A ONE-SIDED ANALOG OF KOLMOGOROV’S INEQUALITY!

By ALBERT W. MARSHALL
Stanford University

1. Introduction and summary. It is well known (see e.g. [4] p. 198) that for
every positive ¢ and every square integrable random variable X with zero ex-
pectation, P{X = ¢ < E(X*)/[¢ + E(X")]. In this paper an inequality is ob-
tained that generalizes this in the same way that Kolmogorov’s inequality
generalizes Chebyshev’s inequality. The inequality is proved in Section 2 and
an example is given to show that equality can be achieved. In Section 3 an ex-
tension to continuous parameter martingales is obtained, and a condition under
which equality can be achieved is given.

2. The inequality.

TaeoreM 2.1. Let X;, X,, -+, X, be random variables with E(X;) = 0,
E(X;| Xy, X, -, Xiq) =0ae (:1=2,3,--+,n), and E(X}) = ¢i < o,
(¢ =1,2, -+, n). Then, for every positive e,

(1) Pfmax (X;+ Xo+ -+ + X;) 2 ¢ < s./(€+8,), wheres, = 2 oc.
1<i<n =1
Note that, if V; = > 4y Xy, ¢ = 1,2, .-+, n, then {Y;;1=7<n}isa
martingale and E(Y2) = s, .
Proor. Let F(z) = F(z1, %2, -+, Z2) = () im1 i + $2)2/(€ + sa)% and
let

Bk={X1+X2+"'+X@'<€,1.=1,2,"',k'—1,
X1+X2+-'-+nge}, k = 1,2,"',’”.
Then

fﬂmw;; mmw;—i_ifGimﬂjw

(e 4 s,)2 k=1 =

= > P(Bx) = P{ max (Xi+ - + X;) = ¢}.
k=1 1<ign
Since [ F(X) dP = s./(€ =+ s.), the proof is complete. Note the similarity of
this proof to the standard proof of Kolmogorov’s inequality (see e.g. [1] p. 105,
314 or (3] p. 235, 386).
To show that equality can be achieved in (1), let s, = > iy07, k = 1, 2,
-,n,andlet Z = (Z1,Z,, -+, Z,) be a random variable having the following
distribution:
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P{Z = (6’0) cee )0)} = 0'?/(62+81) =D,

P{Z=e~x(—ai,—a§,...,_.02_1’62+8k_l’0,m’0)}
620':
=(€2+3k—1)(€2+8k)=pk’ k=23 ,n,
P{Z = —1(—03,—0-3,... ;—Gi)} — 62/(e2+sn),

It is easily verified by induction on j that

J
(2) l;pk=]_—e2/(ez+8j), j=172)“'7ny

0. It can be

I

so that this is a valid probability distribution. Clearly, E(Z;)
shown that E(Z;| Z,, - -+, Z;—1) = 0 a.e. (by first computing

E(Z;|Zia 5 ota/e)  and  E(Z;|Zsm = —oia/e))

and that E(Z) = o¢7,j = 1,2, ---, n. Thus the random variable Z satisfies
the conditions of Theorem 2.1; furthermore, equality holds in (1) whenever
(X1, -+, Xn) =Za.e.

Kolmogorov’s inequality has been extended under certain conditions by
Hajek and Rényi [2] to provide a bound for

P{max; &' | X+ -+ 4+ Xi| = 1) (>0,7=1,2,---,n),
and it is natural now to ask what the best upper bound is for
Pimax; (X, + -+ + Xi) = 1)

under the conditions of Theorem 2.1. Unfortunately this bound has no simple
expression even for small n, and is not easily obtained. It is given here only for
n = 2.

THEOERM 2.2. Let X, and X, be random variables with E(X,;) = 0, E(X. | X;) =
0 a.e., and E(X?) = 0f < ©,i=1,2. Thenif ¢ > 0 and & > 0,
or + o1(az/)’

o3 + of/a
where a; = o3 + mns, 1 = 1,2, and 7 = min (a1, &), 72 = €.

PRroOF. Followmg the method of Ha]ek and Rényi [2], we let F(r,, x3) =
aFi(z,) + cFs(x; + @), where

(3) P{Xlgél 0TX1+X2262}§

o=t _mleto) o nies
of (af+ o} ar)?’ ? " (al F ol ay)?’

Fi(z) = (x + 2>, Fo(z) = (x + o + ”al),
m m m o2

and we let By = {X; = m}, B: = {X; < m, X; + X> = n}. Since e = a; > 0,

it follows that ¢; = 0, and, as in the proof of Theorem 2.1,
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F(X,,X,) dP 2 P(By),
By

fB F(X,, X)) dP = f & FA(X, + X,) dP = P(By).

ThusIF<X1;X2)dP = P(B)) + P(B;) = P{X; 2 mor X; + X, = ) =
P{X, = e or X; + X, = e}. It is straightforward to verify that, upon integrating
the function (X, , X,), one obtains the bound given in (3), and this completes
the proof.

