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1. Summary. Let p be given, 0 < p < 1. Let » and k be positive integers

such that np < k < n, and let B.(k) = 2_r (1:>p'q"", where ¢ = 1 — p.
It is shown that

By = [ () #a* JoPtn+ 1,18+ 159,

where F is the hypergeometric function. This representation seems useful for
numerical and theoretical investigations of small tail probabilities. The repre-

sentation yields, in particular, the result that, with A.(k) = [(Z)pkq”_"“]

[(k+ 1)/(k+ 1 — (n+ 1)p)], we have 1 < A,.(k)/B.(k) < 1 + z°, where
z = (k — np)/(npq)*. Next, let Na(k) denote the normal approximation to
B.(k), and let C.(k) = (z + V/g/np)\/27 exp [2°/2]. It is shown that

(AaN,.Co)/By — 1

as n — o, provided only that & varies with n so that £ = 0 for each n. It fol-
lows hence that A,/B, — 1 if and only if z — « (i.e. B, — 0). It also follows
that N,/B, — 1 if and only if A4,C, — 1. This last condition reduces to

z = o(n"'®)

for certain values of p, but is weaker for other values; in particular, there are
values of p for which N,/B, can tend to one without even the requirement
that k/n tend to p.

2. Introduction. Let p be given, 0 < p < 1, and let n and k be positive in-
tegers such that

(1) np £k < n.
Define
@ By = 3 (1) wa

where ¢ = 1 — p.! The following is an apparently new representation of B.(k):

Received March 26, 1959.
1 Only upper tail probabilities are discussed in the paper. This involves no loss of gen-
erality, since p is arbitrary.
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3) Ba(k) = [(Z) p"q""‘} Fn+1, 1Lk +1;p)
where

(n+1) (n+1)(n+2) » .
RN CESV S N A

To establish (3), consider an unlimited sequence of independent Bernoulli
trials each with success probability p. Let S denote the total number of successes
in the first » trials, and let T denote the minimum number of trials required in
order to obtain a total of n — k -+ 1 failures. Then the event {S = k} is iden-
tical with the event {T = n + 1}. Hence P(S = k) = P(T 2 n + 1), and
(3) now follows by referring to the probability distributions of S and T.

Thus (3) expresses a relation between the binomial and negative binomial
distributions. Another relation (which, however, is not used in this paper) be-
tween these distributions is the following. Let U denote the minimum number
of trials required to obtain a total of k successes. Then {8 = k} is identical
with {U < n}. Hence P(S = k) = P(U = n), and this can be written as

[ (n\ 5 ns|(F m—-—1)1, (m—1)(m —2)1
Bk ‘[(k)“ ](?»)[” w-Dg¢ m-Dm-2 ¢
(m—1)---(2)(1) ._1_]
-0 G+ DE ]
where m = n — k + 1. It may be noted that (3) is valid for each k = 0, 1,

(4) F=1+ +

(5)
+ e +

2, -+, n, while (5) is valid for k =1, 2, .-+, n.
Now let
_(n+1)

© *TEED P

Then 0 < z < 1 by (1). Let us write (4) in the form
(7) F=2 a7,

8=0
" where
1 for s=0,1

(8) Q; = ’

7
1+ )
"‘1————(. n—i'-l for §=2,3,---.

i)

Since 0 < a, < 1 for each s, it is clear from (3) and (7) that

i () 2]
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is an upper bound for B,(k). More exact upper bounds, and also lower bounds,
are derived from (3) in Section 3.

The case when n — « (and k varies with n so that (1) is satisfied for each n)
is considered in Section 4. Since in this case a, — 1 for each fixed s (cf. (8)) it
might seem plausible that | A, — B, | — 0. However, | A, — B, | tends to
zero if and only if B, tends to zero, and then A, is a precise estimate of B, ,
in the sense that A,./B, tends to one. It is also shown in Section 4 that 4, can
be modified by multiplying it with a certain factor so that the relative error in
the modified estimate always tends to zero. It turns out that the normal ap-
proximation to B, is an explicit divisor of the correction required by 4, in-the
general case, so that an estimate of the relative error of the normal approxima-
tion in the general case is obtained. This last estimate leads, in particular, to
necessary dand sufficient conditions in order that the relative error of the normal
approximation tend to zero as n — «.

