the busy period process is easly obtained. It is only necessary
to replace g;(x; s) by g.(2, z; s) in (7.6) to include M (¢t), and to replace x by
zu($) in the same expression, afterwards dividing by u(¢), to account for N(¢).

In practice interest frequently centers around W(¢) for the general process
described in Section 6. Let

(7.9) pi(s,8) =

(7.10) Qi(e, t) = Pr[0 < W) £ a| N(Ty) = 3, Ty = 0].

The enumerative argument leading to Theorem 6 can be used to show
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THEOREM 12. The d.f. of W(¢) for a general process is expressible in terms of the
d.f. of W(t) for the busy period process and the renewal distribution:

(7.11) Qi(a, t) = Pi(a, t) + D P(a, )#rp(¢;4), a > 0,
k=2
where
P(a, t) = 2; biP;(a, t).

Since W(t) = 0 if and only if N(t) = 0, we have Q.(0, t) = Q.o(¢); see (5.15).
The ergodic properties of W(¢) for the general process follow from those of
N(t). The limiting d.f. of W(¢) comes from (7.11), and we have

modan = L[
(7.12) () = lim Qi) = g [ P(a, ) b <1,

=0, p=1.
The L.S.T., q(¢), of the limiting d.f. ¢(a) comes from (7.9) by letting s tend to

zero, and dividing by E(7z). Justification follows almost exactly that for (6.7).
We obtain, after adding the long-run probability that W(t) = 0,

1 — blu(f)} ]
¢ — A1 = b{u(@®)}]

w(i‘)=‘l(§')+%=(1—ﬂ)[1+)\

(7.13)
— pC(¥)
- =[]
where
(7.14) ckt) = mllal [1 - b;“(f ) }]

is the L.S.T. of an (absolutely continuous) d.f. The expression (7.13) may be
written as

(7.15) w(§) = (1 = 0) 32 °C"0)

which shows that ¢(a) has a single jump at the origin, equal to (1 — p), and
is absolutely continuous elsewhere, cf. Bene$ [2]. Notice that if all departures
from pure Poisson arrivals are due to bunches arriving together,

_ (1 —p) _ 1—0p
§

which is essentially the Pollaczek-Khintchine formula, cf. Kendall [2, 3], with
“customers’’ now made up of the bunches of individuals arriving simultaneously.

The moments of the d.f. g(a) come from (7.16) by differentiation with respect
to ¢, the derivatives evaluated at { = 0. For example,
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_ [4 _ P 2 02
and
(7.18) Var [W] = 72— bCl + (1 = p)CJ

where {C} is the sequence-of moments about the origin of the d.f. whose trans-
form is C(¢).

An approximation to 1 — {go + g(a)} = Pr{W > a], valid asymptotieally as
a increases, can be obtained by methods similar to those of Lemma 6.1 and
Theorem 10. We state,

Lemma 7.1: Suppese p < 1. If, for complex ¢, b{u(¢)} and u(¢) converge for
—L < Re({) < o (L > 0), then the denominator of (7.13), D({) =
A1 —b{u(¢)}], has two real zeros, {3 = 0 and ¢ < 0, such that if ¢ is any
other real zero of D(¢), Re ({3) < ¢. The proof is omitted. Note that our
assumptions imply a restriction on U(t); see Lemma 6.1.

We now apply the complex inversion formula for Laplace transforms, cf.
Widder [14],

pc+100
j ‘“w(f)df, —L<c<0

c—1%0

(7.19) q(0) + ¢(a) =

Consider the rectangle in the {-plane with corners at ¢ & 77 and
ag-—ﬁzj:iT(c<a3<a2—6 <0)

Integrate w({) / ¢ around this contour and let 7' tend to infinity. From Cauchy’s

theorem,

R e o« )
21I’Z ag—8—100 g-

(7.20) o+ g(a) = a1 + aze®** + d¢

where a; and a; are the residues of (w({) / ¢ at the poles {1 = 0 and {; < 0. We

have a; = 1, and

1
1+ M/ ()b {ute)})

Since w({) is bounded on the line of integration in (7.19), we have

(7.21) 0+ ¢(a) = a + e + 0(e"V7),

a = (1 —p)

thus we have
THEOREM 12. The probability of waiting times exceeding o, when the d.f. (7.12)

can be assumed to apply, is asymptotically exponential
1 — {g + ()} ~ ae*
Compare Theorem 10 and the results of Smith {11].
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