Equality is achieved in (3) whenever (X;, X,) has the following distribution:

2
P{(X1,X2) = (m,0)] =o/an | P{ (Xi,Xs) = (— "—“—)}
m m
?721)02 0'% 0'%0(1 1730!3
- M o pl (X, X) = (-2, - - ma
a0 + o’ {( 1 Xs) ( m ma2>} a(oy 0} + of)

Several inequalities follow from (3) simply by a change of variables. The
corollaries below are given to illustrate the possibilities.

CororLary 2.3. Let X, and X, be random variables with E(X;) = a,
E(X:| X;) = bX; + ca.e. (whereb % —1),and Var (X;) = o < 0,7 =1, 2.
Then if « — a > 0 and [e — 8(a + ab + ¢))/|b + 1| > 0 where
6 = sign (b + 1),

In this case, P{Xl = m OI‘Xl + X2 = ‘)72} = P{Xl g € Or Xl + X2 = 62}.

o3 — bl + ail(b + 1)an/a]
o3 — b} + [(b + 1)%a3/au]

where a; = o3 + mni, 1 = 1,2, and . = [e — 6(a + ab + al/lb+ 1],
m = min (¢ — a, 72).
Proor. This follows from Theorem 2.2 by making the change of variables

Xi=Xi4+a Xi=bXi+ b+ DXs+ ab+ e,
a=a+a e=ealb+1|+da+ab+ec)

(4) PiXizeaordXi+ X:) 2 e} <

and dropping the primes.

Note that by taking a = b = ¢ = 0 in this corollary, one obtains Theorem
2.2.

CoroLLARY 2.4. Let X, and X, be random variables such that E(X;) = .,
Var (X;) = o < 0,7 =1, 2, Cov (X1, X3) = o012 # 0, and suppose that the
regression of Xz on Xy is linear. Then, if ¢ — u1 > 0 and (de — oipe) /o2 > O,
where § = sign oyz ,

(5) PIXi2 qor6Xs 2 o) < di(o1 o3 — b)) + otz o12/en)’
B = oi(olof — ota) + (03 ofa/cn)
where a; = 03 + mni,t=1,2,and n, = (562 - vf#z)/ﬂlz , 11 = min ,(61 — p1, m2).
Proor. To obtain (5) from (3), make the change of variables X; = X; + p,
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X; = [O'iz(Xl + Xz)/a?] + w2, e; = ¢ + u and e; = 8(620‘{2 + 012;;2) in (3),
and then remove the primes.

3. An extension to continuous parameter martingales. We begin by assuming
that the underlying probability space is such that P is complete. Then we have
the following:

TueorEM 3.1. If {Y,, t = 0} is a separable martingale with E(Y,) = 0 and
E(Y}) = d*(t) < o forallt = 0, then, for every positive € and T,

. 2
6 P Y. = Vo @0 .
®) {tfggl R )
Proor.Let0 =, =8, < -+ St,=7.8nceX; = ¥V, and X, =Y, — Y,,_,,
1= 2,3, -+, n satisfy the conditions of Theorem 2.1,
(7) P{ max Y, = ¢ < o*(7)/[€ + (7).
1gign

Let S be a countable set satisfying the definition of separability and containing
the points 0 and 7. Taking the supremum of the left side of (7) over all finite
subsets of S N [0, 7], we obtain

P{ sup Y,= ¢ = (7)/[€ + (7).
teSN [0,7]
But
P{ sup Y., = ¢ =P{ sup Y. ¢,
teSN (0,7] te[0,7]

and the proof is complete.
TurEoREM 3.2. Equality can be achieved in (6) if " () is right continuous.
Proor. In order to define a martingale that achieves equality in (6), let
Q = {—1} U0, »), ® be the Borel subsets of 2, and let P be the probability
measure defined on ® by

P(B) = (¢/1¢ + lim ¢*(2)}xan 1) + w(B N[0, =),

where xg is the characteristic function of the set F and u is the measure induced
on the Borel subsets of [0, ] by the right continuous distribution function
a(+)/[€ + o*(+)]. Let {Z,, t = 0} be defined on (2, ®, P) by

2
r—a (t)/e 0st<w
Zw) = e 0=w=t
orw = —1 ==
Then

P{supZ, = ¢ = PO S w =1 = d(7)/[ + o(7)],

te[0,7]

lIA
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and it remains only to verify that the process {Z,, ¢t = 0} satisfies the conditions
of Theorem 3.1. We compute

E(Z) = [-o’({)Plo > torw = —1}/f + P{0 S 0w S 8} =0,

and similarly obtain E(Z}) = ¢°(¢), ¢t = 0. Clearly E{Z,| Z, = ¢ = Z, where
0 < s < tare fixed. Let 6 = E{Z,| Z, = —o"(s)/¢}; using the relation

0 = E(Z,) = E[E(Z,| Z,)) = eP{Z, = § + 6P{Z, = —d°(s)/¢},

(Y

we obtain § = —o°(s)/e. Hence the process {Z; , ¢ = 0} is a martingale satisfying
the conditions of Theorem 3.1 and achieving equality in (3.1).
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