3. Bounds for B,(k). The identity (3) suggests the following method for
numerical evaluation of B,(k) to any desired degree of accuracy. Suppose that
we compute F only up to the first j + 1 terms and thus take

(10) 2w = [ (7)ot [ S e ]

as an approximation to B,(k). Since k < n, it follows easily from (8) that
(11) %< a, for s>t

a;
the inequality being strict unless ¢ = 0. Consequently we have
B (k)
B.(k)

Since a,112""" < aj2’, it follows from (12) that the relative error in B’ (k)
does not exceed the last term included in the sum on the right side of (10).
Moreover, since

(13) ajp’ ™t < 2T

(12) 1 — (ajn2™™) < <1

it is easy to obtain, in advance of undertaking the calculation, an upper bound
to the number of terms required to attain a specified relative accuracy. We
note also that, since A.(k) is an overestimate of B,(k), (12) implies

(14) 0 < Ba(k) — BY (k) < (a;12°™") min {A.(k), 1}.

The preceding method of evaluation of B,(k), although applicable in general,
is efficient only when z is appreciably less than one. A parallel method, with
similar properties, can be based on (5).

An alternative method of evaluation, which is useful even if z is nearly one,
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is the following. Let

(n+r)(k+r—1) ) _ r(m — r)
G+2r—k+2r—0DP “TGror-Dk+2n?

forr =1,2,---, where m = n — k 4+ 1. Then F defined by (4) can be repre-
sented (cf., e.g., [1], Chap. XVIII) as a terminating continued fraction thus:

1 b a b c Cim—1
1 F=_- 222 % % | Ondy
(16) 1-14+1—-141-— 1 B
Let
w_ 1. @ _ 1 b
F —1——b1, F —1—_1—461,
ol 1 b 1 b b
FO = 2 % G, pw_ - 0 a %o .
-1+ 1= % =T+ i— 14 @ ot
We have 0 < b, < 1 foreach r, and 0 <e¢. <1l forr=1,2,---,m — 1,

by (1) and (15). It follows hence from (16) that

F(3) < F(4) < F(7) < F(8) <...<F
(18)
é . é F(G) é F(B) é F(Z) é F(l).

The equality signs are included here only for the sake of literal accuracy; in
fact, F” = F for r = 2(n — k) + 1, but all other inequalities in (18) are
strict.

Now let A (k) = [(Z)pkq"%“]-lf’m forr = 1,2, -+, where F” is given
by (15) and (17). We then obtain from (3) and (18) sequences of upper and
lower bounds to B,(k), the general form of these bounds being A“™ < A“ <
A < B < A% 2 4% < A% for s =1, 2,---. It should be
noted that A (k) = A.(k), where A,(k) is defined by (6) and (9).

Another method of using continued fractions to obtain bounds on B, which is
based on (2) itself rather than (3), is given in Uspensky ([2], pp. 52-56). This
method, which is attributed in [2] to Markov, does not appear to be generally
known, and might therefore be described here. Let

(m—=7r)(k—147)p _ r(n + r)p
k=—2+20k —1+20¢g """ =1+20C+ 2rg

forr =1,2,---,and let

(19) 8. =

G(D=1L_61§ G(2)=1—1:1‘i‘)’1§
(20)
SN WL TP U N
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k
(19) and (20). Suppose k > np + 1. It can then be shown [2] that, as with
the 4’s, we have M“™ < M™ < M“* < B < M*™ < M@ < M@

Define M)\ (k) = l:(n)pkq"_"]-G’(') forr =1, 2, ---, where G is given by

fors=1,2,---.Here B=M @ for r = 2(n — k), but all other inequalities
are strict. The writer conjectures that we always have

(21) M(Zr—l) — A(Zr—l)’ IB _ M(Zr) I § IB _ A(2r) I

forr = 1,2, - -+, the inequality being strict for r £ (n — k). If so, Markov’s
method of computation is superior, by one step, to the one described in the
preceding paragraph.

The following Theorem 1 shows that, if n and k are large and z is appreciably
less than one (i.e. if B,(k) is very small), then A.(k) is a good estimate of
B.(k). The theorem is an expression of the fact that, under the conditions
stated, even the first few continued fraction approximations to B are very close
to B.

Let

(11 \(k+1
(22) “"(k)"<k+1 n+1)<k+2>z’

where 2 is given by (6), and let

_k—mp S
(23) 2 (k) = Ve (0 < z.(k) £ V/ng/p).

THEOREM 1: Given integers n and k satisfying (1), let B be defined by (2), A by
(6) and (9), and « and = by (22), (23). Then
(24) 14 afz/(1 —2)J(1 +a)" <= A/B<1+alz/(1 —2)|(1 + o — 2)7.
In particular,
(25) 1< A4/B<1+z"

Proor: Since b; = z by (6) and (15), we have F® = 1/(1 — 2) from (17).
Hence A/B = F/F by (3) and (9). Consequently,

FO _F® 4 FO _ p®
(26) —Fe =g~ '=TTFe
by (18). A straightforward calculation shows that the lower bound in (26)
equals afz/(1 — 2)](1 + o)}, and that the upper bound equals

az/(1 = 2)I(1 +a—2+8)7,

where § = b — b, . Since § > 0, (24) therefore follows from (26). It is easily
seen that alz/(1 — 2)[(1 + a — 2)™" < az/(1 — 2)° < 27, so that (25) fol-
lows from (24). This completes the proof.

In concluding this section reference may be made to certain bounds given by
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Hodges and Lehmann [3] for any probability of the form D s (?)p'q"—'. The

reader may verify that the bounds for B obtainable by taking @ = k and
b =mn — kin 3], p. 331, (3.1), say L and U, always satisfy L < A® < B <
U< A%,

4. Asymptotic estimates. The normal approximation. In this section we con-
sider a given sequence of positive integers k; , ks, - - - such that

(27) np Sk, n (n=1.2-:),

and we study the behaviour of B.(k.) as n — . Since the sequence {k,} re-

mains fixed throughout the discussion, we abbreviate B,(k,) to B, , and A.(k.)

to A, . Similarly, 2.(k.) defined by putting k& = k, in (23) is abbreviated to z,, .
Let N, denote the usual normal approximation to B,, i.e.

o
(28) N, A \/ dt
Let
(29) Cu = (2 + V¢/np)\/ 27 exp [323)].

THEOREM 2: (AN.C.)/B. = 1 + ¢,, where e, —> 0 asn — .

This result is valid without any restriction on the sequence {k,} other than
(27). As may be seen from the proof of Theorem 2, ¢, is at most of the order
1/4/n if {x.} is a bounded sequence, and at most of the order 1/z% if z, — .
If, however, the sequence {z,} has finite limit points of arbitrarily large mag-
nitude, the order of ¢, is indeterminate from the present proof.

To prove Theorem 2, we note first that

(30) 4.C, = [(k ) p""q”"""] (1 + z.V/q/np + %}) \/2rnpq exp [324],
by a straightforward computation using (6), (9), (23) and (29). Suppose now
that {z,} is a bounded sequence. In this case,

(31) n—k,— o

as n — o, Since-k, certainly tends to infinity by (27), Stirling’s formula can
be applied to the binomial coefficient on the right side of (30). This application
shows that

1

Since, by the De Moivre-Laplace limit theorem, we have
1

(33) B,—N,=0 (7;&)

2 The case when the normal approximation includes a continuity correction is discussed
at the end of this section.
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in any case, and since N, is bounded away from zero in the present case, it
follows from (32) and (33) that (A.N.C.)/B. = 1 + 0(1/4/7).

Suppose next that 2, — « as n — «. In this case it follows from (28) and
(29) by a property of the normal distribution ([4], p. 166) that

(34) N.C. =1+ 0(52).
It is plain from (25) and (34) that (4.N.C.)/B. = 1 + 0(1/z%).

To treat the general case write r, = (A.NaCn)/Bsforn = 1,2, ---, and
let I be a limit point of the sequence {r.}, 0 < [ £ «. Then there exists a strictly
increasing sequence of positive integers, say %, %2, - -+, such that r, — [ as
n — o through the sequence 7. The sequence ¢ surely contains a subsequence,
say ji,Jz, * ++ , such that z, tends to a finite or infinite limit as n — o through

the sequence j. Hence I = 1 by the preceding two paragraphs. Thus 1 is the
only limit point of the sequence {r,}. This completes the proof.
COROLLARY 1: Asn — o, the following four statements are mutually equivalent:

(35) | A — B, | — 0,
(36) An/Bn— 1,
(37) B, —0,

(38) Tn—> o,

Proor: The equivalence of (37) and (38) is immediate from (28) and (33).
It is evident from (25) that (38) implies (36). Since (36) always implies (35),
it will now suffice to show that (35) implies (38). Suppose to the contrary that
(35) holds, but that the sequence {z,} has a finite limit point, say a,0 < a < «.
Let 71 < 72 < --- be a sequence of integers such that z, — a as n — « through
the sequence 7. With n restricted to this sequence, B, is bounded away from
zero, by (28) and (33); hence 4, is also bounded away from zero by (35). It
follows from Theorem 2 and (35) that 4,(1 — N.C,) — 0. Hence N,C, — 1
as n — o through 7. This is a contradiction, since * — a implies ([4], p. 166)
that NC — b, where b = 0ifa = 0and 0 < b < 1if 0 < a < «. This com-
pletes the proof.

Next, define

. »+y —y

(39) ' f(y) = (1 + g) (1 _ q)q eayz/(gpq),
p q
and
1 — (/e

4 = _—
(40) 9(y) 4/1 oS
for —p < y < g. Write

kn N —
(41) y,,=;—p=\x/ﬁ\/pq 0 <y < q).



50 R. R. BAHADUR

CoroLLARY 2: If (31) is satisfied then
(42) Na/Bu = [f(ya)]"9(ys) (1 + &),

where e, — 0 asn — .

This corollary to Theorem 2 follows from (30), (39), (40) and (41) by an
application of Stirling’s formula. We omit the detailed calculation. The corollary
is a generalization, in the present very special case, of estimates of the type
introduced by Cramér and developed by Feller and Petrov. Petrov has re-
cently given the best versions of such estimates [5]°. The generalization con-
sists in replacing the condition

(43) Ya—0

of Petrov’s theorems with the much weaker condition (31). However, the
order of the e, in (42) remains indeterminate.

Corollary 2 is useful in certain applications [3], [6] where B, tends to zero
very rapidly. Another application, with which the remainder of this section is
concerned, is to the study of exact conditions under which

(44) lim {R,} =1
or at least
(45) 0 < lim inf {R,} = limsup {R.} < =,
where
(46) Rn = Nn/Bn .

Define
(47) o) = log (1/0) + L1

for 0 < ¢ < 1. It is easily seen that, as  increases from 0 to 1, ¢ increases steadily

from — « to a positive maximum at { = % and then decreases to zero. Let p

denote the root of the equation ¢(¢) = 0,0 < p < L. (p = .2847).
CoROLLARY 3: If p > % or p < p, then (44) holds if and only if

(48) nys = o(1).
If p = %, (44) holds if and only if
(49) | nyn = o(1).

If p < p < %, (48) s sufficient for (44), but may not be necessary; if, however,
limg.ew yn exists, then (48) is necessary for (44).

3 Petrov’s work was pointed out to the writer by Mr. Ranga Rao of the Indian Statistical
Institute. The writer wishes to thank Mr. Ranga Rao for valuable suggestions and discus-
sions during the preparation of this paper.
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In view of (41), conditions (48) and (49) are restrictions on the rate at
which z, becomes large, if it does so at all.* It is therefore rather surprising
that (44) can hold in the case p < p < % even when {z,} contains a subsequence
which tends to infinity very rapidly. The details of this exceptional case are
given in the course of the following proof.

To prove Corollary 3, suppose first that we have n — k, = m for all n, where
m is a fixed non-negative integer. In this case it follows from Theorem 2 by
(23), (30), (46) that

(50) log R, = n o(p) — log (Z) — $logn + 0Q1),

where ¢ is given by (47). The right side of (50) — + «© or — « according as
P > porp = p, so that (45) does not hold.

It now follows that (31) is necessary for (45). For, if (31) is not satisfied,
there exists an m such that n — k., = m for infinitely many n, and log R, is
therefore unbounded, by the preceding paragraph. It will be shown presently
that in fact

(51) lil,{liup{y»} <gq
is necessary for (45).

Let
(52) h(y) = log f(y)

for 0 = y < ¢, where f is given by (39). We shall require the following easily
verified properties of h regarded as a function of y. (i) In the neighborhood of
y = 0, his of the order 3*if p # 4 and of the order ¢* if p = %. (ii) h(y) — ¢(p)
as y — q, where ¢ is given by (47). (iii) If p = %, h is positive and steadily
increasing in the interval (0, ¢). (iv) If p < p, where p is the number defined
in the paragraph containing (47), then % is negative in the interval (0, q). (v)
If p < p < % then the equation ~ = 0 has a root, a say, in the interval (0, ¢);
h is negative in (0, a) and positive and increasing in (a, ¢); the derivative of
h is positive at y = a.

Let us write
(53) W =N h(ya) + log g(yn).
It then follows from (41), (42), (46), (52) and (53) that
(54) log Ra = wn + o(1)

provided only that (31) is satisfied.

We can now show that (51) is necessary for (45). Since (45) is already known
to imply (31), it follows from (54) that it will suffice to show that w, = O(1)
and (31) imply (51). First consider the case when p < p. In this case A(y.) =

4 It is well known that (48) always implies (44): [4], pp. 178-181 and [5].
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0 and hence w, =< log g(y.) for every =, by (53). It now follows by referring to
(40) that (51) must hold, for otherwise lim inf {w,} = — . Now consider the
case when p < p < 1, and suppose that {y.} contains a subsequence tending
to ¢. Since in the present case h(y) tends to a positive limit as y — g, it follows
from (40) and (53), using the hypothesis w, = O(1), that there exist positive
constants ¢; and ¢; such that log (¢ — ¥.) < ¢ — ¢ for infinitely many n.
Hence lim inf {n(q¢ — y.)} = 0. This contradicts (31), since n(q — y») =
(n — k) by (41).

Since (51) evidently implies that (31) holds, and also that log g(y.) = O(1),
the following general ‘criterion is now plain from (53) and (54): (45) holds if
and only if (51) is satisfied and n-h(y.) = O(1). By reference to the properties
of .the function % we see that this criterion reduces to (48) with o replaced by
Oincase p > 3 orp < p, and to (49) with the same modification in case p = 3.
The reduction of the ¢riterion in the case p < p < % is also straightforward
and is omitted.

It follows easily from the preceding criterion and (53) and (54) that (44)
holds if and only if (51) s satisfied and w, = o(1). This reduces to (48) if p > 3,
orif p < p, and to (49) if p = 1. In case p < p < %, the present criterion re-
duces to the following: 1) the sequence {y.} has no limit points other than 0
and @ = a(p), where a is the positive root of the equation 2(y) = 0,0 < a < g¢;
2) if 41, 42, - - - is any increasing sequence of positive integers such that y. — 0
as n — o through the sequence 7, then (48) holds for n restricted to ¢; and
3) if 71, j2, - - - is any increasing sequence of positive integers such that y, — a
as n — « through the sequence j, then

(55) yn=a+5’+o(1)
n n
for n restricted to j, where b = [’ (a)] log [g(a)] ™.

It is clear that if (48) holds then 1), 2) and 3) are satisfied, 3) being vacuous.
We shall now show that in general 3) is not vacuous, i.e. there are values of p
and corresponding sequences {k.} of #ntegers for which (55) holds for n restricted
to some sequence j. For any non-negative number r, let [r] denote the greatest
integer contained in r. Then (55) can be written as

(56) ko —{Bl+n(p+a)} =0+ &+ e

where 0 is a constant, 0 £ § < 1,0 < £ = n(p + a) — [»(p + a)] < 1, and
e» — 0. Suppose that p + a is irrational. Then, as is well known, each point
in [0, 1] is a limit point of the sequence {£.}. Consequently, there exists a se-
quence ji , jz2, - - - such that £, — 1 — 0 as n — o through j. If we let

kn=[n(p+a)]+ [b] +1

forn = ji,j2, -+ and k. =[np + +/n] (say) for all other values of n, it fol-
lows that 1), 2) and 3) are satisfied. Thus 3) is non-vacuous at least when
p + a(p) is irrational. It is not difficult to see that » + a(p) is a non-constant
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and continuous function of p, so that it does in fact assume irrational values
as p varies from p to 3.

To complete the proof of Corollary 3, consider an arbitrary but fixed p in
(p, 1), and suppose that lim,.. y. exists for the given sequence {k.}. Assume,
contrary to the last statement in Corollary 3, that (44) holds but (48) does
not. It then follows from the necessary and sufficient conditions 1), 2) and 3)
that in the present case (55) holds as n — « through the entire sequence 1, 2,
3, --- . Express (55) in the form (56). Since the left side of (56) is an integer,
since e, — 0, and since 6 and £, are in [0, 1) for each =, it follows that, for all
sufficiently large n, 8 + £, + e, = 0, or 1 or 2. Let L denote the set of all limit
points of the sequence 6 + £.. We then have L C {0, 1, 2}.

The conclusion of the preceding paragraph implies that p + @ cannot be
irrational. Suppose therefore that p + @ = u/v, where u and v are integers
such that 0 < u < ». Assuming that u/v is in its lowest terms, the limit points
of the sequence &, are 0, 1/v, 2/v, -+, and (v — 1)/v. Hence

L={6+ (r/v):r=0,1,2,---,v — 1}.

This implies, in particular, that 6 is in L. Hence § = 0, or 1, or 2 by the pre-
ceding paragraph; hence 6 = 0, since 0 < < 1 in any case. We now see that

= {(r/v):r = 0,1, ---,v — 1}. This cannot be a subset of {0, 1, 2} unless

= 1. However, v = 1 implies 0 < u < 1 and is therefore a contradiction.
This completes the proof.

It may be of some interest to examine the modifications required in Corollary
3 when the normal approximation includes a correction for contlnulty, e.g.,
when N, is defined by (28) but with z, = (k. — § — np)/(npg)}. It turns
out that Corollary 3 requires no modification for this particular continuity
correction. For certain more general ‘corrections’, the only modification is that
(48) is not necessary for (44) if p < p < %, even if lim y, exists.

The conclusions just stated are readily derived as follows. Let {c.} be a bounded
sequence, and let

°

x*=k,.—c,.—np___x b
V/npg V/npg’
® 1
(57) Na={. ﬁe"mdt,
Ry = Nx/B..
We wish to know Whether‘
(58) lim {R7} =

n->0

Suppose for the moment that %, — . Then z» also —, and it follows easily
from [4], p. 166 that N./Nu = (1 4 &) exp (— c,.y,./pq), where e, — 0. This
asymptotic formula is surely valid if {x,} is bounded, for then y, — 0 and

N./N%—>1.
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It follows therefore (cf. the paragraph preceding Corollary 1) that the formula
is valid in general, i.e.

(59) log N = log Nu + (catn/Pg) + o(1)

in general.
Since {c.ya} is a bounded sequence, it follows from (46), (57), (59), and the
proof of Corollary 3, that (58) holds if and only if

(60) lir’p»iup {ya} < @, nh(ya) + log g(ya) + (cayn/pPg) = o(1).

If p > %, orif p < p, (60) reduces to (48). (60) reduces to (49) if p = 3. Sup-
pose next that p < p < %, and that c. is a constant, say ¢. = c. In this case,
(60) reduces to conditions 1), 2) and 3) of the paragraph containing (55), but
with b replaced by (— logg(a) — ca/pq)/h’ (a). Since the value of b is im-
material to the arguments following (55), we conclude that in the present case
(48) suffices for (58) but may not be necessary, unless lim y, exists.

It remains therefore to consider the case when p < p < % but the c. are not
constant. Here (48) is sufficient for (58), but is not necessary, even if lim y,
exists. Indeed, if k, = n(p + a) + b, for each n, where {b,} is a bounded se-
quence, and we take ¢, = — (pg/a)(bah'(a) + log g(a)), then (60) and there-
fore (58) is satisfied.
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